932 research outputs found

    2D Reconstruction of Small Intestine's Interior Wall

    Full text link
    Examining and interpreting of a large number of wireless endoscopic images from the gastrointestinal tract is a tiresome task for physicians. A practical solution is to automatically construct a two dimensional representation of the gastrointestinal tract for easy inspection. However, little has been done on wireless endoscopic image stitching, let alone systematic investigation. The proposed new wireless endoscopic image stitching method consists of two main steps to improve the accuracy and efficiency of image registration. First, the keypoints are extracted by Principle Component Analysis and Scale Invariant Feature Transform (PCA-SIFT) algorithm and refined with Maximum Likelihood Estimation SAmple Consensus (MLESAC) outlier removal to find the most reliable keypoints. Second, the optimal transformation parameters obtained from first step are fed to the Normalised Mutual Information (NMI) algorithm as an initial solution. With modified Marquardt-Levenberg search strategy in a multiscale framework, the NMI can find the optimal transformation parameters in the shortest time. The proposed methodology has been tested on two different datasets - one with real wireless endoscopic images and another with images obtained from Micro-Ball (a new wireless cubic endoscopy system with six image sensors). The results have demonstrated the accuracy and robustness of the proposed methodology both visually and quantitatively.Comment: Journal draf

    Automatic Crack Detection in Built Infrastructure Using Unmanned Aerial Vehicles

    Full text link
    This paper addresses the problem of crack detection which is essential for health monitoring of built infrastructure. Our approach includes two stages, data collection using unmanned aerial vehicles (UAVs) and crack detection using histogram analysis. For the data collection, a 3D model of the structure is first created by using laser scanners. Based on the model, geometric properties are extracted to generate way points necessary for navigating the UAV to take images of the structure. Then, our next step is to stick together those obtained images from the overlapped field of view. The resulting image is then clustered by histogram analysis and peak detection. Potential cracks are finally identified by using locally adaptive thresholds. The whole process is automatically carried out so that the inspection time is significantly improved while safety hazards can be minimised. A prototypical system has been developed for evaluation and experimental results are included.Comment: In proceeding of The 34th International Symposium on Automation and Robotics in Construction (ISARC), pp. 823-829, Taipei, Taiwan, 201

    Image Mosaicing for Wide Angle Panorama

    Get PDF
    Images are integral part in our daily lives. With a normal camera it is not possible to get a wide angle panorama with high resolution. Image Mosaicing is one of the novel techniques, for combining two or more images of the same scene taken in different views into one image. In the dark areas, the obtained image is a panoramic image with high resolution without mask. But in the case of lighting areas, the resultant image is generating mask. In order to gets wide angle panorama, in the existing system, extracting feature points, finding the best stitching line, Cluster Analysis (CA) and Dynamic Programming (DP) methods are used. Also used Weighted Average (WA) method for smooth stitching results and also eliminate intensity seam effectively. In the proposed system, to get feature extraction and feature matching SIFT (Scaled Invariant Feature Transform) algorithm used. In this process, outliers can be generated. RANSAC (Random Sample Consensus) is used for detecting the outliers from the resultant image. Masking is significantly reduced by using Algebraic Reconstruction Techniques (ART)

    Vision-Based Localization Algorithm Based on Landmark Matching, Triangulation, Reconstruction, and Comparison

    No full text
    Many generic position-estimation algorithms are vulnerable to ambiguity introduced by nonunique landmarks. Also, the available high-dimensional image data is not fully used when these techniques are extended to vision-based localization. This paper presents the landmark matching, triangulation, reconstruction, and comparison (LTRC) global localization algorithm, which is reasonably immune to ambiguous landmark matches. It extracts natural landmarks for the (rough) matching stage before generating the list of possible position estimates through triangulation. Reconstruction and comparison then rank the possible estimates. The LTRC algorithm has been implemented using an interpreted language, onto a robot equipped with a panoramic vision system. Empirical data shows remarkable improvement in accuracy when compared with the established random sample consensus method. LTRC is also robust against inaccurate map data

    Assessment of surface topography modifications through feature-based registration of areal topography data

