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Abstract

Safety and reliability have always been concerns for railway transportation.

Knowing the exact location of a train enables the railway system to react to

an unusual situation for the safety of human lives and properties. Generally,

the accuracy of localisation systems is related with their deployment and

maintenance costs, which can be on the order of millions of dollars a year.

Despite a lot of research efforts, existing localisation systems based on dif-

ferent technologies are still limited because most of them either require

expensive infrastructure (ultrasound and laser), have high database main-

tenance, computational costs or accumulate errors (vision), offer limited

coverage (GPS-dark regions, Wi-Fi, RFID) or provide low accuracy (audi-

ble sound). On the other hand, wireless sensor networks (WSNs) offer the

potential for a cheap, reliable and accurate solutions for the train localisa-

tion system. This thesis proposes a WSN-based train localisation system,

in which train location is estimated based on the information gathered

through the communication between the anchor sensors deployed along the

track and the gateway sensor installed on the train, such as anchor sensors’

geographic coordinates and the Received Signal Strength Indicator (RSSI).

In the proposed system, timely anchor-gateway communication implies ac-

curate localisation. How to guarantee effective communication between

anchor sensors along the track and the gateway sensor on the train is a

challenging problem for WSN-based train localisation. I propose a beacon-

driven sensors wake-up scheme (BWS) to address this problem. BWS allows

each anchor sensor to run an asynchronous duty-cycling protocol to con-

serve energy and establishes an upper bound on the sleep time in one duty

cycle to guarantee their timely wake-up once a train approaches. Simu-

lation results show that the BWS scheme can timely wake up the anchor

sensors at a very low energy consumption cost.

To design an accurate scheme for train localisation, I conducted on-site

experiments in an open field, a railway station and a tunnel, and the re-
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sults show that RSSI can be used as an estimator for train localisation and

its applicability increases with the incorporation of another type of data

such as location information of anchor sensors. By combining the advan-

tages of RSSI-based distance estimation and Particle Filtering techniques,

I designed a Particle-Filter-based train localisation scheme and propose

a novel Weighted RSSI Likelihood Function (WRLF) for particle update.

The proposed localisation scheme is evaluated through extensive simula-

tions using the data obtained from the on-site measurements. Simulation

results demonstrate that the proposed scheme can achieve significant accu-

racy, where average localisation error stays under 30 cm at the train speed

of 40 m/s, 40% anchor sensors failure rate and sparse deployment. In ad-

dition, the proposed train localisation scheme is robust to changes in train

speed, the deployment density and reliability of anchor sensors.

Anchor sensors are prone to hardware and software deterioration such as

battery outage and dislocation. Therefore, in order to reduce the negative

impacts of these problems, I designed a novel Consensus-based Anchor sen-

sor Management Scheme (CAMS), in which each anchor sensor performs

a self-diagnostics and reports the detected faults in the neighbourhood.

CAMS can assist the gateway sensor to exclude the input from the faulty

anchor sensors. In CAMS, anchor sensors update each other about their

opinions on other neighbours and develops consensus to mark faulty sen-

sors. In addition, CAMS also reports the system information such as signal

path loss ratio and allows anchor sensors to re-calibrate and verify their

geographic coordinates. CAMS is evaluated through extensive simulations

based on real data collected from field experiments. This evaluation also

incorporated the simulated node failure model in simulations.

Though there are no existing WSN-based train localisation systems avail-

able to directly compare our results with, the proposed schemes are eval-

uated with real datasets, theoretical models and existing work wherever it

was possible. Overall, the WSN-based train localisation system enables the

use of RSSI, with combination of location coordinates of anchor sensors, as

location estimator. Due to low cost of sensor devices, the cost of overall

system remains low. Further, with duty-cycling operation, energy of the

sensor nodes and system is conserved.
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Chapter 1

Introduction

Railway is used as a means of transport for passengers and goods. Its use has signif-

icantly increased in the last decades because of its low travelling cost and reliability

(EuroStat, 2016; theGuardian, 2016; NetworkRail, 2016). In general, several attributes

are linked with railway transport such as safety, reliability, comfort and security. All

of these concerns are associated with the navigation system of trains, which further

relates to the determination of accurate location of each train. The accurate estima-

tion of a train’s location is vital in the automation of railway transport systems, as

it triggers the signals to close or open the railway crossing gates, inform the track-

side workers, accurately updates the railway schedules and helps to raise the safety

standards of the trains. Although existing systems, involving humans’ inputs, are per-

forming these tasks every day, incidents reports such as signal malfunctioning, coaches

detachments, train parting, derailments, brakes failure and tracks’ cracks, are quite

high. The high rate of occurrence of such incidents is because of human errors and

equipment’s malfunctioning. In case of an incident, the location of train is required

for rescue operations. Statistics show that the absence of accurate locations of trains

minimise chances to mitigate emergency failure situations, which have claimed thou-

sands of human lives and have damaged the infrastructure and properties (Amitabh,

2005). A lot of effort and funds have been invested in research to increase the safety

of railway transport by improving the accuracy of train localisation systems.

Global Positioning System (GPS) is a satellite-based system designed to identify

location of an object (Pace et al., 1995). It can accurately identify the location within

about 30 feet in any weather conditions (GPSHistory, 2016; Fales, 2003). Some other

versions of GPS, such as differential GPS (DGPS) and RTK-GPS have improved the

accuracy of several meters to sub-meter (Morales and Tsubouchi, 2007). GPS is de-
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signed as an outdoor positioning system and is being widely used for localisation in the

transport systems, such as for railway, but it does not work well in several cases known

as GPS dark regions, such as hilly terrains, tunnels, and forests. Moreover, as the GPS

works on satellite communication, the accuracy of GPS also gets affected in extreme

weather conditions and under ionospheric conditions (Grejner-Brzezinska et al., 2007).

High sensitivity GPS can penetrate into infrastructures but does not cover the GPS

dark regions, making it unreliable. Localisation of trains or other means of transport

in an outdoor environment without GPS is still an open and ongoing research problem

(Chu and Jan, 2007; Chen et al., 2013). Some technologies such as wireless local area

network (WLAN), GSM, Inertial Sensors, or laser-based approaches provide very pre-

cise solutions for localisation in outdoors but the associated costs of such systems are

high. Wireless Sensor Networks (WSNs) have proven to be a good low cost and reli-

able alternative for indoor as well as outdoor localisation in GPS-less scenarios (Stoleru

et al., 2005; Shen et al., 2005; Zhang et al., 2009; Constandache et al., 2009), where

sensor devices report different pieces of information such as signal strength, geographic

coordinates, motion parameters or other phenomena of interest from the field of de-

ployment. The analysis of the reported information is used to extract the information

about the corresponding location. The basic idea is to extract meaningful information

from the collected data from individual sensor devices and process it with some noise

filtration technique to identify the current location of the vehicle such as a car or a

train.

This thesis focuses on the problem of WSN-based train localisation systems. There

is investigation of using received signal strength (RSS) as measurement model in pro-

posed system. Investigation is an in-depth analysis of feasibility of using RSS measure-

ments for localisation and understanding the degree of deviation of distance estimation

from RSS values. RSS measurements are prone to environmental factors, therefore, in-

vestigation is followed by methods to improve RSS measurements by fusion of another

data model such as location information of sensor motes. There are two main problems

with most of the existing localisation solutions based on wireless sensor networks: (1)

feasibility of using RSS in outdoor and harsh environments are not studied on a large

scale, and (2) emphasis is placed on the combination of different techniques and tech-

nologies for localisation in outdoor environments, usually non-range-based methods–

angle of arrival, time of arrival or time difference of arrival (discussed in Chapter 2),

which increases the complexity of a system. Therefore, the existing approach cannot

be adopted in the train localisation system. In the proposed WSN-based train locali-
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sation system, a range-based solution is proposed to address several research problems.

The algorithms which together make the WSN-based localisation system include, (1)

Beacon-driven sensor Wake-up Scheme (BWS), (2) Particle-Filtering-based train locali-

sation scheme, and (3) Consensus-based sensor Management Scheme (CAMS). Initially,

the feasibility of using RSS for train localisation is studied along with its usage with

a distance estimation model and the log-normal path loss model. I have tested the

system in a simulation environment by using real-world data collected from railway

representative environments such as an open field environment, a railway station site

and from within a tunnel. The obtained average localisation error is less than 30 cm

(in one scheme) and manages to reduce it further to less than 13 cm (in an improved

scheme) in all cases with the configuration of the sensor platform, train speed, sensor

failure probability and deployment density. Experimental results show that RSS alone

is not good, but the combination of RSS, location data, and Particle Filter is good for

distance estimation in challenging outdoor railway environments. Moreover, the use of

WSN in railway transport is a cost effective way to increase the safety of the system,

navigation, location-based marketing and other services. A cost analysis of WSN with

contemporary technologies is given in next chapter.

1.1 Motivation

The increase in the automation of railway transport systems has raised focus on the

safety concerns (uic, 2016). With the traditional and semi-automated railway transport

system, several unfortunate incidents in the history of railway transportation have

claimed the loss of human lives, and public and private property. The cracks on the

railway tracks, stress health of bridges or potential derailments can be detected through

special laser sensors, mounted on the special purpose trains. In case of such incidents,

the known location of a train can help to avoid or minimise damage (TheRegister, 2014).

For example, if the position of a train is known, it can be signalled to stop before it

reaches to broken track that may get damaged by a human threat such as a bomb

blast (dailytimes, 2016). Studies have shown that a trained human driver reacts in a

better way to unusual circumstances for the safety of passengers and assets. Therefore,

there is an increasing drive to develop a safe automated railway transportation system.

An automated transport system relies on the accuracy of its navigation system, which

depends on the accuracy of the localisation system. The following are the motivation

for a train localisation system:
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• The unavailability or failure of an existing localisation system may lose control

over the automated train system and increases the risk of the loss of human lives

and assets worth million of dollars. An automated train can lose contact with

control room (Railway-Technology, 2016). Here, trains can be programmed to

stop if they lose contact with control room. However, the problem with such

techniques is that, it may collide with another train following it or it may has to

stop several times due to flaw of communication. Therefore, this sounds like an

inefficient solution.

• There is an associated technology deployment cost and low-cost systems are al-

ways desirable that can also achieve high localisation accuracy. Sensor motes are

low in price and become an attractive option to use in localisation schemes.

• The increase in the localisation accuracy is also associated with the power con-

sumption and availability, which is not easy to provide on the long railway tracks

in remote areas. Sensor motes can operate on low power listening mode and can

perform duty cycling.

• Over the lifetime of a system deployment, the total cost of maintenance and

upgrading exceeds the initial deployment cost.

The train localisation system based on any technology should at least meet some

requirements: (1) cost should be low, which includes the costs of infrastructure com-

ponents, locating devices, and installation; (2) location accuracy should be high, which

means that the average error between true and estimated location should be minimum,

the accuracy standard depends on the technology used. A list of accuracy standards is

given in Table 2.1 (Song et al., 2011; Gu et al., 2009; Al Nuaimi and Kamel, 2011; Liu

et al., 2007; Khan, 2014); and (3) it should be easy to configure, to use, and provide

full coverage on the target area. The target of this thesis is to develop a train localisa-

tion system and use it for safety, navigation and location-based services in GPS dark

regions of harsh railway environments. Therefore, a cost-effective solution offering a

good level of accuracy is required in order to be used in harsh railway environments.

Localisation systems based on infrared light (Want et al., 1992), ultrasound (King

et al., 2006), WLAN (Chintalapudi et al., 2010; Cavalieri, 2007) and Active-RFID

(Huang et al., 2006) provide good positioning accuracy but the cost is high. RFID

devices have small communication range, therefore, may need large number of these

devices to cover the deployment area. Further, their fragile nature will require re-

placements sooner and incur huge maintenance cost. Technologies other than wireless
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sensors, inertial sensors, vision and WLAN are quite expensive (more details follow in

Chapter 2). WLAN solutions are cheaper for small scale localisation such as on a rail-

way station. On the other hand, inertial solutions are cheap but are not reliable and

provide low accuracy. However, some problems associated with WLAN and inertial

sensors (discussed in Chapter 2) make WSN-based solutions preferable.

Unfortunately, GPS is the most commonly adopted technology for train localisation

and in the absence of its signals in GPS dark regions, an automated railway system

can lose its control. A similar incident was reported in London, where an automated

train lost control for four miles due to the malfunctioning of a communication sys-

tem. The operating company was unable to locate the train during that period and

authorities were uncertain about the status of the train, that is, whether it is stopped

or moving. London Underground was operating that train and company was lucky

that no other railway traffic was scheduled on that route during that time (Railway-

Technology, 2016). In such scenarios, if the location of a train is known, other trains

on the same track can be signalled to stop. Such incidents are undesirable while the fo-

cus is being shifting towards automation of trains. Generally, to increase the accuracy

of location estimation, hardware-based approaches are used, where current, inefficient

hardware is replaced with newer, more accurate alternatives. Although almost every

technology and system needs upgrades, upgrading a low-cost system implies less cost

than upgrading a high-cost system. However, hardware upgrades may contribute a sig-

nificant amount of investment and waste of previously developed solutions, making it

an unsustainable solution. Though it depends on cost-benefit tradeoff, but generally,

significant changes in a system are undesirable. Ideally, a train localisation system

should incorporate several sub-systems based on different technologies. Each locali-

sation sub-system operates independently and by their fusion, accuracy is improved.

