300 research outputs found

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree

    Outlier Detection Techniques For Wireless Sensor Networks: A Survey

    Get PDF
    In the field of wireless sensor networks, measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the multivariate nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a decision tree to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier degree

    Wireless Sensor Networks for Networked Manufacturing Systems

    Get PDF

    A survey of distributed data aggregation algorithms

    Get PDF
    Distributed data aggregation is an important task, allowing the decentralized determination of meaningful global properties, which can then be used to direct the execution of other applications. The resulting values are derived by the distributed computation of functions like COUNT, SUM, and AVERAGE. Some application examples deal with the determination of the network size, total storage capacity, average load, majorities and many others. In the last decade, many different approaches have been proposed, with different trade-offs in terms of accuracy, reliability, message and time complexity. Due to the considerable amount and variety of aggregation algorithms, it can be difficult and time consuming to determine which techniques will be more appropriate to use in specific settings, justifying the existence of a survey to aid in this task. This work reviews the state of the art on distributed data aggregation algorithms, providing three main contributions. First, it formally defines the concept of aggregation, characterizing the different types of aggregation functions. Second, it succinctly describes the main aggregation techniques, organizing them in a taxonomy. Finally, it provides some guidelines toward the selection and use of the most relevant techniques, summarizing their principal characteristics.info:eu-repo/semantics/publishedVersio

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Ensuring the resilience of wireless sensor networks to malicious data injections through measurements inspection

    Get PDF
    Malicious data injections pose a severe threat to the systems based on \emph{Wireless Sensor Networks} (WSNs) since they give the attacker control over the measurements, and on the system's status and response in turn. Malicious measurements are particularly threatening when used to spoof or mask events of interest, thus eliciting or preventing desirable responses. Spoofing and masking attacks are particularly difficult to detect since they depict plausible behaviours, especially if multiple sensors have been compromised and \emph{collude} to inject a coherent set of malicious measurements. Previous work has tackled the problem through \emph{measurements inspection}, which analyses the inter-measurements correlations induced by the physical phenomena. However, these techniques consider simplistic attacks and are not robust to collusion. Moreover, they assume highly predictable patterns in the measurements distribution, which are invalidated by the unpredictability of events. We design a set of techniques that effectively \emph{detect} malicious data injections in the presence of sophisticated collusion strategies, when one or more events manifest. Moreover, we build a methodology to \emph{characterise} the likely compromised sensors. We also design \emph{diagnosis} criteria that allow us to distinguish anomalies arising from malicious interference and faults. In contrast with previous work, we test the robustness of our methodology with automated and sophisticated attacks, where the attacker aims to evade detection. We conclude that our approach outperforms state-of-the-art approaches. Moreover, we estimate quantitatively the WSN degree of resilience and provide a methodology to give a WSN owner an assured degree of resilience by automatically designing the WSN deployment. To deal also with the extreme scenario where the attacker has compromised most of the WSN, we propose a combination with \emph{software attestation techniques}, which are more reliable when malicious data is originated by a compromised software, but also more expensive, and achieve an excellent trade-off between cost and resilience.Open Acces

