5,626 research outputs found

    Spin precession mapping at ferromagnetic resonance via nuclear resonant scattering

    Full text link
    We probe the spin dynamics in a thin magnetic film at ferromagnetic resonance by nuclear resonant scattering of synchrotron radiation at the 14.4 keV resonance of 57^{57}Fe. The precession of the magnetization leads to an apparent reduction of the magnetic hyperfine field acting at the 57^{57}Fe nuclei. The spin dynamics is described in a stochastic relaxation model adapted to the ferromagnetic resonance theory by Smit and Beljers to model the decay of the excited nuclear state. From the fits of the measured data the shape of the precession cone of the spins is determined. Our results open a new perspective to determine magnetization dynamics in layered structures with very high depth resolution by employing ultrathin isotopic probe layers

    Nuclear resonant surface diffraction

    Full text link
    Nuclear resonant x-ray diffraction in grazing incidence geometry is used to determine the lateral magnetic configuration in a one-dimensional lattice of ferromagnetic nanostripes. During magnetic reversal, strong nuclear superstructure diffraction peaks appear in addition to the electronic ones due to an antiferromagnetic order in the nanostripe lattice. We show that the analysis of the angular distribution of the resonantly diffracted x-rays together with the time-dependence of the coherently diffracted nuclear signal reveals surface spin structures with very high sensitivity. This novel scattering technique provides a unique access to laterally correlated spin configurations in magnetically ordered nanostructures and, in perspective, also to their dynamics

    Study of the effects of magnetic field on the properties of combustion synthesized iron oxide nanoparticles

    Get PDF
    Nanosized chain-like aggregates were developed in an iron pentacarbonyl-carbon monoxide (Fe(CO) 5 ¨C CO) air diffusion flame system. Magnetic field was applied around the diffusion flame using an electromagnet with an intensity of 0.4 Tesla. Transmission Electron Microscopy (TEM) analysis was performed to observe the behavior of the chains formed and to study the effect of magnetic field on these chains. These chain aggregates consist mainly of Fe2O3, which play a vital role in magnetic storage devices. Diffraction pattern analysis and X-ray Photon Spectroscopy (XPS) were carried out to confirm that the chain aggregates consist of mainly ¦Ã-Fe2O3. The effect of magnetic field on diffusion flames was observed clearly and the color of the flame also became brighter indicating the increase in the flame intensity. The temperature increase at different locations in the flame was between 20 - 25˚C. The magnetic properties of the iron oxide particles formed were investigated using a Super conducting Quantum Interference Device (SQUID) magnetometer. It was observed that the magnetic properties such as Coercivity, Susceptibility and Permeability favor in magnetic storage devices when a magnetic field was applied. Thus, the effects of the application of external magnetic field on Fe(CO) 5 ¨C CO air diffusion flame are studied

    Resonant Elastic Soft X-Ray Scattering

    Full text link
    Resonant (elastic) soft x-ray scattering (RSXS) offers a unique element, site, and valence specific probe to study spatial modulations of charge, spin, and orbital degrees of freedom in solids on the nanoscopic length scale. It cannot only be used to investigate single crystalline materials. This method also enables to examine electronic ordering phenomena in thin films and to zoom into electronic properties emerging at buried interfaces in artificial heterostructures. During the last 20 years, this technique, which combines x-ray scattering with x-ray absorption spectroscopy, has developed into a powerful probe to study electronic ordering phenomena in complex materials and furthermore delivers important information on the electronic structure of condensed matter. This review provides an introduction to the technique, covers the progress in experimental equipment, and gives a survey on recent RSXS studies of ordering in correlated electron systems and at interfaces

    Spin relaxation in low-dimensional systems

    Full text link
    We review some of the newest findings on the spin dynamics of carriers and excitons in GaAs/GaAlAs quantum wells. In intrinsic wells, where the optical properties are dominated by excitonic effects, we show that exciton-exciton interaction produces a breaking of the spin degeneracy in two-dimensional semiconductors. In doped wells, the two spin components of an optically created two-dimensional electron gas are well described by Fermi-Dirac distributions with a common temperature but different chemical potentials. The rate of the spin depolarization of the electron gas is found to be independent of the mean electron kinetic energy but accelerated by thermal spreading of the carriers.Comment: 1 PDF file, 13 eps figures, Proceedings of the 1998 International Workshop on Nanophysics and Electronics (NPE-98)- Lecce (Italy

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Nanoscale magnetophotonics

    Get PDF
    This Perspective surveys the state-of-the-art and future prospects of science and technology employing the nanoconfined light (nanophotonics and nanoplasmonics) in combination with magnetism. We denote this field broadly as nanoscale magnetophotonics. We include a general introduction to the field and describe the emerging magneto-optical effects in magnetoplasmonic and magnetophotonic nanostructures supporting localized and propagating plasmons. Special attention is given to magnetoplasmonic crystals with transverse magnetization and the associated nanophotonic non-reciprocal effects, and to magneto-optical effects in periodic arrays of nanostructures. We give also an overview of the applications of these systems in biological and chemical sensing, as well as in light polarization and phase control. We further review the area of nonlinear magnetophotonics, the semiconductor spin-plasmonics, and the general principles and applications of opto-magnetism and nano-optical ultrafast control of magnetism and spintronics
    corecore