Further, in case of failure of one sub-system, another system is there to mitigate the

challenge. Therefore, in the absence of GPS, there is a need for a train localisation sys-

tem that has low installation, maintenance and upgrade costs along with a significant

level of accuracy. WSN offers not only a cost-effective solution but also a reasonable

positioning accuracy. Therefore, the main motivation of this research work is to:

produce a train localisation system based solely on WSN, which uses RSS

measurements for location estimation in harsh railway environment partic-

ularly in the absence of other technologies such as GPS signals.

Along with train localisation for railway safety, this thesis also addresses issues

below:
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• Energy Saving is a key concern for sensors that are deployed along the track

and there is no infrastructure to power them up. In such a case, the common

way for power supply is batteries. As the train’s schedule is unknown, the idle

listening for a long time to detect the incoming train will drain all battery power.

Generally, duty-cycling is considered the solution to address the unnecessary idle

listening problem. However, duty-cycling can be a compromise on the sensors

being woken up while the train passes. Therefore, in order to minimise the

energy consumption to prolong the battery and network life, there is a tradeoff

for performance that needs to be dealt with carefully.

• Sensor Management is another motive to carry out this thesis. In particular, the

sensors deployed in the remote areas with infrequent physical access are prone

to be influenced by environmental effects. A lot of resources are required to

sort out the faults in those sensor devices such as expensive human resource,

rising fuel/travelling cost, and training cost. To mitigate management issues, if

sensors can take care of their neighbour sensors and report it to the train, it can

significantly reduce the cost and help to ignore the negative input of faulty sensors

in the localisation process. Later on, trained staff members can sort out the

reported faults with minimum effort and without diagnostic costs. The proposed

management system works better in networks with dense sensor deployments.

• Other benefits of WSNs make it prominent choice from other technologies such as

RFIDs. Sensors of different types are capable of detecting railway track faults and

estimating the life of bridges. Such timely reports can help to save human lives

by avoiding disastrous situation. For example, strain gauge sensors can be used

to measure the stress on a bridge while a train passes (Bischoff et al., 2009), or

laser sensors can be used to detect cracks on tracks (Aboelela et al., 2006; Ramesh

and Gobinathan, 2012) and that can help to minimise the chances of accidents.

Different type of sensor network is capable of providing such additional benefits

of detecting these faults (Flammini et al., 2010) along with identifying train’s

location.

1.2 Challenges

Most of the successful RSS-based localisation work has been done in indoor environ-

ments (Yang and Chen, 2009; Güvenc, 2003; Kaemarungsi and Krishnamurthy, 2004;
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Feng et al., 2012; Chen et al., 2013; Feng et al., 2010). Comparatively, less work has

been done for train localisation and the existing pieces of work mostly rely on GPS

or satellite systems for train localisation (Fararooy et al., 1996; Fraile, 1999; Däubler

et al., 2003). It is quite challenging to develop a framework in which a train localisation

system uses RSS measurements of the WSN. Amongst the challenges faced were these:

• To verify the feasibility of using RSS for localisation in harsh indoor environments,

such as tunnels, several studies have been conducted (Xu et al., 2013; Savic et al.,

2013; Chang et al., 2011; Wang and Du, 2010), but not many pieces of work are

available for railway environments. In the harsh outdoor environments there

are several factors that affect the ability of RSS to estimate the distance of a

transmitter. A railway environment is an example of a harsh environment that

has interfering factors such metals, overlapping frequency signals, and weather

impacts. To the best of my knowledge, there is no work done to verify the use of

WSN-based RSS in dynamic railway environments. However, studies have been

conducted to investigate the usage of RSS as estimator for location estimation

in a few matching environments such as coal mines (Savic et al., 2013), tunnels

(Xu et al., 2013) and for train integrity in railway environment (Scholten et al.,

2009). Therefore, it is quite challenging to analyse the feasibility of RSS in GPS

dark regions such as open field, railway station and tunnel.

• The use of real datasets are more convincing, in the simulations and to evaluate

the performance of proposed algorithms. To conduct the experiments on real

railway systems is a challenging task and it involves the recording of datasets

over short to long distances with several sensor deployment densities and types

of sensor devices. In addition, these sorts of experiments require human resource

to carry out several tasks with exact distance measurements between the sensor

devices and angle of sensor antennas. Therefore, the experimentation people

require training for the collection of credible datasets. Moreover, it is quite

challenging to conduct experiments in such an environment that has minimum

interference from other overlapping frequencies such as microwave.

• The collection of data itself is challenging in such harsh railway environments.

The RSS from sender to receiver and vice versa may differ because of signal

reflections from surrounding infrastructure. Moreover, a difference needs to be

maintained in the transmitting sensors that reply to a transmission, and multiple

transmissions of a single sensor in reply to a transmission from a sensor on the
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train. Furthermore, time of transmissions from the sender and receiver are also

required to calculate the delay.

• The sensor devices are generally powered by batteries, which are hard to recharge

in the remote rough environments. Therefore, to prolong the network lifetime,

sensors operate on duty-cycling by turning their transceivers on and off frequently.

On one hand, the duty-cycling operating patterns make it challenging to get

sensors active at the time of the train passing, and there is need to guarantee the

availability of sensors for communication with the train for train localisation. On

other hand, the clock synchronisation is also an uphill task in large networks (Lin

et al., 2008). Therefore, it is a quite challenging task to design a suitable scheme

that can guarantee the wake-up of sensors along with low energy consumption.

• The sensor devices deployed in the remote areas are prone to be affected such as

weather extremities and theft. Manually, sorting out the faulty sensors along the

track on the remote sites is a challenging task and incur a huge cost. Therefore, a

scheme is required that can enable sensor devices to perform diagnostics in their

neighbourhood and report the detected faulty sensors.

1.3 Contributions

Train localisation is often performed with GPS or other expensive infrastructure-based

technologies. It becomes a challenge to perform train localisation with low-cost sen-

sor devices to cover the GPS dark regions. Therefore, the performance of using RSS

collected from WSNs for train localisation system needs to be carefully analysed in

real-world railway environments. The literature shows that not much work is done on

localisation in large-scale railway environments using RSS measurements from WSN.

In this thesis, firstly, the feasibility of using RSS measurements for WSN-based train

localisation is verified. Field experiments are conducted to collect RSSI measurements

in railway environments followed by the detailed analysis on the collected datasets.

After a careful analysis, it is observed that though RSS measurements are noisy, noise

filters can be used to achieve a reasonable level of accurate distance estimation. There-

fore, this thesis proposes a Particle Filtering based robust train localisation algorithm,

which is a core component of a WSN-based train localisation system. In addition, a

beacon-driven wake-up scheme is developed, which can guarantee to wake up sensor

devices when the train is arriving without global knowledge of the train’s schedule.
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Finally, a sensor management scheme is proposed to report the faults in the sensors

deployed along the track, and that helps to reduce the maintenance cost. The main

contributions of this thesis are the following:

• A Beacon-driven sensor Wake-up Scheme (BWS) is proposed for train localisa-

tion. The BWS allows sensors to sleep for a maximum time within an upper

bound and still guarantees the wake-up of sensors at the time of a train’s arrival.

BWS is analysed theoretically and through simulations and is found to be energy

efficient (Javed et al., 2014).

• The performance of sensor nodes is analysed based on BWS’s ability to wake up,

while operating on duty-cycling in the train localisation scenario (Javed et al.,

2013).

• An algorithm is developed that uses Particle Filtering techniques for train local-

isation. In the proposed algorithm, real-world RSS measurements are used to

compute the location of the train.

• In the designed algorithm, a weighted RSSI-based likelihood function (WRLF) is

developed which uses RSS measurements and geographic coordinates, transmit-

ted by sensor nodes on trackside to the gateway sensor on the train. The WRLF

estimates the likeliness of particles to represent the train’s position.

• An algorithm to manage the sensors is developed, Consensus-based Anchor node

Management Scheme (CAMS), to detect and report the faults and faulty sensor

nodes in the network, which otherwise can be an expensive task to do manually.

CAMS also assists the train localisation system by computing consensus-based

path loss ratios to increase the accuracy of location estimation (Javed et al.,

2015).

1.4 Limit of Scope

As a whole, the localisation system presented in this thesis takes RSS measurements

from the sensor nodes deployed along the track and the geographic coordinates received

from those sensor nodes to identify the current location of the train. However, there

are several factors that can affect the performance of the proposed system. It is not

possible to address all challenges in a single PhD project. The limitations of this work

are these:
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1. Though the proposed train localisation system is based on the real-world data

collected from the field experiments, I could not implement the solution prototype

in the railway network. The prototype implementation requires permission from

railway authorities and adjustment in the train schedules, which requires involve-

ment of railway’s top management and engineers; therefore, it needs a lot of time

to go through this process. Given permission, the implementation of proposed

scheme can help to test its performance and to highlight its shortcomings.

2. A set of homogeneous sensor devices were used for data collection in each experi-

ment setup. However, a heterogeneous sensor network can be implemented easily

to study the impact of different types of sensor devices, which is not the focus of

this work.

3. The purpose of this work is to develop a WSN-based train localisation system

that can be used in data fusion with train localisation systems based on other

technologies such as RFID, WLAN and GPS (discussed in Chapter 2). However,

this work’s focus is on the design of a WSN-based train localisation system only

and technology fusion is not discussed to combine several technology-based train

localisation systems.

4. As the focus of this work is determining the current location of a train, I have

not addressed the security issues in the communication between sensors. The

security issues should be addressed at the infrastructure level.

5. There is no other available WSN-based train localisation system to compare with,

though I compared the simulation-based performance of components of the sys-

tem with the theoretical models, wherever possible.

1.5 Thesis Layout

This thesis describes the algorithms proposed for the WSN-based train localisation

system. Experiments and simulations are carried out to analyse and evaluate the

algorithms. The thesis consists of eight chapters and details are as follows:

• Chapter 2 describes the metrics of a localisation system and then reviews the

existing localisation technologies, their pros and cons, and localisation projects

based on those techniques. This chapter presents an analysis of all these tech-

niques in terms of cost, accuracy and adaptability. It also presents the wireless
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sensor-based localisation methods and highlights the research objective of train

localisation by using received signal strength information from communication

within entities of a wireless sensor network. At the end, existing projects about

train localisation systems and their incorporated technologies are discussed in

detail.

• Chapter 3 shows the overview of the proposed components of WSN-based train

localisation. In addition, the brief details about each component are discussed.

• Chapter 4 verifies the feasibility of using RSS measurements for WSN-based

train localisation. An analysis is performed on the real-world data collected

from field experiments such as in an open field, railway station and tunnel. The

analysis shows that though RSS measurements are noisy but still follow the model

curve and with the use of some noise filtration algorithms, RSS can still be used

for distance estimation.

• Chapter 5 presents a beacon-driven sensor wake-up scheme (BWS) that enables

sensors to wake up and schedule their communication with the gateway sensor

at its arrival. BWS allows sensors to consume minimum energy by operating on

asynchronous duty-cycling without global knowledge of train’s arrival and still

wake up in time for communication in an energy efficient way.

• Chapter 6 proposes a Particle-Filter-based train localisation algorithm that uses

noisy RSSI measurements and the geographic coordinates of sensors to develop

the weighted RSSI likelihood function for the estimation of train’s location in a

recursive Bayesian way. The algorithm selects the particles and assigns weight to

each particle based on its likelihood to represent the location of the train. Con-

sequently, the location of a train with minimum error is estimated by averaging

all the locations of particles with respect to their weights.

• Chapter 7 presents the sensor management scheme, which enables sensors to

develop consensus about the existing faults and faulty nodes in their neighbour-

hood and report them to the gateway sensor. Moreover, the proposed scheme

also allows sensors to assist the gateway sensor in increasing the train localisation

accuracy by estimating the path loss ratio.

• Chapter 8 concludes with final remarks on the solutions provided by the pro-

posed schemes for WSN-based train localisation system and includes suggestions

for possible future research work.
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Chapter 2

Background

In this chapter, I begin by identifying the requirements of a train navigation system,

followed by metrics to define a localisation system. I then review several localisa-

tion systems based on different technologies and analyse their usability in indoor and

outdoor environments, and present their drawbacks. The details about WSN-based

localisation methods are discussed in detail. After that I present my research goal and

then discuss the existing train localisation systems.

2.1 Features of a Train Localisation System

Location of an object is a core component of any positioning system, navigation systems

and localised services management systems. Based on the computed location of the

train, a train localisation system should offer several features to its users, who are

railway staff and passengers.