    Train Localisation using Wireless Sensor Networks

    Get PDF
    Safety and reliability have always been concerns for railway transportation. Knowing the exact location of a train enables the railway system to react to an unusual situation for the safety of human lives and properties. Generally, the accuracy of localisation systems is related with their deployment and maintenance costs, which can be on the order of millions of dollars a year. Despite a lot of research efforts, existing localisation systems based on different technologies are still limited because most of them either require expensive infrastructure (ultrasound and laser), have high database maintenance, computational costs or accumulate errors (vision), offer limited coverage (GPS-dark regions, Wi-Fi, RFID) or provide low accuracy (audible sound). On the other hand, wireless sensor networks (WSNs) offer the potential for a cheap, reliable and accurate solutions for the train localisation system. This thesis proposes a WSN-based train localisation system, in which train location is estimated based on the information gathered through the communication between the anchor sensors deployed along the track and the gateway sensor installed on the train, such as anchor sensors' geographic coordinates and the Received Signal Strength Indicator (RSSI). In the proposed system, timely anchor-gateway communication implies accurate localisation. How to guarantee effective communication between anchor sensors along the track and the gateway sensor on the train is a challenging problem for WSN-based train localisation. I propose a beacon driven sensors wake-up scheme (BWS) to address this problem. BWS allows each anchor sensor to run an asynchronous duty-cycling protocol to conserve energy and establishes an upper bound on the sleep time in one duty cycle to guarantee their timely wake-up once a train approaches. Simulation results show that the BWS scheme can timely wake up the anchor sensors at a very low energy consumption cost. To design an accurate scheme for train localisation, I conducted on-site experiments in an open field, a railway station and a tunnel, and the results show that RSSI can be used as an estimator for train localisation and its applicability increases with the incorporation of another type of data such as location information of anchor sensors. By combining the advantages of RSSI-based distance estimation and Particle Filtering techniques, I designed a Particle-Filter-based train localisation scheme and propose a novel Weighted RSSI Likelihood Function (WRLF) for particle update. The proposed localisation scheme is evaluated through extensive simulations using the data obtained from the on-site measurements. Simulation results demonstrate that the proposed scheme can achieve significant accuracy, where average localisation error stays under 30 cm at the train speed of 40 m=s, 40% anchor sensors failure rate and sparse deployment. In addition, the proposed train localisation scheme is robust to changes in train speed, the deployment density and reliability of anchor sensors. Anchor sensors are prone to hardware and software deterioration such as battery outage and dislocation. Therefore, in order to reduce the negative impacts of these problems, I designed a novel Consensus-based Anchor sensor Management Scheme (CAMS), in which each anchor sensor performs a self-diagnostics and reports the detected faults in the neighbourhood. CAMS can assist the gateway sensor to exclude the input from the faulty anchor sensors. In CAMS, anchor sensors update each other about their opinions on other neighbours and develops consensus to mark faulty sensors. In addition, CAMS also reports the system information such as signal path loss ratio and allows anchor sensors to re-calibrate and verify their geographic coordinates. CAMS is evaluated through extensive simulations based on real data collected from field experiments. This evaluation also incorporated the simulated node failure model in simulations. Though there are no existing WSN-based train localisation systems available to directly compare our results with, the proposed schemes are evaluated with real datasets, theoretical models and existing work wherever it was possible. Overall, the WSN-based train localisation system enables the use of RSSI, with combination of location coordinates of anchor sensors, as location estimator. Due to low cost of sensor devices, the cost of overall system remains low. Further, with duty-cycling operation, energy of the sensor nodes and system is conserved

    Wireless sensors networks

    Get PDF
    After studying in depth look at wireless sensor networks are quite clear improvement compared to traditional wireless networks due to several factors as are the durability of the lifetime of the batteries, allowing greater portability of sensor nodes and that can record more events to power stay longer in some places, the routing protocols networks sensors allow gain than in durability also gain in efficiency the avoidance of collisions between packets, which also ensures a lower number of unnecessary network traffic. Because of the great features of such networks are currently using sensor networks in many projects related to different fields such as: environment, health, military, construction and structures, automotive, home automation, agriculture, etc. This type of network currently is leading a technological revolution similar to that had appearance of internet, because the applications appear to be infinite, also speaks global surveillance network on the planet capable of recording and tracking people specific goods and research projects have generated great interest for application in practice

