14 research outputs found

    Različiti pristupi za kreiranje geometrijskih modela anatomske osi femura i tijela femura

    Get PDF
    In today\u27s medicine, especially in the field of orthopedic surgery, it is very important to use geometrically accurate and anatomically correct geometrical models of human bones for the pre-operative planning and implants creation. In order to create such models, two new methods for geometrical modeling were developed and presented in this paper. These methods enable creation of femur anatomical axis and femur shaft geometrical models, and they are: GCM (Gravity Center Method), and CPM (Curve Projection Method). Both methods enable creation of geometrical models which are based on data acquired from the medical imaging devices (CT, MRI, X-Ray). The basic difference between these two methods and all the others is in the manner of generating the points through which anatomical axis model (3D curve) passes or goes near. The applied methods are developed considering the natural shape and anatomical landmarks of the femur bone, as well as standard CAD techniques for geometrical modeling which are common in engineering.U današnjoj medicini, osobito u području ortopedske kirurgije vrlo je važno koristiti geometrijski točne i anatomski ispravne geometrijske modele ljudskih kostiju za pred-operativno planiranje i kreiranje implantata. Radi kreiranja takvih modela dvije nove metode geometrijskog modeliranja su razvijene i prezentirane u ovom radu. Ove metode omogućuju kreiranje geometrijskih modela anatomske osi femura i tijela femura i one su: GCM (eng. Gravity Center Method), i CPM (eng. Curve Projection Method). Obje metode omogućavaju kreiranje geometrijskih modela koji se temelje na podacima dobivenih od medicinskih uređaja (CT, MRI, X-Ray). Osnovna razlika između ove dvije metode u odnosu na sve ostale je u načinu generiranja točaka kroz koje anatomska os modela (3D krivulja) prolazi ili je u blizini. Primijenjene su tehnike koje su razvijene uzimajući u obzir prirodni oblik i anatomske značajke femura. kao i standardne CAD tehnike za geometrijsko modeliranje koje su uobičajene u inženjerstvu

    USER DEFINED GEOMETRIC FEATURE FOR THE CREATION OF THE FEMORAL NECK ENVELOPING SURFACE

    Get PDF
    There is a growing demand for application of personalized bone implants (endoprostheses or macro-scaffolds, and fixators) which conform the anatomy of patient. Hence the need for a CAD procedure that enables fast and sufficiently accurate digital reconstruction of the traumatized bone geometry. Research presented in this paper addresses digital reconstruction of the femoral neck fracture. The results point out that User-Defined (geometric) Feature (UDF) concept is the most convenient to use in digital reconstruction of numerous variants of the same topology, such as in this kind of bone region. UDF, named FemoNeck, is developed to demonstrate capability of the chosen concept. Its geometry, controlled by a dozen of parameters, can be easily shaped according to anatomy of femoral neck region of the specific patient. That kind of CAD procedure should use minimally required set of geometric (anatomical) parameters, which can be easily captured from X-ray or Computed Tomography (CT) images. For the statistical analysis of geometry and UDF development we used CT scans of proximal femur of 24 Caucasian female and male adults. The validation of the proposed method was done by applying it for remodeling four femoral necks of four different proximal femurs and by comparing the geometrical congruency between the raw polygonal models gained directly from CT scan and reconstructed models

    REVERSE ENGINEERING OF THE MITKOVIC TYPE INTERNAL FIXATOR FOR LATERAL TIBIAL PLATEAU

    Get PDF
    In orthopaedic surgery it is very important to use proper fixation techniques in the treatment of various medical conditions, i.e. bone fractures or other traumas. If an internal fixation method, such as plating, is required, it is possible to use Dynamic Compression Plates (DCP) or Locking Compression Plates (LCP) and their variants. For DCP implants it is important to match the patient's bone shape with the most possible accuracy, so that the most frequent implant bending is applied in the surgery. For LCP implants it is not so important to match the patient’s bone shape, but additional locking screw holes are required. To improve the geometrical accuracy and anatomical correctness of the shape of DCP and to improve the LCP geometric definition, new geometrical modelling methods for the Mitkovic type internal fixator for Lateral Tibia Plateau are developed and presented in this research. The presented results are quite promising; it can be concluded that these methods can be applied to the creation of geometrical models of internal fixator customized for the given patient or optimized for a group of patients with required geometrical accuracy and morphological correctness

    GEOMETRICAL MODELS OF MANDIBLE FRACTURE AND PLATE IMPLANT

    Get PDF
    In the oral and maxillofacial surgery, there is a requirement to provide the best possible treatment for the patient with mandibular fractures. This treatment presumes application of reduction and fixation techniques for proper stabilization of the fracture site. The reduction of the bone fragments and their fixation is much better performed when geometry and morphology of the bone and osteofixation elements (e.g. plates) are properly defined. In this paper, a new healthcare procedure, which enables application of personalized plate implants for the fixation of the mandibular fractures, is presented. Geometrical models of mandible and plate implants, presented in this research, were created by means of the Method of Anatomical Features (MAF), which has been already applied to the creation of accurate geometrical models of various human bones, plates and fixators. By using such geometrically and anatomically accurate models, orthopedic and maxillofacial surgeons can better perform pre-operative tasks of simulating and planning the operation, as well as an intraoperative task of implanting the personalized plate into the patient body