Railway staff can benefit from features of a train localisation system, such as obsta-

cle detection, an alert at railway crossing, information about trackside workers, trains’

schedules and emergency messages, to improve the operation of a train localisation

system.

A train localisation system, which can offer a broad range of features as discussed

above, eventually results in raising the standard of comfort and safety of passengers.

2.2 Metrics for Localisation Systems

Generally, a localisation system is evaluated on the basis of the level of accuracy it

achieves. However, an extremely accurate localisation system might not be feasible
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to implement because of several reasons such as its cost, availability of trained staff

and required error tolerance level of a system. Therefore, accuracy can be coupled

with cost of a system to evaluate a localisation system (Song et al., 2011; Gu et al.,

2009; Al Nuaimi and Kamel, 2011; Liu et al., 2007). Khan (2014) has given a three-

dimensional aspect of metrics such as accuracy, cost, and deployment complexity. The

later two can be combined as a cost incurred because of investment on infrastructure

and computation.

Cost of a localisation system is an essential metric to gauge the adoptability of

a localisation system. It includes cost of infrastructure equipment, installation of in-

frastructure, and maintenance. The cost of a localisation system also depends on the

types of equipment, such as satellite-based systems that can be used for specific ser-

vices (paid/free) to compute the location of an object, whilst several systems require

to develop the system and its services from the scratch. Cost heavily depends on the

maintenance of a system. A new and complex technology-based localisation system

requires highly skilled staff who may not be available or who are hard to train hence

increasing the cost of a system as compared with a localisation system that is based

on a commonly used technology and techniques. Maintenance cost also includes the

scalability of the adopted technology. A system that can easily be upgraded with quick

deployment is highly desirable as it saves time and funds. Otherwise, the opposite case

can raise the cost of a system.

The metric of accuracy refers to the difference between the estimated location of an

object and its actual location. If the average error between the estimated and actual

locations of an object is close to zero, a system is considered to be more accurate.

Generally, accuracy has a tradeoff with the cost of a system (Stoleru et al., 2005). A

highly accurate system is usually less cost efficient. The accuracy of a less accurate

system can be increased by the addition of extra hardware or complex techniques but

it increases the cost of the whole system.

2.3 Localisation Systems

In this section, several technologies are discussed along with the localisation system

based on those technologies. Further, existing research is referred in each of the tech-

nologies. At the end, features of the existing techniques will be summarised in a table

including the feasibility of usage in the closed space (indoor) environment, open space

(outdoor) environment or both, cost of each technology, and their respective accuracy.
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2.3.1 GPS-based

GPS is the most widely used technology in the development of a localisation system.

A GPS-enabled device measures its location in accordance with satellites, which act

as reference points. Initially, a GPS device calculates its distance from a satellite

in the form of a sphere. The possible positions of the device are narrowed down by

estimating device’s distance from another satellite (Brain and Harris, 2011). Distance

computation with at least three satellites can help to find out 2D position, known as

triangulation. With the further increase in the number of reference points (satellites),

such as four or more, a 3D position can be computed. GPS is helpful in estimating

an object’s position with certain accuracy. The average distance estimation error of

standard GPS ranges from 3 m to 15 m. However, its accuracy is compromised in the

indoor environments and in the GPS dark regions because of unavailability of satellite

signals, thus making it unreliable in those cases.

Differential GPS (DGPS) is another variation of GPS that applies differential cor-

rection techniques to basic GPS. In DGPS, a stationary reference receiver with known

position is added to the system to correct the timing of the mobile receiver (Stewart

and Rizos, 2002). Such addition with known location helps to correct the timing infor-

mation of receiver with unknown location. DGPS has two versions of implementation.

The first DGPS implementation is easy to implement and in this DGPS, the location

coordinates get corrected continuously. These corrected coordinates are then sent from

reference station to the mobile receiver. On the other hand, the second implementation

version corrects the ranges instead of coordinates. The corrected ranges are then used

for computation of mobile receiver’s positions. The second version is more suitable

for real-time applications. DGPS is claimed to be more accurate than basic GPS and

its measurement error stays within a few centimetres. DGPS commercial services are

costly.

Pseudolites are devices which bridge gap in the scenarios where a few satellites are

not available due to any reason. It transmits GPS-like signals (Drira, 2006). Pseudolites

enable receivers to compute its location in the presence of minimum satellites. It has

high accuracy with error as low as 1 cm (Bradford et al., 1996).

Wide area DGPS (WADGPS) is another type of DGPS, in which an error vector

is computed for each satellite. In WADGPS, there are several monitor stations and a

master station (Drira, 2006). The GPS receivers in the monitor stations help to capture

measurements, which are then transmitted to the master station. Master station, then

computes GPS error which is used to correct the position of users. WADGPS errors
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range from 1 m to 8 m.

Another GPS is the wide area augmentation system (WAAS), developed by the

aviation department of the USA. WAAS has raised its accuracy by deploying 25 refer-

ence stations and two master stations. WAAS is capable of dealing with ionospheric

problems (Drira, 2006). WAAS has an average accuracy with error range from 1 m to

3 m.

Generally, GPS signals are not available in indoor railway environments, such as

underground trains, tunnels and some railway stations in regions with rough terrain.

To overcome this issue, GPS technology can be combined with other technologies such

as a GSM network. Such an integration can compensate for the unavailability of GPS

signals. Wireless Assisted GPS (AGPS) is the variation of GPS that works with a

GSM network to perform the localisation tasks. AGPS computes the location of the

device by receiving signals from GPS satellites and cellular network, and computation

is performed at location servers (Giaglis et al., 2003). AGPS can overcome the loss

of GPS in indoor railway environments but at the cost of energy resources of mobile

devices.

GPS is also being widely used in railway positioning systems (Burns et al., 1992;

Lemelson and Pedersen, 1999). Though it has reasonable accuracy and high cost for

commercial services, it also has some shortcomings. The limitations of this technology

are these:

• A-GPS can provide accurate localisation. It can reduce the GPS dark regions by

penetrating into the walls, but in a tunnel railway environment, it still struggles

to penetrate. A-GPS also needs clear sky for communication with the satellites

which decreases the localisation accuracy in tunnels and hilly terrains.

• On one hand, commercial DGPS services are highly accurate but on the other

hand, these services are quite expensive.

2.3.2 Infrared (IR)

An IR-based localisation system works on the principle of measuring the distance be-

tween the IR transmitter and receiver on the basis of delay in signal reception. A line

of sight is required for such communication. AT&T developed one of first commercial

IR-based localisation system, called Active Badge (Harter et al., 2002; Want et al.,

1992). Active Badge was designed for indoor environments in which several sensors are

fixed at known locations. An Active Badge, attached to the device with an unknown
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location, transmits frequent signals to sensors. Received IR signals’ information is

then forwarded to compute the location of an active badge/object. Extensive cabling

to connect the sensor devices raises the cost of the system, which otherwise is a low-

cost system. Because of IR’s short range and wired connectivity, active badge is not

suitable for outdoor environments and no longer available as a commercial product.

Cybernet System Corporation developed another IR-based positioning system, Fire-

fly (Interactive, 2010). The Firefly system comprises a tag controller, several IR emit-

ting tags and a camera array to track the 3D motion of a person. A person carries

a tag controller and tags are mounted on several parts of his body. A camera array

comprises three cameras are attached on a 1m bar that receives the IR signals. The

Firefly system claims high accuracy and its position tracking is real-time performance.

Though the Firefly system offers accuracy up to 3mm, it is quite expensive. Further,

several small devices are not comfortable to wear on a human body and raises concerns

about its adaptability.

States and Pappas (2006) proposed another IR-based localisation system, OPTO-

TRAK, for small businesses and workplaces. The proposed system uses an array of

three cameras to compute the location of an object. The cameras receive IR light

signals from the markers of the object and perform triangulation to determine the lo-

cation of transmitter. This system is highly accurate and offers accuracy in millimetres.

However, it requires line of sight between markers and cameras to perform effectively.

The increase in the number of IR markers relaxes the strict requirement of line of sight

communication but increases the cost of system. Such constraints make it less desirable

in outdoor environments.

IR-based solutions are applicable in outdoor environments but with some limita-

tions. In one piece of work, researchers have introduced a scheme that effectively

detects cracks on the railway tracks (Kishor et al., 2012). These systems are low-cost

and use IR transmitters and receivers to detect cracks. The returned IR signal enables

system to identify the difference between normal and abnormal track. Navaraja (2014)

proposed another system that uses IR sensors along with ultrasound technology for a

track’s crack detection. GSM networks are then used to communicate the identification

of faults to the authorities for rectification.

IR-based systems provide high localisation accuracy, often in a few millimeters. In

conclusion, IR based systems have the following limitations:

• IR signals are affected by interference from sunlight and fluorescent light, hence

such systems may get affected in the outdoors. This issue can be addressed with
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the use of optical filters and noise filters, but that will increase the cost of whole

system.

• The IR-based localisation system is an attractive system due to its low-cost IR

emitters but its cost increases with the use of an array of camera devices, sensors

and wired connectivity. Further, to overcome the negative environmental effects,

use of filters makes this system complex.

• The IR signals are prone to environmental degradation, thus making it unreliable

in outdoor environments.

2.3.3 Ultrasonic

Ultrasound signal can also be used to determine the position of an object. The idea

is taken from bats’ communication mechanism. Bats transmit ultrasonic signals and

determine their distance from an obstacle from reflection of transmitted signals. Ini-

tially, ultrasonic signals were used in medical applications to create images of internal

organs and to locate a specific one.

In 1999, AT&T researchers designed one of the initial ultrasound-based localisation

system, Active Bat system. Objects used to carry Active Bat tags and receivers are

mounted on a ceiling in the form of a grid at known locations. A bat controller requests

to locate its position by emitting an ultrasonic pulse to all receivers. A reset signal

from connected wire is also sent by the controller to synchronise receivers. Each receiver

sensor measures its distance from the bat by computing the time period between reset

signal to ultrasonic pulse. Noise filters are used to remove the errors caused from signal

reflections.

Cricket is another ultrasound-based localisation system (Priyantha et al., 2000). It

uses a few ultrasound emitters, mounted on the infrastructure such as ceiling or walls,

and receivers are installed on objects that needs to be located. On a localisation request,

emitters emit IR signals and receiver locally locates its position using the triangulation

method. Like Active Bat system, Cricket also uses RF signals to synchronise between

the components. Similarly, it uses reflective distance through time-of-flight data to

compute its location. Unlike Active Bat system, it does not require a grid of sensors

at known locations as fewer sensors serve the purpose and makes it a low-cost system.

However, this is a compromise on the coverage area. Misra et al. (2011) attempted

to overcome range limitation of Cricket by designing an omnidirectional receivers and
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increased the coverage range by 20%. Ultrasound-based systems have been put into

selective use in outdoor environments, particularly in a railway network.

Ultrasound can be useful in detection of faults and testing in railway system (Oukhel-

lou et al., 2008). Though fault detection relates to the railway maintenance system,

it lays foundation for successful implementation and operation of railway management

and localisation system. Fault investigation has always been an important issue in the

railway industry (Fan et al., 2007). Successful and timely fault detection relates to

the safety of railway assets and human lives. Ultrasound-based systems can be used

to detect several faults such as cracks, broken track segments, metallic corrosion or

corrugation. Generally, a combination of several methods are used to perform a com-

plete rail track inspection (Oukhellou et al., 2008). In the ultrasound-based technique,

probes are used to slide and remain in contact with train’s head (Lanza di Scalea et al.,

2005; IEM-RM, 2003). Fluid is used to keep the contact between them smoothly. In

that particular case, the testing vehicle moves with limited speed. This method suc-

cessfully detects major surface defects but is unable to detect minor cracks. In another

ultrasound-based technique, electromagnetic acoustic transducers are used (Cerniglia

et al., 2006). In this technique, devices are linked without physical contact. Such im-

provement increases the speed of the fault detection process. However, this technique

lacks low-level detection of faults because of low sensitivity.

The use of an ultrasound technology for train localisation may only be feasible be-

cause of its limited transmission range. However, it can effectively be used in railway

system for other purposes such as track health maintenance and monitoring. Ultra-

sound technology offers an inexpensive solution compared with Infrared positioning

systems. However, the associated problems are as follows:

• Ultrasound signals have limited range. Several individual efforts have been made

to overcome such limitation. One such way is to combine ultrasound signals with

radio frequency signals. Such fusion of technologies increases the coverage range

along with cost of the system.

• The ultrasound signals are affected by negative environmental factors. Further,

ultrasound signals’ penetration ability is also lower compared with RF signals.

Such limitation reduces system accuracy.
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2.3.4 Radio Frequency (RF)

Radio Frequency (RF) signals is another technology that can be used to develop a lo-

calisation system. RF signals are more reliable compared with infrared and ultrasound

because of its long range and ability to penetrate several types of materials. Such

property makes it a desirable technology to design a localisation system. However, RF

signals are also prone to reflections from several types of smooth surfaces. An advan-

tage of an RF-based localisation system is that its infrastructure is low-cost and can

be reused.