    Get PDF
    Surface topography modifications due to wear or other factors are usually investigated by visual and microscopic inspection, and – when quantitative assessment is required – through the computation of surface texture parameters. However, the current state-of-the-art areal topography measuring instruments produce detailed, areal reconstructions of surface topography which, in principle, may allow accurate comparison of the individual topographic formations before and after the modification event. The main obstacle to such an approach is registration, i.e. being able to accurately relocate the two topography datasets (measured before and after modification) in the same coordinate system. The challenge is related to the measurements being performed in independent coordinate systems, and on a surface which, having undergone modifications, may not feature easily-identifiable landmarks suitable for alignment. In this work, an algorithmic registration solution is proposed, based on the automated identification and alignment of matching topographic features. A shape descriptor (adapted from the scale invariant feature transform) is used to identify landmarks. Pairs of matching landmarks are identified by similarity of shape descriptor values. Registration is implemented by resolving the absolute orientation problem to align matched landmarks. The registration method is validated and discussed through application to simulated and real topographies selected as test cases

    Robust Techniques for Feature-based Image Mosaicing

    Get PDF
    Since the last few decades, image mosaicing in real time applications has been a challenging field for image processing experts. It has wide applications in the field of video conferencing, 3D image reconstruction, satellite imaging and several medical as well as computer vision fields. It can also be used for mosaic-based localization, motion detection & tracking, augmented reality, resolution enhancement, generating large FOV etc. In this research work, feature based image mosaicing technique using image fusion have been proposed. The image mosaicing algorithms can be categorized into two broad horizons. The first is the direct method and the second one is based on image features. The direct methods need an ambient initialization whereas, Feature based methods does not require initialization during registration. The feature-based techniques are primarily followed by the four steps: feature detection, feature matching, transformation model estimation, image resampling and transformation. SIFT and SURF are such algorithms which are based on the feature detection for the accomplishment of image mosaicing, but both the algorithms has their own limitations as well as advantages according to the applications concerned. The proposed method employs this two feature based image mosaicing techniques to generate an output image that works out the limitations of the both in terms of image quality The developed robust algorithm takes care of the combined effect of rotation, illumination, noise variation and other minor variation. Initially, the input images are stitched together using the popular stitching algorithms i.e. Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust Features (SURF). To extract the best features from the stitching results, the blending process is done by means of Discrete Wavelet Transform (DWT) using the maximum selection rule for both approximate as well as detail-components

    Feature Based Approaches for Homography Estimation

    Get PDF
    Image stitching is a method of producing a wider field of view by combining several overlapping images. With four main stages in the image stitching process, the algorithms used at each stage can have a dramatic impact on the success of stitching an image. For each stage, there are a wide range of algorithms to choose from and it can be a challenge to identify a stitching pipeline that will produce the best results. In this paper, we study the approaches involved in each of the four stages of image stitching. A real-world dataset is utilised to evaluate each algorithm, where images are transformed to different perspectives. The similarities of these images are compared to a warped perspective image obtained using the homographies provided by the dataset. The pipelines tested were limited to producing accurate results up to and including a 50° perspective change. Pipelines utilising BRISK’s feature detector, FREAK, and Brute Force produced significant results. However, pipelines incorporating ORB, FAST, or BRIEF produce poor results when compared to other feature detection and feature description algorithms. Generally, the ratio test hindered the matched pairs process, although there were exceptions. Finally, the inlier/outlier detection algorithms, USAC and RANSAC, had similar performances with no definitive data to suggest that, in general, one outperforms the other

    Image Stitching for UAV remote sensing application

    Get PDF
    The objective of the project is to write an algorithm that is able to join top view images to create a big map. The project is done in the School of Castelldefels of UPC, within the research laboratory Icarus of EETAC Faculty. The goal of the project is to detect an area of this map, thanks to the analysis of this images. The images are taken by the two camera aboard on an Unmanned Aerial Vehicle (UAV) built by the Icarus group leaded by Enric Pastor. The implemented code is uploaded in Upc' svn at the adress: https://svn.fib.upc.es/svn/vincenzo.can
    corecore