    Analysis of Existing Methods for 3D Modelling of Femurs starting from Two Orthogonal Images and Development of a Script for a Commercial Software Package

    No full text
    Background: At present the interest in medical field about the generation of three-dimensional digital models of anatomical structures increases due to the widespread diffusion of CAS - computer assisted surgery - systems. Most of them are based on CT computer tomography - or MR - magnetic resonance - data volumes but sometimes this information is not available; there are only few X-ray, ultrasound or fluoroscopic images. Methods: This paper describes the study and the development of a script for a commercial software package (ads Max) able to reconfigure the template model of a femur starting from two orthogonal images representing the specific patient's anatomy. Results: The script was used in several tests as summarized in this paper and the results appear to be interesting and acceptable, even for the medical experts that evaluated them. Conclusions: The script developed in this work allows the generation of the 3D model of a femur in a very simple way (the user interface has been developed obeying to the main usability guidelines) and using a widespread commercial package. The quality of the results can be compared to the quality of more expensive and specialized systems. (c) 2007 Elsevier Ireland Ltd. All rights reserved. RI Motyl, Barbara/B-1193-2010; Filippi, Stefano/A-6118-200

    Neural Extended Kalman Filter for State Estimation of Automated Guided Vehicle in Manufacturing Environment

    Get PDF
    To navigate autonomously in a manufacturing environment Automated Guided Vehicle (AGV) needs the ability to infer its pose. This paper presents the implementation of the Extended Kalman Filter (EKF) coupled with a feedforward neural network for the Visual Simultaneous Localization and Mapping (VSLAM). The neural extended Kalman filter (NEKF) is applied on-line to model error between real and estimated robot motion. Implementation of the NEKF is achieved by using mobile robot, an experimental environment and a simple camera. By introducing neural network into the EKF estimation procedure, the quality of performance can be improved

    Prediction of Robot Execution Failures Using Neural Networks

    Get PDF
    In recent years, the industrial robotic systems are designed with abilities to adapt and to learn in a structured or unstructured environment. They are able to predict and to react to the undesirable and uncontrollable disturbances which frequently interfere in mission accomplishment. In order to prevent system failure and/or unwanted robot behaviour, various techniques have been addressed. In this study, a novel approach based on the neural networks (NNs) is employed for prediction of robot execution failures. The training and testing dataset used in the experiment consists of forces and torques memorized immediately after the real robot failed in assignment execution. Two types of networks are utilized in order to find best prediction method - recurrent NNs and feedforward NNs. Moreover, we investigated 24 neural architectures implemented in Matlab software package. The experimental results confirm that this approach can be successfully applied to the failures prediction problem, and that the NNs outperform other artificial intelligence techniques in this domain. To further validate a novel method, real world experiments are conducted on a Khepera II mobile robot in an indoor structured environment. The obtained results for trajectory tracking problem proved usefulness and the applicability of the proposed solution

    Optimization of Operation Sequencing in CAPP Using Hybrid Genetic Algorithm and Simulated Annealing Approach

    Get PDF
    In any CAPP system, one of the most important process planning functions is selection of the operations and corresponding machines in order to generate the optimal operation sequence. In this paper, the hybrid GA-SA algorithm is used to solve this combinatorial optimization NP (Non-deterministic Polynomial) problem. The network representation is adopted to describe operation and sequencing flexibility in process planning and the mathematical model for process planning is described with the objective of minimizing the production time. Experimental results show effectiveness of the hybrid algorithm that, in comparison with the GA and SA standalone algorithms, gives optimal operation sequence with lesser computational time and lesser number of iterations

    Optimization of Operation Sequencing in CAPP Using Hybrid Genetic Algorithm and Simulated Annealing Approach

    Get PDF
    In any CAPP system, one of the most important process planning functions is selection of the operations and corresponding machines in order to generate the optimal operation sequence. In this paper, the hybrid GA-SA algorithm is used to solve this combinatorial optimization NP (Non-deterministic Polynomial) problem. The network representation is adopted to describe operation and sequencing flexibility in process planning and the mathematical model for process planning is described with the objective of minimizing the production time. Experimental results show effectiveness of the hybrid algorithm that, in comparison with the GA and SA standalone algorithms, gives optimal operation sequence with lesser computational time and lesser number of iterations

    Friction Force Microscopy of Deep Drawing Made Surfaces

    Get PDF
    Aim of this paper is to contribute to micro-tribology understanding and friction in micro-scale interpretation in case of metal beverage production, particularly the deep drawing process of cans. In order to bridging the gap between engineering and trial-and-error principles, an experimental AFM-based micro-tribological approach is adopted. For that purpose, the can’s surfaces are imaged with atomic force microscopy (AFM) and the frictional force signal is measured with frictional force microscopy (FFM). In both techniques, the sample surface is scanned with a stylus attached to a cantilever. Vertical motion of the cantilever is recorded in AFM and horizontal motion is recorded in FFM. The presented work evaluates friction over a micro-scale on various samples gathered from cylindrical, bottom and round parts of cans, made of same the material but with different deep drawing process parameters. The main idea is to link the experimental observation with the manufacturing process. Results presented here can advance the knowledge in order to comprehend the tribological phenomena at the contact scales, too small for conventional tribology
    corecore