Landmarc (Ni et al., 2004) uses RFID tags to localise objects. It matches profiles

of objects with the reference tags at known locations. Landmarc uses several reference

tags and nine RFID readers with several power levels to transmit signals. It compares

the signal strength of reference tag with signal strengths of all readers to localise a tag.

The location of an RFID tag is computed by the weighted average method of k-nearest

neighbours. Landmarc acheives an average error of about 1m. However, Landmarc’s

accuracy, vulnerable to tags’ orientations, increases with the number of mobile objects.

VIRE (Zhao et al., 2007) improves the accuracy of the Landmarc system by using a

proximity map that limits the number of comparisons to the local neighbouring tags

only. Zhang et al. (2009) improves the accuracy of the Landmarc system by introducing

noise models that help to compare signal strengths of more reliable neighbouring tags.

The Landmarc system does not deal with latency. Another drawback of this system is

that the life of a tag is not long due to its fragile miniature structure.

WhereNet system offers real-time localisation. In this system, tags are attached to

the object that needs to be tracked. A few location antennas, attached to a ceiling

at a known location, forward location requests from tags to location servers. Location

servers use information of location antennas, tag requests (signal strength information)

and processing methods, such as triangulation, to compute the location of several tags

simultaneously. WhereNet achieves accuracy in meters and can work in indoor and

outdoor environments (WhereNet, 2008). However, installation of location antennas

at multiple locations increases accuracy and system cost.

An RF-based system has been the choice of the railway industry for the outdoors in

particular for railway industry. Railway operators place a strong focus on correct train

location and management, which is directly related to safety of trains. It is undesirable

to introduce major changes in the network. Therefore, with the evolution of telecom-

munication networks, it enables operators to use the combination of global systems for

mobile communication (GSM) and GPS. In Portuguese railways, RF (from GSM) is
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used for track-train communication (Monte de Caparica, 2000). The communication

is held between the regulator, installed on track segments, and drivers. In another

piece of research (Santos et al., 2005), authors proposed the combination of GSM and

GPS system and claimed its better performance for secondary tracks where other net-

works are not available. Track-train communication is basic for train localisation and

in the absence of either network, the other network tries to overcome the shortcomings.

However, an RF from a GSM network has its own limitation.

Hofestadt (1995) proposed another approach and introduced the concept of a ded-

icated GSM network for railways. The proposed approach performs better for railway

management because of minimised third party concerns about safety due to specific

network according to railway system’s requirement.

According to the best of our knowledge, RFID is not being used to localise trains.

However, RF from RFID network is being used in the railway environment for selective

purposes such as railway management and maintenance system (GAO-Inc., 2007; Char

and Johns, 2006).

In RF-based localisation systems, RF readers can read many tags simultaneously

with unique identity. Tags are small; therefore, the system is easy to implement. The

associated problems with such systems are the following:

• RF-based localisation systems use proximity and absolute processing techniques

and depend on many hardware parts in the deployment grid. It raises the cost

for large-scale deployments.

• RF signal are subject to interference from other electromagnetic signals in the

surroundings. Therefore, this makes it an unreliable technology.

• Size of tags makes it portable and handy but becomes vulnerable to physical

damage.

• Use of GSM network may be alright for voice calls but might not support large

data transfers, that may be required for communication in a localisation system,

thus needing to acquire 4G or 5G services.

2.3.5 Wireless Local Area Network (WLAN)

WLAN is another technology that can be used to determine the position of an object.

Generally, WLAN is available publicly at several places such as hospitals, train stations

and airports. The reusable infrastructure of WLAN makes it a desirable low-cost
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localisation system. A WLAN-based localisation system is generally possible in indoor

environments but in some cases it can be used in outdoor environments. A main

component of this system is an access point (AP). Signal strength (RSS) is used to

compute the location of a node. Another method to compute the location of a node is

fingerprint. It stores the RSS footprint of several APs in a database and compares the

received one to estimate the location.

RADAR is a WLAN-based localisation system developed by Microsoft (Pahl and

Radar, 2000). RADAR uses existing infrastructure to reduce cost. It gathers signal

strength measurements and performs triangulation to determine location of a computer

node. The RADAR system achieves accuracy of about 2m.

Ekahau is another WLAN-based localisation system (Ekahau, 2008) that uses ex-

isting WLAN infrastructure. It observes the mobility of WLAN devices. It uses trian-

gulation on the RSS measurements received at several APs. Ekahau offers 2D location

estimation and can be useful for offering location-based services. Ekahau can achieve

localisation accuracy up to 1m.

WLAN-based solutions are applicable in outdoor environments as well. Railway

environment is a well-represented outdoor environment. Communication based train

control (CBTC) is a system that provides solution for train and ground communica-

tion. It automates several processes that ensure the railway safety. Zhu et al. (2010)

proposes a WLAN-based system that improves the availability of network to guaran-

tee high level of availability for train-track communication in a CBTC system. An

analysis is performed using Continuous Markov Chain Model on the availability of

WLAN-based solution. Siemens (Lardennois, 2003) and Alcatel (Kuun and Richard,

2004) have proposed WLAN-based CBTC systems that are implemented on the New

York City Canarsie Line and Las Vegas Monorail, respectively. Though WLAN-based

solutions are used for specific purposes in the railway industry, such as train-ground

communication, they can be used to locate the position of a train in the absence of

GPS. The availability of a power source is still an issue for the devices on the track.

Overall, these solutions will increase the cost of the whole system because of infras-

tructure installation due to the short transmission range of devices. Using devices with

short transmission ranges implies more infrastructure installation and maintenance

cost. On the other hand, WLAN-based localisation solutions are mostly feasible in

indoor environments and provide low-cost solutions because of reusable infrastructure.

The associated problems with this technology are the following:

• In outdoor environments, cost is the major concern because of unavailability of
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infrastructure in rough railway environments.

• In indoor environments, there are several sources of RF signals that can cause

interference, hence it is a compromise on the accuracy of the WLAN-based local-

isation system.

• In the fingerprinting location estimation method, an offline location database is

built, called calibration. The collected database is then used for online mapping

and locating an object. The calibration step is expensive, requires extensive time,

and needs frequent update in dynamic environment.

• WLAN signals share some common channels with microwaves and that can be-

come a compromise in the performance of WLAN-based localisation systems.

2.3.6 Audible Sound

Audible sound is another technology that can be used to develop a localisation system.

Generally, devices these days are capable of producing audible sound and can partic-

ipate in the design of such a system. BEEP is an audible sound-based localisation

system that offers a low-cost solution (Mandal et al., 2005). In BEEP, microphone

receivers are installed at several known locations and received sound is forwarded and

processed at location servers. Location is computed by using the triangulation method

on time of arrival data. BEEP claims an accuracy in sub-meters. To increase the

performance of BEEP in the indoors, sound parameters such as rhythm, pitch and

harmonics need to be configured carefully.

BEEP’s performance is prone to the presence of audible noise in the environments.

Therefore, such a limitation makes it a less desired candidate for localisation in outdoor

environments. However, audible sound can be used as a part of a railway system

that includes railway localisation, management and maintenance. It can be useful in

selective parts such as to alert vehicles, pedestrians and trackside workers at rail-road

crossings (Korve Engineering, 2007). An audible sound-based warning mechanism in a

railway network can help to increase safety of humans and assets in light rail transit.

The limitations of such systems are these:

• These systems are prone to interference from other sources of sound, therefore,

reduce the location accuracy. However, still audible sound systems can be used

as warning or alert in localisation systems in outdoor environments.
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• Sound waves have poor penetration capability through several materials and be-

come an undesirable localisation system.

• These systems work on audible sound and can be noisy in any environment.

2.3.7 Inertial Sensors

An internal system works on the principle of inertia that deals with the displacement,

velocity, momentum and impact of external forces on an object. There parameters

can be observed if a device is equipped with an inertial measurement unit (IMU) that

comprises compass, gyroscope, accelerometers or barometer. These days IMU-enabled

mobile devices are available that can be mounted on wrist, waist, or arm, to record

the number of steps a person has travelled at which speed (Foxlin, 2005). Such data

is used by several applications such as health applications to compute the number of

calories burnt or by navigation applications to show the path on a particular map.

Inertial-based systems detect steps to compute displacement that is a basic part in

a localisation and navigation system. In an IMU-based localisation system, there is

a small error in computation, called drift. Such error adds up and become a large

deviation in location estimation. There are several techniques involved in rectifying

such erroneous and noisy data to raise the accuracy of a system (Godha et al., 2006).

One of the inertial-sensor-based localisation system is FootSLAM (Robertson et al.,

2009). In this system, an IMU is attached to the foot of a person and a digital compass is

attached to the person’s pocket. Inertial sensors, accelerometer and compass are used to

compute the stepping and location of a person. FootSLAM claims an accuracy of about

2m. However, FootSLAM also suffers from the general problem of an inertial system,

that is, drift errors. Drift errors can be reduced by frequent synchronising components.

Inertial-based localisation systems can be implemented in outdoor environments as well

(Koch et al., 2005).

Inertial sensors are a useful concept in outdoor environments. Generally, it is con-

sidered as an alternative of satellite-based systems for train localisation. Another

approach suggests the use of onboard IMU sensors along with a combination of other

sensor devices (Heirich et al., 2013; Garcia Crespillo et al., 2014). In the proposed

scheme, train localisation and mapping was performed (RailSLAM) by using onboard

sensors. A probabilistic filter takes input from several sensors to construct track map.

This system was claimed to be low-cost and utilises GNSS along with IMU in its first

implementation. In the implementation, sensors’ data was recorded on a track with
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a train in Germany. The rail vehicle filter helps to limit the track deviations. The

filter also estimates motion but with higher errors after IMU data updates. The errors

were reduced after GNSS updates are received. The proposed concept successfully es-

timated the location of the train along with geometric track mapping. Authors further

proposed a Bayesian train localisation approach using Particle Filter, loosely coupled

GNSS, IMU and a track map (Heirich, 2016).

Inertial-based localisation systems offer low-cost solutions as huge infrastructure

is not required. However, the accuracy of these systems reduces over time with the

accumulation of drift errors. The limitations of this technology are these:

• The accuracy of these systems goes down because of drift with time. Old inertial-

based localisation systems used to have localisation error of about 2 nautical

miles (nm) but in the modern systems are improved up to 0.6nm (Savage, 2013;

Skybrary, 2009).

• The drift errors are generally dealt with either by incorporation of another tech-

nology such as satellites (GNSS) or by using extra hardware, which increases the

system’s cost.

2.3.8 Vision-based

A vision-based localisation system take pictures and videos from cameras. It applies

feature identification techniques on those images and match them with the contextual

database to identify the location of an object. Vision-based localisation solutions are

generally low in cost because of a low requirement of infrastructural equipment. Al-

gorithms have been developed to extract useful features for successful image matching

even from low quality cameras (Coetzee and Botha, 1993).

Rushant and Spacek (1997) have proposed a vision-based localisation system for

vehicle navigation. In this system, features are extracted from images and context

mapping is performed. A location is calculated through triangulation on the identified

possible locations. This system face some processing delays in location estimation and

it has a tradeoff between number of restraints and localisation accuracy.

Another vision-based localisation system was proposed by Se et al. (2001) for a

mobile robot system. The proposed system simultaneously constructs a map of the

surroundings and estimates its location. The location is estimated by identifying ma-

jor landmarks from scale-invariant features of images. Once landmarks are identified
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through SIFT features, the robot’s position is estimated by comparing features of cur-

rent image with the landmark image’s features. This is a low-cost system and its

accuracy depends on the successful SIFT features matching. SIFT feature matching

incurs large delays, making it infeasible to identify a fast moving object.

A high speed camera based localisation system was proposed to track the fast

moving ping pong ball (Tian et al., 2011). In the proposed scheme high speed cameras

capable of capturing four colour images are used. Two offline calibrated stereo camera

pairs are used on each opposite side of the table. After offline calibration, the system

detects the 2D and 3D locations of fast moving ping pong ball. Colour, motion and

trajectory features are used in identification of the ball’s position. Once the 3D position

is determined, the ball’s trajectory is computed from data received from both stereo

pairs.

Another high speed camera based tracking system is proposed by Zhang et al.

(2009), in which a high speed smart camera is used to track the fast moving ping pong

ball. In the proposed system, an efficient target tracking algorithm is designed which

operates on grey images. Algorithm differentiates the ball from the background for

tracking. The authors claim to have verified the robustness of the proposed algorithm

by capturing ball quickly in experiments. The high speed cameras are an efficient

method of vision that amalgamates the fast moving trains’ scenarios. These cameras

are capable of detecting motion, fast moving objects, trajectory prediction and so on.