    A dependability framework for WSN-based aquatic monitoring systems

    Get PDF
    Wireless Sensor Networks (WSN) are being progressively used in several application areas, particularly to collect data and monitor physical processes. Moreover, sensor nodes used in environmental monitoring applications, such as the aquatic sensor networks, are often subject to harsh environmental conditions while monitoring complex phenomena. Non-functional requirements, like reliability, security or availability, are increasingly important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provides a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data is reliable or, more generically, that it has the necessary quality. The problem of ensuring the desired quality of data for dependable monitoring using WSNs is studied herein. With a dependability-oriented perspective, it is reviewed the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, it is given particular attention to understanding which faults can affect sensors, how they can affect the quality of the information, and how this quality can be improved and quantified. Open research issues for the specific case of aquatic monitoring applications are also discussed. One of the challenges in achieving a dependable system behavior is to overcome the external disturbances affecting sensor measurements and detect the failure patterns in sensor data. This is a particular problem in environmental monitoring, due to the difficulty in distinguishing a faulty behavior from the representation of a natural phenomenon. Existing solutions for failure detection assume that physical processes can be accurately modeled, or that there are large deviations that may be detected using coarse techniques, or more commonly that it is a high-density sensor network with value redundant sensors. This thesis aims at defining a new methodology for dependable data quality in environmental monitoring systems, aiming to detect faulty measurements and increase the sensors data quality. The framework of the methodology is overviewed through a generically applicable design, which can be employed to any environment sensor network dataset. The methodology is evaluated in various datasets of different WSNs, where it is used machine learning to model each sensor behavior, exploiting the existence of correlated data provided by neighbor sensors. It is intended to explore the data fusion strategies in order to effectively detect potential failures for each sensor and, simultaneously, distinguish truly abnormal measurements from deviations due to natural phenomena. This is accomplished with the successful application of the methodology to detect and correct outliers, offset and drifting failures in real monitoring networks datasets. In the future, the methodology can be applied to optimize the data quality control processes of new and already operating monitoring networks, and assist in the networks maintenance operations.As redes de sensores sem fios (RSSF) têm vindo cada vez mais a serem utilizadas em diversas áreas de aplicação, em especial para monitorizar e capturar informação de processos físicos em meios naturais. Neste contexto, os sensores que estão em contacto direto com o respectivo meio ambiente, como por exemplo os sensores em meios aquáticos, estão sujeitos a condições adversas e complexas durante o seu funcionamento. Esta complexidade conduz à necessidade de considerarmos, durante o desenvolvimento destas redes, os requisitos não funcionais da confiabilidade, da segurança ou da disponibilidade elevada. Para percebermos como satisfazer estes requisitos da monitorização com base em RSSF para aplicações ambientais, já existe uma boa base de conhecimento sobre técnicas de confiabilidade em sistemas distribuídos. Devido ao foco na obtenção de dados deste tipo de aplicações de RSSF, é particularmente importante garantir que os dados obtidos na monitorização sejam confiáveis ou, de uma forma mais geral, que tenham a qualidade necessária para o objetivo pretendido. Esta tese estuda o problema de garantir a qualidade de dados necessária para uma monitorização confiável usando RSSF. Com o foco na confiabilidade, revemos os possíveis impedimentos à obtenção de dados confiáveis e as soluções existentes capazes de corrigir ou mitigar esses impedimentos. Apesar de existir uma grande variedade de componentes que formam ou podem formar um sistema de monitorização com base em RSSF, prestamos particular atenção à compreensão das possíveis faltas que podem afetar os sensores, a como estas faltas afetam a qualidade dos dados recolhidos pelos sensores e a como podemos melhorar os dados e quantificar a sua qualidade. Tendo em conta o caso específico dos sistemas de monitorização em meios aquáticos, discutimos ainda as várias linhas de investigação em aberto neste tópico. Um dos desafios para se atingir um sistema de monitorização confiável é a deteção da influência de fatores externos relacionados com o ambiente monitorizado, que afetam as medições obtidas pelos sensores, bem como a deteção de comportamentos de falha nas medições. Este desafio é um problema particular na monitorização em ambientes naturais adversos devido à dificuldade da distinção entre os comportamentos associados às falhas nos sensores e os comportamentos dos sensores afetados pela à influência de um evento natural. As soluções existentes para este problema, relacionadas com deteção de faltas, assumem que os processos físicos a monitorizar podem ser modelados de forma eficaz, ou que os comportamentos de falha são caraterizados por desvios elevados do comportamento expectável de forma a serem facilmente detetáveis. Mais frequentemente, as soluções assumem que as redes de sensores contêm um número suficientemente elevado de sensores na área monitorizada e, consequentemente, que existem sensores redundantes relativamente à medição. Esta tese tem como objetivo a definição de uma nova metodologia para a obtenção de qualidade de dados confiável em sistemas de monitorização ambientais, com o intuito de detetar a presença de faltas nas medições e aumentar a qualidade dos dados dos sensores. Esta metodologia tem uma estrutura genérica de forma a ser aplicada a uma qualquer rede de sensores ambiental ou ao respectivo conjunto de dados obtido pelos sensores desta. A metodologia é avaliada através de vários conjuntos de dados de diferentes RSSF, em que aplicámos técnicas de aprendizagem automática para modelar o comportamento de cada sensor, com base na exploração das correlações existentes entre os dados obtidos pelos sensores da rede. O objetivo é a aplicação de estratégias de fusão de dados para a deteção de potenciais falhas em cada sensor e, simultaneamente, a distinção de medições verdadeiramente defeituosas de desvios derivados de eventos naturais. Este objectivo é cumprido através da aplicação bem sucedida da metodologia para detetar e corrigir outliers, offsets e drifts em conjuntos de dados reais obtidos por redes de sensores. No futuro, a metodologia pode ser aplicada para otimizar os processos de controlo da qualidade de dados quer de novos sistemas de monitorização, quer de redes de sensores já em funcionamento, bem como para auxiliar operações de manutenção das redes.Laboratório Nacional de Engenharia Civi
    corecore