In another approach, a platform monitoring system is developed. In the proposed

system, video cameras are used to monitor the whole track in the platform to en-

sure human safety (Oh et al., 2007). The system is supposed to detect obstacles and

unexpected items that may cause accidents.

Song et al. (2012) proposed a vision-based train localisation scheme using fuzzy

logic. In the proposed algorithm, frame difference and feature subtraction methods are

used for train location estimation. The proposed algorithm claimed to have increased

train safety. The following are the associated drawbacks with vision-based localisation

systems:

• Accuracy of a vision-based localisation system depends on frequent update of

database in dynamic environments: otherwise, accuracy of the location estima-

tion can reduce.

• Cameras’ images can be influenced by noise such as presence or absence of light.

• Localisation accuracy of these systems is low, and claimed to be in meters.
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2.3.9 WSN-based

WSN-based solutions deploy small low-cost sensor devices at several places in a grid

and record data transmission. Several data processing methods are used to get useful

meanings out of received data. Wireless sensor devices are not only useful for com-

munication but also offer benefits such as recording of several events of interest which

broaden its application areas. One of potential application areas is the railway indus-

try. In the railway industry train localisation is of prime importance for development

of any application. Satellite-based solutions are commonly adopted by rail operators

for such an application. To cover the loopholes of GPS-based solutions, such as GPS

dark regions, technology fusion is the focus of researches. WSN-based solutions are

adopted in several parts of the railway industry such as track health monitoring, train

scheduling or fault detection in infrastructure.

Researchers have also proposed solutions for train localisation (Hu et al., 2012).

In the proposed system, wireless sensor nodes are deployed along the track at known

positions. Gateway nodes are linked to central servers at railway stations. Sensor nodes

detect the incoming train, its position and speed, and transfer the collected data for

further processing to gateway and central servers. Later on, the position and arrival

time of trains are updated at each station. A Bayesian filtering technique is used to

filter RSS measurements and for further processing of localisation.

TrainSense is another solution proposed for train localisation and tested on a model

train (Smeets et al., 2013). In this system, wireless sensor motes are used. One mote is

merged with model train and detector motes are linked with track at known locations.

A controller was developed to transmit packets to trains. Received packets and data

are then used to calculate the position of a train. Once the train passes the detector

mote point on the track, a circuit is created and position of the train mote is identified

with continuous packets transmitted from controller to detector mote. Dead reckoning

is used to extend the method and to determine the position of train. The positioning

system was claimed to have achieved centimetre-level accuracy. They used track energy

to power motes.

The following are the associated drawbacks of WSN-based localisation systems:

• There are many data collection methods for WSN-based solutions but the RSS-

based method suffers from signal deteriorations such as reflections. Such noisy

data can be filtered using filtration algorithms, which may increase the complexity

of a proposed algorithm.
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• In the absence of AC power lines, limited power sources are available which may

affect the lifetime of network. To overcome such an issue, an energy-efficient

algorithm is required to allow necessary operations only.

Table 2.1: Comparison of Technologies for Positioning in Indoor and Outdoor Envi-
ronments

(Song et al., 2011; Gu et al., 2009; Al Nuaimi and Kamel, 2011; Liu et al., 2007;
Khan, 2014)

Technology Accuracy Cost Outdoor Railway

Standard GPS 3 m to 15 m High Yes Yes
Differential GPS <10 cm High Yes Yes

Infrared 0.1 mm - 10 m High No Limited
Ultrasound 1 cm - 10 cm High No Limited

Radio Frequency 5 cm - 5 m High Yes Yes
WLAN 2 m - 100 m Low - High Yes Limited

Audible Sound 1 m - 10 m High No Limited
Inertial Sensors 1 m - 4 m Low - High Yes Yes

Vision 1 m - 5 m Low Yes Limited
WSN 0.5 m - 10 m Low Yes Yes

2.4 Cost Analysis

The focus of this thesis is to propose a train localisation solution that can operate

in GPS failure areas. Generally, GPS dark regions spread over many kilometres on

tracks (Mazl and Přeučil, 2003). CPEC (China-Pakistan Economic Corridor) is one of

huge investments made by Chinese government and one part of the project is to build

railway track from Gawadar port in Arabian sea (Pakistan) to Kashgar city (China)

across the Himalayas range. A map shows that western route of this railway track that

will pass through Baluchistan province, KPK province and Gilgit Baltistan province

comprise of hilly terrains, valleys and several tunnels (CPEC, 2016). Therefore, it is

hard to mention the percentage of the GPS dark region on a track but on average it

spreads over several kilometres (Mazl and Přeučil, 2003).

From Table 2.1, it can be seen that technologies such as radio frequency, inertial

sensors and WSN are applicable in outdoor environments. These technologies are either

being used for rail tracking applications or in railway supportive systems such as staff

and inventory tracking in railway warehouses or fault detection in railway tracks.
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In Table 2.2, a cost comparison of WSN with RFID and ultrasound-based solutions

is given. Here, a sample track of 500 km is taken for cost analysis and GPS dark region

comprises 5% of track length. In order to simplify the analysis, it is assumed that the

GPS dark region is continuous. However, it can underestimate the cost analysis given

in the Table 2.2, but this assumption will have proportional cost effects across all

technologies. WSN motes are powered by AA batteries in the absence of AC power

lines, a power source that is hard to guarantee in tough terrains. However, parts of

such areas can still have AC power lines along railway tracks. The batteries of sensor

motes on sleep mode can last up to a year (Datasheet, 2006). Although, Dron et al.

(2014) suggested an emulation based model of battery life estimation of WSN and they

claim to have raised the battery life up to 484 days. A reasonable and safe assumption

under average traffic and MAC operations is that a sensor mote can survive up to

several weeks.

There are some additional benefits that WSN-based solutions can offer and which

are not explicitly available in the use of other technologies. These benefits include

the capability of WSN to develop railway supportive systems such as to detect faults,

cracks or obstacles on tracks. Generally, cracks on a track are detected by special

laser sensors and UK railway is following the same system to detect faults on the

tracks (TheRegister, 2014). However, Punetha et al. (2014) proposed a similar idea

to detect cracks on the track by using WSN. The proposed architecture of the sensor

mote includes an IR sensor, a photodiode, a GPS sensor and a GSM module. A robot

carries the specified mote in such a way that the IR sensor and the photodiode are on

the opposite sides of the railway track. The robot starts its motion and able to detect

a crack when the IR light passes through the crack and reaches to the photodiode. The

suggested system is capable of detecting major cracks. GSM module is then used to

communicate the GPS based location of the detected crack to the control station. Other

than the cost factor, WSN’s ability to assist in monitoring the health of infrastructure

and to diagnose faults makes it the preferred choice for a train localisation system.

The cost of a single AA battery is 0.10 c (Batteries, 2016a,b) and cost of a WSN

mote is $95 (Advanticsys, 2016). The costs of a RFID reader and an active tag are

$1500 and $30, respectively (AtlasRFID, 2016b). The cost of a Ultrasound controller

is $500 (OmegaUltraSound, 2016) and receiver is almost $20 (Receiver, 2016). The

ranges of WSN mote, RFID reader and ultrasound controller are 800 m, 20 m and

10 m, respectively. The RFID active tag’s battery lasts for 3 to 5 years but once

battery depletes, tags are required to be replaced (AtlasRFID, 2016a). The ultrasound
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receiver’s battery lasts for 8 months at specific configurations (Sonotronics, 2016).

It can be seen from Table 2.2 that the fixed cost of WSN-based solution is low, 32

devices required for 5% GPS-dark region of 500 km track, compared with the RFID

and ultrasound systems. However, variable cost of WSN is higher than RFID, such as

replacement of batteries, may be required to replace at a higher frequency in WSN-

based solutions than in RFID and ultrasound systems. The fixed cost changes according

to particular site and there may require dense deployment. In such case, the distance

between anchor sensors will decrease and the number of devices required to cover the

space will increase. The cost of skilled labour remains constant for all of these systems,

so is ignored in comparison. The added benefits of WSN, as discussed earlier, makes it a

better choice for a localisation system. Therefore, WSN-based solutions are applicable

not only in the absence of GPS signals but also in fusion with GPS-based localisation

system to increase the accuracy.

Table 2.2: Cost Analysis of WSN, RFID and Ultrasound

Features WSN RFID Ultrasound

Hardware WSN motes Reader & Active tags Controller & Receivers
Cost per Unit $95 $1500 & $30 $500 & $20

Range 800 m 100 m 10 m
Track Length 500 km 500 km 500 km

GPS-Dark Region 5% 5% 5%
No. of Devices 32 250 2500

Cost of Hardware $3040 $7500 $50000
Power Source AA batteries AA batteries AA batteries

Battery life in Deep Sleep 1 Year 3-5 years 8 months

2.4.1 Maintenance Cost

An system, once operational, needs maintenance. The installation costs in GPS-dark

regions of a localisation system based on several technologies are given in the Table 2.2.

The associated maintenance cost of corresponding technologies in GPS-dark regions are

given in the Table 2.3. Generally, a maintenance cost of a system is comprised of repair

cost, replacement cost, labour cost, training cost and logistics cost.

It can be seen in the Table 2.3 that in order to do maintenance work in the GPS-dark

regions, some of the cost is fixed such as, vehicles. Operating companies reuse these as-

sets which further require maintenance. GPS-dark regions are assumed to be on tough

terrains, with uneasy access, hence require more fuel to get labour and equipments
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there. This implies that the fuel cost will be high due to tough terrains and global

increasing prices of fuels. The fuel cost will have the same impact on all localisation

systems based on either WSN, RFID or Ultrasound. The requirement of skilled staff

is low in a WSN-based localisation system and an RFID-based localisation system be-

cause of limited technical requirements to handle these devices. However, ultrasound is

a sophisticated technology and equipment needs special attention, therefore, the skilled

staff requirement is high.

Similarly, the training required for the maintenance staff is minimal in case of WSN

and RFID. However, due to sensitive equipment and complex methods, the training

cost is high for ultrasound-based localisations system. The batteries replacement cost

is high in WSN-based system as compared to RFID and ultrasound because of the

frequent requirement of replacement. The device replacement cost is high in the RFID-

based localisation system because of the fragile nature of its devices. However, WSN

and Ultrasound have a low requirement of device replacement.

Another important factor in the maintenance cost is the frequency of maintenance.

It is an average frequency in all systems. The reason is that, in WSN it depends on

battery replacement and in RFID, it may be device replacement. The Table 2.3 suggests

that the WSN-based localisation system will not be the best in terms of maintenance

cost. Therefore, it comes to the cost-benefit analysis of each technology. A technology

can have high maintenance cost with low installation cost and huge benefits.

Table 2.3: Maintenance Cost of WSN, RFID and Ultrasound in a GPS-dark Region

Maintenance Types WSN RFID Ultrasound

Fuel (GPS-dark Regions) High High High
Vehicles Fixed Fixed Fixed

Skilled Staff Low Low High
Unskilled Staff Low Low Low
Training Cost Low Low High

Batteries Replacement Cost High Low Average
Device Replacement Low High High

Maintenance Frequency Average Average Average

2.5 Data Collection Methods

In WSN-based localisation systems, wireless sensor devices are used to collect data.

The collected data is then forwarded to the location servers to compute the position of
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an object. Data can be gathered by several methods such as Received Signal Strength

(RSS), Angle-of-Arrival (AoA) and Time-of-Arrival (ToA).

2.5.1 Received Signal Strength (RSS)

In the RSS-based method, the decrease in the signal strength at receiver is used to

compute its distance from the transmitter. The strength of the transmitted signal

reduces over the travelled distance. RSS can be recorded from each communicated

packet from transmitter to receiver and no special equipment is required for this pur-

pose. Therefore, this is a low-cost method that needs no extra equipment, algorithm

or technique to record data. RSS is prone to environment’s negative impacts such as

signal reflections, multi-path fading, antenna inadequacies or interference from other

sources (Li, 2006; Liu et al., 2006; Bahl and Padmanabhan, 2000). In RSS-based local-

isation systems, the distance between transmitter and receiver is calculated from the

received signal strength. The attenuation of signal strength is attributed to the signal

propagation characteristics, called path loss exponent (PLE) (Bahl and Padmanabhan,

2000) (discussed in detail in Chapter 4). Log normal path-loss model is used to model

the attenuation in free space (Wang and Zhu, 2008; Tarrio et al., 2008). Morávek

et al. (2010) discussed the problem of uncertainty in RSS and its implications on the

measurements. In addition, RSS uncertainty and its relation with log-normal distri-

bution are analysed by several research articles such as Stoyanova et al. (2009) and

Cho et al. (2007). Several statistical methods and noise filters are used to reduce the

negative impact in RSS measurements. These methods take several measurements to

process, such as particle filters and to identify the best measurements for the location

computation. However, if the number measurements are higher, it increases the energy

consumption and is a major drawback for energy-sensitive applications.

2.5.2 Angle of Arrival (AoA)

In the Angle-of-Arrival method, location of an object is computed by intersection of

several sets of angles. An angle is considered between transmitted and reflected signals,

given a fixed direction of propagation. An array of antennas can also be used in order to

determine the location of an object through triangulation method. Use of an array also

decreases error rate (BER) and multi-path effects along with other benefits (Giorgetti

et al., 2007). Erdogan et al. (2006) discussed the advantages of the AoA-based local-

isation method, such as energy conservation, that has an overall impact on network
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lifetime. Energy consumption is improved by a similar sort of technique that intro-

duced a few sink nodes (Kalis and Dimitriou, 2005). The use of an array of antennas is

considered as a limitation because it require huge resources. Further, the requirement

of wide dimensions of antennas reduces with higher frequency communication. In an-

other piece of work, electromechanical systems are used to increase the feasibility of

array-based sensors (Giorgetti et al., 2007; Kalis and Dimitriou, 2005). However, the

use of antenna arrays increase the system cost as a whole (Kalis and Dimitriou, 2005).

A distributed AoA-based localisation of acoustic sensors is presented by Arabaci and

Strickland (2007).

2.5.3 Time of Arrival (ToA)

The ToA refers to the propagation delay of a transmission. In other words, it is

the time taken by a transmitted signal from sender to receiver. As both sender and

receiver are involved in determining the time consumed in such activity, they need to

be synchronised. A slightly modified approach is to consider reflected signal back from

receiver to initial sender, and it relaxes the strict requirement of clock synchronisation

(Mao et al., 2007). In the ToA approach, intersection points are obtained from ToA

data measurements from at least three nodes to compute the location of an object (Peng

and Sichitiu, 2006). The chances of getting unique intersection points are directly

proportional to the number of transmitting nodes (Huang and Benesty, 2004; Mao

et al., 2007). The location of an object can be computed using the triangulation

among several sensor nodes with known locations. ToA is prone to multi-path effects

that increases with the number of obstacles. The ToA method is feasible for the indoor

localisation scenarios with a few obstacles such as a hall or meeting room. ToA is also

feasible in less dynamic outdoor environments.

2.6 Data Processing Methods

The measured data can be processed by several methods. Each method has its way

to handle the collected data. The following are four different ways of a localisation

system: Geometric, Fingerprinting, Dead Reckoning and Proximity.
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2.6.1 Geometric

Location estimation can be performed on measured data using geometric properties

(Lee et al., 2009). Triangulation and trilateration are the methods that use geometric

properties for localisation. In trilateration, the position of an object is computed by

calculating its distances from several reference points. On the other hand, in the

triangulation method, the integration of multiple sets of angles is used to compute the

object’s location. Drawbacks of geometric methods include mismatch of several radians

because of blocking and multi-path errors.

2.6.2 Fingerprint

Fingerprinting is a method of matching the received data measurements, such as RSSI

or ToA, with known measurements that are saved in the database, called data finger-

prints (Gogolak et al., 2011). The environment data recording process generates the

fingerprint of data during the offline system calibration phase. On the other hand, in

the online system localisation phase, the newly received data measurements are mapped

to the saved fingerprints to estimate the position of an object (Saxena et al., 2008).

Drawbacks of the fingerprint method include deviation of the fingerprint because of

modifications in an environment.

2.6.3 Dead Reckoning

The dead-reckoning method works with the last known location of an object and a set

of inertial or non-inertial data values, such as time, speed, direction or acceleration, to

estimate the new location of an object. (Jimenez et al., 2009). Dead-reckoning is often

used to predict the object’s location in the next time stamp with respect to received

inertial dataset.

2.6.4 Proximity

In the Proximity method, the measured data is processed with the reference location

in close vicinity. The location is estimated with the best match to the closest known

landmark (Patwari and Hero III, 2003).
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2.6.5 Kalman Filtering for Localisation

One of the ways to implement a Bayes Filter is through Kalman Filters (KF). KF is an

estimator to estimate an instantaneous state perturbed by noise that can be modelled

in terms of Gaussian noise. KF uses Gaussian model in the prediction of posterior state

(Grewal, 2011). In other words, KF is a tool to predict the likely future state of dynamic

systems that are beyond control, commonly for the trajectories of celestial bodies. In

KF-based Simultaneous Localisation And Mapping (SLAM) problems, Gaussian noise

is added to the state transition and the measurement functions (Thrun et al., 2004). In

tracking problems, KF is used to estimate the location of a robot, where landmarks in a

route are initialised. Landmarks are linked to the obstacles in the route, which restricts

the movement of a robot. In addition, a data association problem associates the features

in the route with the landmarks and identifies the change of the scenes. Thus, landmark

initialisation and data association are important concerns in the tracking of a robot

using KF.

One of the main drawbacks of the KF implementations is the fact that for long-

duration tracking, the number of key tracking points increases and, at some stage,

computational resources will not be sufficient to update the map in real-time.

The advantage of KF is that they provide optimal mean-square error (MMSE)

estimates of the state, and its covariance converges convincingly.

2.6.6 Particle Filtering for Localisation

Particle Filter is a special type of recursive Bayesian Filter, also called sequential Monte

Carlo (SMC) method. Particle Filtering is an estimator that starts with the random

points, called particles. Initially, all particles hold the same weight and represent the

exact location of an object with same likelihood. At each time instance, each particle

moves to a new possible position and updates its weight, that show its chances of

representing accurate location of an object. PF samples particles from a distribution

to estimate the position of an object. This technique makes it reliable for nonlinear

and non-Gaussian systems. PF is capable of handling computational complexity of

the state that has grown with the addition of a landmark (Montemerlo et al., 2002).

Therefore, PF is highly suitable for localisation applications. However, it is still being

studied for SLAM problems such as FastSLAM (Montemerlo et al., 2002; Roller et al.,

2003).

The use of Particle Filtering in the train localisation system is discussed in detail
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in Chapter 6.

2.7 Existing Train Localisation Technologies

The railway environment can be divided into several parts such as open field, railway

stations or tunnel. The technologies and methods used for train localisation can differ

with the scenarios it is being developed for. The existing literature can be divided into

technologies used in open field and tunnel (Fararooy et al., 1996).

2.7.1 Traditional Technologies

Automatic train control is a system that places focus on train’s safety by identifying

its position. The identified position is then spread among trains within close proximity

to avoid potential collisions. Since the beginning of railway, railway flare system was in

practise in which flare was dropped from the backend of trains. The flare used to burn

for sometime and it becomes indication for following train on that track to analyse the

distance from next train and to adjust its speed in order to avoid potential collisions

(Wiita, 1989).

Later on, the technology evolved in railway and block system was introduced, that

used block of tracks to identify the location of train (Wiita, 1989). Signals were passed

through attached wires to control room, upon entrance of train on specific track block.

This system was inadequate during operations of high speed rails, multiple tracks and

use of extensive wiring.

In the initial days of modern railway systems, on-board equipment were used for

positioning. Signalling systems along with their coordination with track circuits were

used to enable safety features in a train. Later on, systems were improved with the

integration of electronic control boards, radio units and interlocking states. Track

circuits were used in term of electric energy to detect the connectivity and location of

train at any part of track.

Traditionally, another approach for train localisation was used, called axle counter

system (Fararooy et al., 1996). In this system, the train’s wheels are detected. One set

of equipment is placed on a section of track and another set of equipment, called evalu-

ator, is installed in a control room. The trackside equipment detects the train’s wheels

once train enters or leave that section. Trackside equipment includes electronic junc-

tion tools and transducers to detect the wheels. Another approach uses axle rotation

to detect train along with computer and radio-aided train control system (CARAT)
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(Ikeda, 1993). In another approach, a speed sensor, called fail-safe, is introduced to

detect the position of a train (Hill, 1981).

2.7.2 Technologies for Open-Field

An open field is one of environment in the railway. Generally, in railway industry, GPS

or its variations are being used for localisation. DGPS is more accurate than basic GPS

and railway companies often hire services based on DGPS. Currently, DGPS networks

are being used in several parts of Europe (Fararooy et al., 1996). The use of satellite-

based systems are common in railway navigation projects. The limitation of such

technology is disconnection from satellites in GPS dark regions such as skyscrapers,

bridges, hills or tunnels. A solution to such a problem is integration of satellite-based

solutions with other technologies such as sensors (Leahy et al., 1993).

2.7.3 Technologies for Tunnels

Satellite-based systems do not perform in tunnels because of unavailability of satellite

signals. Train-based or track-based solutions may not work as well solely. Mayhew

et al. (1994), developed a hybrid solution for tunnels that focused on a train control

system. Radio-based techniques, such as optoelectronic systems, use sensors and com-

pute the location of train based on train-track communication. Military applications

use frequency hopping spread spectrum techniques for such purposes (Fararooy et al.,

1996). These techniques involve radio beacons to transmit after regular intervals and

a set of on-board transceivers are used to identify the position of a train.

In another approach, magnetic transponders are used. Magnetic transponders, placed

on the track, transmit known information to the train and the train calculates its posi-

tion. A speed sensor was developed based on Doppler’s effect, as input to the navigation

system (J and Faulkner, 1991). The Doppler sensor changes the frequency of signal

to make it significantly noticeable for a receiver moving at relative speed. A slip-slide

control system was proposed for modern trains that also benefits from Doppler sensors

(Descamps et al., 1991). Inertial train control system is often combined with tradi-

tional signalling system to identify the location of a train. In the past, laser diode and

charge coupled devices are the focus of research because of their ability for restraining

themselves to low error. In such techniques, wheel and rail inspections play their part

in avoiding mechanical drifts (Seitz et al., 1990). Further, errors are minimised by

using Kalman Filtering techniques.
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2.8 Existing Train Localisation Projects

In the railway world, GPS is a commonly used technology to track trains, its equip-

ment, maintenance vehicles and trackside staff in real-time. GPS-based localisation

and navigation systems improve their performance with the fusion of other technolo-

gies such as sensors or communication systems. Train localisation systems play a vital

role in safe, timely and low-cost railway services. Other than GPS, the existing train

localisation technologies are based on track circuits, on-board IMUs or trackside op-

tical markers (Hill and Weedon, 1990). However, these technologies lack in precision

and need huge infrastructure (Wikil, 2016; Johnson, 2016; Huffman et al., 1977). In

selected parts of the railway system other technologies are being used for localisation

purposes such as RFID for railway inventory tracking and management, and WLAN

for railway system management. A discussion about several train localisation projects

and their adopted technologies is given in following sections.

2.8.1 RFID-based Railway System

An RFID-based localisation solution was proposed by the GAO group (GAO-Inc.,

2007). The solution was proposed to specify the location of locomotives and railcars. In

addition, the system is also useful for asset management and identification of equipment

and staff. In the proposed system, an item can be located before and after it is loaded

into a container for shipment purposes. Further, the location of a staff member can be

tracked and well informed if the site needs to be cleared because of movement of trains.

In a nutshell, the RFID-based solution proposed by GAO company increases safety

features of railway staff and equipment, allows staff to do efficient stock maintenance

and enables smooth operation of railway industry. Several other attempts have focused

on transportation safety using RFID (Char and Johns, 2006), and RFID is considered

to be an important application area of future (GRIFFIN et al., 2006).

The RFID-based railway solution offers benefits for railway management in selected

places such as railway stations or inventory stores of railways. However, the short-range

RFID signals make it infeasible over long railway tracks where the speed of the train

is high.

2.8.2 IMU-based Railway System

In modern railways, Positive Train Control (PTC) systems are being used to prevent

railway accidents such as train derailments, mishaps with trackside workers, and wrong
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turns (Hansen, 2001). PTC works with a combination of technologies such as IMU–

onboard inertial sensors and satellites. In this system, speed of train can be monitored,

traffic routes can be adjusted and safety of the railway workers can be improved. This

system is also useful for optimising the railway capacity by generating a global traffic

view. In addition, this system incorporates and synchronises railroad communication

to avoid any such mishaps.

2.8.3 Satellite-based Railway System

Generally, satellite-based solutions are adopted in the railway environment because of

availability of services. On a commercial scale, services of several satellites are hired

to develop a localisation and navigation system. In the past, European Train Control

System (ETCS) was under focus in Europe (Rados et al., 2007). ETCS consists of

three levels and each level consists of standards, policies and techniques to develop

a train control system. Majorly, ETCS takes care of international boundary policies

as train networks are supposed to be deployed across Europe. European Rain Traffic

Management System (ERTMS) is a commercial and industrial project of European rail

(Midya and Thottappillil, 2008) and ETCS is a part of the ERTMS project. ERTMS

is a satellite-based solution that works with GPS or GNSS. In one of its sub-project,

EATS, the combination of information from several sources, such as Global Navigation

Satellite System (GNSS), UMTS and GSM, are considered for localisation.

INTEGRAIL is another solution for the railway industry (Staton, 2005). It uses

European Geostationary Navigation Overlay Service (EGNOS) signals to add safety

features in existing railway navigation solutions (Umiliacchi et al., 2006). INTEGRAIL

offers several benefits such as reduced cost and reliability in the preceding systems which

were based on onboard solutions such as odometers. The improvement is because of

fusion of existing solutions with satellite-based solutions and EGNOS. INTEGRAIL

provides an accurate localisation solution in several operational conditions as well.

ECORAIL (EGNOS COntrolled RAILway) project implements GNSS along with

the ETCS and ERTMS system (Thevenot et al., 2003). It offers advantages of GNSS

and management standards of ERTMS system together in a reduced cost solution.

GRAIL is another project that introduces the use of GNSS for a railway system

(Urech et al., 2006). The use of GNSS and other technologies by different vendors create

the problem of interoperability and compatibility. GRAIL takes into consideration

such issues and provides smooth integration of a GNSS-based localisation solution

with signalling and control systems proposed in main ERTMS and ETCS system in
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Europe.

GADEROS is another project that is supposed to be integrated into ETCS and

ERTMS. GADEROS offers safety features for life along with the integration of GNSS

in the ETCS and ERTMS project (Urech et al., 2002). GADEROS was under the

directorate of European Union. The Railway User Navigation Equipment (RUNE)

project offers the integration of GNSS and safety of life features offered by previous

projects (Albanese et al., 2005). The RUNE project involves extensive testing of its

tasks in the laboratory and in the field. RUNE focuses on its object that is to enable

a train to identify its position with limited or no support from trainside equipment. It

also complies with the standards of the ERTMS project.

2.9 Train Localisation System

An ideal train localisation system should consist of several components, in which each

component represents a train localisation subsystem based on different technologies

such as Wireless Local Area Networks (WLANs), RFID, GPS and Wireless Sensor

Networks (WSNs). WSN is a multi-dimensional technology that offers benefits in

multiple domains along with localisation in many areas. Railway industry can also

benefit from WSN, such as to identify track faults, management of inventory and staff,

and strain measurement in bridges. In such a system, each localisation subsystem offers

some benefits with some associated cost and reliability as discussed in the previous

section. However, the integration of heterogeneous technologies increases the reliability

of position information of trains through sensor fusion, cooperative localisation data

and detection of poor localisation zones such as railway tunnels, underground trains,

forests, and above-ground hilly terrains. Moreover, it will validate results and offer

benefits of each incorporated technology-based localisation system in such complex

environments with strong safety and security requirements.

The location information from each train localisation subsystem is collected by the

communication server. The communication server provides the first platform to inter-

act with estimated location information from each localisation system. Through the

internal network, the estimated location information is sent to the Railway Localisation

(RailLoc) fusion server. The fusion server takes the ingredients from each localisation

system and uses fusion algorithms to make a more realistic estimation of train location

at different time periods. The application servers use the train location information

that is estimated by the fusion server in the related SLAM and tracking applications
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Figure 2.1: Overview of the Train Localisation System.

to fulfil the requirements of the train navigation system.

This thesis focuses on a WSN-based train localisation system, which can be incor-

porated in a global train localisation system, as shown in Figure 2.1, and can serve

the purpose independently as well. Further, later chapters will discuss the rationale

of WSN-based localisation system and its components. Though the proposed system

can operate independently in GPS-dark regions, it becomes an adaptable sub-system

solution in a global train localisation system as shown in the Figure 2.1.

2.10 Research Goals

The localisation is an essential component of the navigation system, which is directly

related to the safety of the railway primarily, along with other benefits. I carefully

analysed the strengths of different technologies for train localisation and their associ-

ated shortcomings. GPS is the most widely adopted technology in the train localisation

projects. The requirement analysis from the train navigation system helped us to for-

mulate the research goal of this thesis: “to develop a WSN-based train localisation

system that can give effective performance where GPS is not available”. The proposed

train localisation system will provide a high accuracy at reasonable cost. This solution

can be used in combination with solutions provided by other technologies by using data

fusion techniques. I also identified a certain set of specifications for our WSN-based

train localisation system that are summarised as follows:

• The developed system will use wireless sensor devices on the track, called anchor

sensors, and another sensor device will be mounted on the train, called gateway

sensor.
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• The anchor sensors are powered by batteries that are hard and expensive to

replace frequently in the remote areas. Therefore, anchor sensors sleep for some-

time and wakeup to sense the incoming train for the communication. Batteries

are common method to provide power in the absence of AC lines, as provided in

track circuits (Nagel, 1979).

• The developed system will guarantee that anchor sensors will be awaken when

a train passes by them. In addition, anchor sensors are unaware of their neigh-

bour sensors’ sleep schedule and train’s arrival time. This approach has several

benefits, such as, it saves memory of these miniature devices, in case of delay in

train’s schedule system does not fail, and clock synchronisation is not required.

• The developed system computes the maximum sleep time that an anchor sensor

can follow and saves maximum energy along with the guarantee to wake up at

the right time.

• The gateway sensor will use the geographic coordinates of anchor sensors and the

RSS of the transmitted signals for the estimation of train’s location.

• In the developed system, the noise of the RSS using Particle Filtering technique

and position of the train is calculated along with the received location informa-

tion from the anchor sensors. A weighted RSSI likelihood function (WRLF) is

designed to identify the likelihood of particles representing the true location of

the train.

• In our proposed system, real-world data is used in the simulations. The exper-

iments were conducted to collect the real-world RSS data in the railway rep-

resentative environments such as open field, railway station and tunnel. The

use of real-world data increases the relevance of simulation with the real-world

scenarios.

• In our developed system, anchor sensors cooperate with each other frequently to

identify the faulty nodes among them, and to calibrate their location and path-

loss ratio. A report is compiled by each anchor sensor based on the developed

consensus and sent to the gateway sensor to eliminate the input from the faulty

node.
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2.11 Summary

In this chapter, I started with the identification of the metrics for localisation systems

and then compared several localisation systems based on those metrics to identify the

pros and cons of their underlying technologies as summarised in Table 2.1. The re-

view of the literature shows that technologies such as Infrared, Ultrasonic and Radio

Frequency offer reasonable positioning accuracy, but such systems require large infras-

tructure in outdoor environments that increases the overall cost of positioning system.

In contrast, the technologies such as WLAN, Inertial Sensors, Machine Vision and WSN

offer cheap solutions. In WLAN, the solution is cheap if infrastructure is reused; other-

wise, it will raise the cost of deployment, and the fingerprinting method also increases

the cost, time consumption and technical support. In Inertial-sensor-based systems,

noisy measurements increase the localisation error, which can be reduced by adding

sensors, at extra cost. In machine vision solutions, database maintenance and struc-

tural changes over time, increase its cost for large-scale network deployment. Mostly,

the existing train localisation projects use GPS as primary technology to estimate the

location of train in the railway system. However, GPS has several limitations such

as GPS dark regions, signal penetration issues and large errors. Alternatively, WSN

provides cheap solutions because of low-cost devices, but these devices are limited in

resources because of miniature architecture. The associated low cost of WSN and its

easy deployment and maintenance are features that make it a preferable choice for

my work. The large transmission range of sensor nodes reduces (800 m) the number

of devices required. However, the required number of devices depends on deployment

density, which is a function of type of terrain. A broad concept of train localisation

system is presented that has several technologies based on train localisation subsystems

as shown in Figure 2.1.

The research objectives of this thesis are formulated based on the design of an

accurate and low-cost train localisation system that can be opted as a solution in the

absence of GPS-based localisation solutions. Such objectives lead to the design and

development of a WSN-based train localisation system.

In the next chapter, I shall present a brief overview of WSN-based train localisation

system in general and each of its modules in particular.
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Chapter 3

Overview of WSN-based Train

Localisation System

In this chapter, I begin by introducing the idea of train localisation using wireless sensor

networks. I then describe each of the modules of the WSN-based train localisation

system. The details about each module are briefly discussed in individual sections,

which are later explained in detail in the next chapters.

3.1 System Models

The system models of WSN-based train localisation system consist of network, duty-

cycling and train localisation models.

3.1.1 Network Model

da

a0 ai ai+1 ai+2 ai+3 ai+4 ai+5 aj. . . . . . 

Zone 3 Zone 2Zone 1

dt

Gateway Sensor

Anchor 
Sensor

Figure 3.1: A WSN Architecture for Train Localisation
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In the network model of the WSN-based train localisation system, there are two

types of sensor nodes: anchor sensors and gateway sensors, as shown in Figure 3.1. A

set of anchor sensors is uniformly deployed along a straight track with equal distance

between any two consecutive anchor sensors. The distance varies and depend on the

deployment requirement such as in sparse network (straight and smooth terrain), dis-

tance can range from 100 m to 800 m, and in dense deployment (terrains with hills

and turns), there can be multiple sensors, deployed within 100 m. The anchor sensors

are powered by the batteries that can deplete rapidly, a few days (Royo et al., 2009),

if anchor sensors stay in idle listening mode all the time. Therefore, in a WSN-based

train localisation system, anchor sensors operate on duty-cycles. It is assumed that

each anchor sensor has hard-coded its geographic coordinates before deployment. This

assumption is reasonable as there can be a few sensors with known locations and rest

of sensors can compute their location with trilateration method after communication

with each other. A single gateway sensor is installed on the train. Multiple gateway

sensors have their own pros and cons such as there will be mechanism required to avoid

data collision during communication. Therefore, in a simplistic model, single gateway

sensor serves the purpose. The gateway sensor is equipped with two radio transceivers:

one transceiver has long transmission range and is used to continually broadcast bea-

con packets to wake up anchor sensors, called beacon-transceiver; other transceiver has

short transmission range and is used to communicate with the anchor sensors that are

woken up by long-range transceivers, called communication-transceiver. To avoid inter-

ference, beacon-transceiver and communication-transceiver operate on non-overlapping

frequency channels. Each anchor sensor operates on both channels and once a beacon

packet is received, it switches its channel to communicate with the communication-

transceiver of the gateway sensor. As shown in Figure 3.1, zone 1 is the region covered

by communication-transceiver and zone 1, zone 2 and zone 3 are the regions covered

by beacon-transceiver.

3.1.2 Duty-Cycling Model

All anchor sensors operate in an asynchronous duty-cycling mode in which each anchor

sensor switches between sleep and wake-up states independently without global syn-

chronisation. Figure 3.2 shows one duty-cycle, in which an anchor sensor first sleeps

for tsleep duration with its radio turned off, and then wakes up and turns its radio on

to perform clear channel assessment (CCA) to detect incoming signals. If an incoming

signal is detected, the anchor sensor will keep in the active state until the scheduled
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communication between the anchor sensor and the gateway sensor is completed; oth-

erwise it switches back to the sleep state and repeats another duty-cycle.

Transceiver On

Transceiver Off
tsleep ½tsw tcca

 One Duty Cycle (Td)

½tsw

Time: T0 T0 + tsleep Tn

Figure 3.2: Illustration of One Duty-Cycle

3.1.3 Train Localisation Model

As the train moves, the gateway sensor continually broadcasts beacon packets. Each

beacon packet contains information about the current train location (represented by

the location of the gateway) and speed. Once an anchor sensor receives a beacon

packet, it stops duty-cycling and prepares for communication with the gateway sensor.

When an anchor sensor goes into the transmission range of the gateway sensor, it

sends its geographic coordinates to the gateway sensor. After an anchor sensor finishes

the communication with the gateway sensor, it resumes duty-cycling. Based on the

geographic coordinates received from anchor sensors as well as the RSSI information

of the transmissions from anchor sensors, the train location will be computed at the

gateway in a real-time manner.

3.2 System Design of WSN-based Train Localisa-

tion

The WSN-based train localisation system consists of several important modules such

as Sensors Wake-up Scheme, Train Localisation Scheme, and Sensors Management

Scheme as shown in Figure 3.3. Each module serves a specific purpose in the WSN-

based localisation system. However, the integration of these modules consolidates the

benefits that each module offers and makes it a WSN-based train localisation system.
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Coordinates

CAMS Report

Application  
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Figure 3.3: Overview of the WSN-based Train Localisation System

In the first module, a beacon-driven sensor wake-up scheme (BWS) is proposed to

address the problem of waking up anchor sensors in an energy efficient way when the

train is approaching. To prolong the lifetime, anchor sensors operate on asynchronous

duty-cycles without the global knowledge of sleep schedules of their neighbour anchor

sensors. Moreover, it becomes challenging to wake up anchor sensors at right time

in the absence of train’s arrival schedule. Therefore, a wake-up scheme is designed in

which a train assists anchor sensors to wake up upon its arrival by broadcasting beacon

packets and allowing anchor sensors to sleep most of the time otherwise.

In the second module, the Particle-Filtering-based train localisation scheme is pre-

sented. This scheme uses the RSSI measurements and anchor sensors’ geographic

coordinates to estimate the train’s location. A weighted RSSI-based likelihood func-

tion is developed to compute the train’s location. The likelihood function updates

the weight of the particles based on RSSI measurements and geographic coordinates

received from the anchor sensors. The particle weight represents a particle’s proba-

bility of representing correct train’s location. Consequently, average probability of all

particles is computed that represents the estimated train’s location.

Finally, in the last module, a consensus-based anchor sensor management scheme is

presented to identify the possible anomalies in the system. Anchor sensors are the vital

ingredient of the WSN-based train localisation system, and they must be maintained

in order to maintain a high performance of the system. Anchor sensors can suffer
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from faults due to their software or hardware problems such as low battery, thermal

effect, and dislocation. These anomalies can result in incorrect data input to the train

localisation system that can compromise the system’s performance. Therefore, the

consensus-based anchor sensor management scheme enables anchor sensors to mutually

identify such faults.

The detailed information about each module is presented in the next sections.

3.2.1 Beacon-driven Wake-up Scheme (BWS)

In the WSN-based train localisation system, anchor sensors are deployed along the

track. They communicate with the gateway sensor once they go into the transmission

range of the gateway sensor. The train’s schedule is unknown to the anchor sensors, it is

hard to guarantee the availability of anchor sensors for communication with the gateway

sensor at the time of train’s arrival. One simple solution to guarantee the availability

of anchor sensors is to keep them in an idle listening state forever. Though, such

scheme can serve the purpose but it raises another problem of rapid battery drainage.

Therefore, keeping anchor sensors in idle listening state has the worst impact on the

system lifetime. The ultimate solution to prolong the network lifetime is to enable

anchor sensors to follow duty-cycles. In duty-cycling, anchor sensors switch between

wake-up and sleep states by periodically turning their radios on and off. Though the

duty-cycling solution can help to minimise the energy consumption the anchor sensors,

it still cannot guarantee the availability of anchor sensors for communication with the

gateway sensor at the arrival of train.

To guarantee the timely wake-up of the anchor sensors, the Beacon-driven Wake-up

Scheme (BWS) offers a cost and energy efficient solution. In BWS, the two gateway

transceivers TS b and TS c assist anchor sensors to wake-up and communicate, as shown

in Figure 3.1. Each anchor sensor, once it has received the beacon packet from TS b,

stays active and prepares to communicate with the transceiver TS c of the gateway

sensor. In BWS, the duty-cycling parameter tsleep plays an important role in the

timely waking up of anchor sensors. If tsleep is small, each anchor sensor needs to

frequently turn on and turn off its radio, thereby wasting too much energy. From an

energy saving perspective, the larger the tsleep, the more energy each anchor sensor can

conserve. However, if tsleep is too large, an anchor sensor may miss the chance to detect

the beacon packet broadcast by TS b and fail to wake up in time.

The BWS module of this thesis derives the upper bound on tsleep, which enables

each anchor sensor to stay in sleep state as long as possible while still guaranteeing
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that each anchor sensor can wake up in time once the train approaches. Secondly, it

designs an energy-efficient wake-up scheme, which guarantees that each anchor sensor

can wake up in time once it goes into the transmission range of TS c, and resumes low

power duty-cycling once it finishes communication with the gateway. The designed

scheme is evaluated through both theoretical analysis and simulations.

3.2.2 Particle-Filtering-based Train Localisation Scheme

The gateway sensor collects the geographic coordinates of the anchor sensors in its com-

munication range and corresponding RSSI measurement of each transmission. Though

the RSSI measurements are used to estimate the distance of the sender and can be

useful to estimate the location of the train, they can fluctuate because of multi-path

fading and signal reflections from the surrounding infrastructure. Therefore, it may

not stay reliable to estimate the location of the train from noisy RSSI measurements,

alone. This problem can be dealt in two phases, in one phase, RSSI can be used to

estimate distance with large errors and in second phase, estimated distance can be fine

tuned by using another type of data such as geographic coordinates of anchor sensors.

The problem of noisy RSSI measurements need to apply noise filtering to minimise the

location estimation error.

Particle Filter, which implements recursive Bayes Filter, is an efficient solution

for nonlinear/non-Gaussian tracking problems. The Particle Filter can be used to

filter out the noise from RSSI measurements because of its noise tolerant property. In

WSN-based train localisation, Particle Filtering is used to compute the location of the

train. In this scheme, two models are required in this filter: the movement model that

describes the evolution of the state with time (i.e., the train movement model in our

case), and the observation (measurement) model that relates the noisy measurements

to the state (i.e., the RSSI measurement model in our case). Particle Filter relies on the

construction of the posterior probability density function of the state based on the set

of received measurements, and recursive filtering is performed by taking into account

new measurements once they are available. The Particle Filter consists of the prediction

and update stages. In the prediction stage, the location of the train is estimated using

the movement model of particles. The update stage uses the measurement model to

modify the predicted particles’ locations and weights. The particles are then filtered

with the likelihood of being the exact representation of the location of the train. The

particles with the highest weight are more likely to represent the current train location.

Once the RSSI measurements are available, the observation model is used to update
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the weights of the particles.

In the Particle-Filtering-based train localisation module, an algorithm is developed

to estimate the location of the train by using noisy RSSI measurements and the loca-

tion information received from the anchor sensors. A weighted RSSI likelihood function

is developed that computes the likelihood of the particles to represent the train loca-

tion. The designed scheme is evaluated through extensive simulation using real-world

datasets collected from the field experiments.

3.2.3 Consensus-based Anchor sensor Management Scheme

(CAMS)

The anchor sensors along the railway track may suffer from the location errors caused by

software or hardware bugs. Therefore, they need to be re-calibrated for their geographic

coordinates and the path loss of the signals sent by the anchor sensors. Moreover, the

presence of faulty sensors in the system can also reduce the accuracy of the location

estimation. All these issues should be addressed in the WSN-based train localisation

system. Manually sorting out such problems by human beings incurs significantly high

cost. Here, a cost can be categorised as the number of times a technical team may need

to visit to check faults. However, CAMS generates a report by sensors, then targeted

effort is required to rectify the faults, thereby, reduces the cost. The management and

maintenance of the anchor sensors with the help of each other play an important role

in the stability of the whole localisation system.

Therefore, the need for a management scheme comes into play that can enable

anchor sensors to detect the faulty sensors among themselves. The faults should be

reported to the gateway sensor for further analysis. Furthermore, the management

scheme should assist anchor sensors to estimate the path loss ratio of their signals,

which depends very much on the surrounding environment and affects directly the dis-

tance estimation based on RSSI. Such a management scheme can significantly improve

the accuracy of train localisation by excluding the faulty sensors and re-calibrating the

parameters of the anchor sensors like path loss ratio.

In this module, the CAMS scheme is proposed for the WSN-based train localisation

system. CAMS allows anchor sensors to share their opinions about the trustworthi-

ness of their neighbour sensors and develop consensus to detect the faulty sensors.

The anchor sensors can be automatically re-calibrated in terms of path loss ratio and

geographical coordinates. CAMS is implemented in a simulated environment using
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MATLAB. The simulation is based on the real data collected from field experiments

in various environments such as open field, train station and a tunnel.

3.3 Summary

In this chapter, I presented an overview of the WSN-based train localisation system and

discussed its components that are the focus of this thesis. A system design of WSN-

based localisation system is presented, which elaborates the network model. Moreover,

an introduction is presented to explain the overall working of WSN-based train locali-

sation system.

The remainder of the chapter presented the overview of each of the three modules

of the WSN-based train localisation system. As the anchor sensors are powered by

batteries, they operate on asynchronous duty-cycling to save energy to prolong their

operational life. However, duty-cycling raises concerns about guaranteeing the avail-

ability of anchor sensors for the communication with the gateway sensor. Therefore,

an overview of the first module, beacon-driven wake-up scheme, is presented, which

enables the anchor sensors to sleep for a maximum time and still guarantee their wake-

up at the time of train passing by them. The wake-up of anchor sensors is vital as

their input (geographic coordinates and RSSI) are required by the gateway sensor to

estimate the train’s location. Such measurement data from the anchor sensors are

utilised by the second module of WSN-based train localisation system, that is, the

Particle-Filtering-based train localisation scheme. An overview of Particle Filter and

its usage to compute the train location is presented briefly. The anchor sensors are

required to be maintained as they are prone to environmental, device-ageing (need to

re-calibrate), safety and security effects. In the last module, I have given a consensus-

based anchor sensor management scheme, which reports the existing faults and faulty

sensors in the network to the gateway sensor. Such a scheme helps to maintain the

network, enhance the overall lifetime of the localisation system, and reduce the cost of

manual diagnostics and maintenance.

In the next chapter, I shall validate that RSSI follows the log-normal path loss

model, a known signal propagation model, in harsh railway environments, that are

different from general open field environments. Moreover, I shall present an analysis to

determine the feasibility of RSSI measurements usage for WSN-based train localisation.
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Chapter 4

Experiments to Validate the

Feasibility of Using RSSI for

WSN-based Train Localisation

In this chapter, I begin by introducing the idea of train localisation using wireless

sensor networks and use of signal strength measurements to estimate the location of

the train. I then describe the log-normal path loss model in detail, which is a known

model to map the signal strength over the distance of the transmitter. Railway is a

harsh and a different environment from other open field environments as it is influ-

enced by the involvement of infrastructure, metals and radio frequencies. Therefore,

it is required to verify that signal strength follows the log-normal path loss model in

railway environments. In the remainder of the chapter, I present the details of the

experiments to collect the RSS measurements in an open field, railway station, and

tunnel. Tunnels and open fields in GPS dark regions in hilly terrains. However, rail-

way station is considered as another example railway environment in which WSN-based

localisation system can provide redundancy to other localisation systems, thereby, in-

creases localisation accuracy. The existing system of track circuits is not very precise

and WSN-based solution can be an option in remote railway stations. Further, WSN

can be deployed for multiple purpose: train localisation, track monitoring, track side

worker alarming, etc. Therefore, can be a good choice for railway stations. Later on,

I analyse the feasibility of using RSS measurements for train localisation.
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4.1 Train Localisation using Wireless Sensor Net-

works

The key idea of using wireless sensor networks for train localisation is to estimate the

location of the train using received signal strength measurements and the geographic

coordinates of the anchor sensors. In the ideal medium, RSS measurements can be

trusted, but in this physical world, RSS gets influenced by some other factors along

with attenuation. Radio signals get affected by the surrounding obstacles such as

reflections from walls or metals, diffraction from sharp-edged surfaces, interference

from overlapping frequencies and shadowing effects due to antenna properties. Such

phenomena induces noise in RSS measurements, which can deviate them from their

actual values. Therefore, there is a need of another data model, such as location

information of anchor sensors, to overcome the deficiencies of RSS measurements by

data fusion technique. Such incorporation of location data increases the credibility of

RSS measurements and minimises estimation error that would have emerged otherwise.

The log-normal path loss model is used to analyse the power loss of the signal

during transmission in several railway environments. Such analysis is useful to analyse

the distribution of the noise in the collected datasets, which is necessary to select the

noise filter that will be used for train localisation.

4.2 Log-Normal Path Loss Model

The free-space model (Abhayawardhana et al., 2005) and the two-ray model (Sommer

et al., 2012) estimate the received power of a transmission as a deterministic function

of distance. Both models represent the communication range as a perfect circle. In

reality, the received power at a certain distance is a random variable due to multi-

path propagation effects, which is also called the fading effects. In fact, the above two

models predict the mean received power at distance d. A widely used and more generic

model is called the log-normal path loss.

The path loss model (Xu et al., 2010) is a well-known radio propagation model that

predicts the path loss a signal encounters over distance, and it has been widely used

for distance estimation. The log-normal path loss model can be expressed as

RSSI(d) = PTx − PL(d0)− 10η log10

d

d0

−X (4.1)
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where RSSI (d) is the received signal strength in dBm at a given distance d from the

transmitter, PTx is the power in dBm of the transmitted signal, PL(d0 ) is the path loss

at a reference distance d0 , and η is the path loss ratio. In Eq. (4.1), X is a random

variable that reflects the noise in the signal strength due to different environmental

factors such as reflection and fading.

4.3 Experimental Constraints

There were several constraints which were faced during field experiments. Though,

omnidirectional antennas were used with sensor motes, the antenna and sensor motes

deployment dimensions can affect the outcome. The intensity of such impact varies,

increases or decreases the sensitivity of devices. Following are the constraints which

were encountered with possible ways during experiments.

• Despite RF design is not the focus of the thesis, I have explored a number of dif-

ferent settings. Further, in my exploration, I tried several deployment dimensions

of sensor motes and their antennas such as by mounting sensor motes on a stand

and on the ground, in an open field and a railway station. Similarly, in a tunnel,

sensor motes were placed in the middle of the tunnel ground, along tunnel wall

and on stands. The best design according to high packet delivery rate was then

incorporated for data collection experiments.

• For experiments in which large distance is considered between anchor sensors,

the availability of volunteers, at the same time, was an uphill task. Moreover,

I asked different group of friends to help in different times. Each time, a small

training was given to each person about handling devices, sensitivity of directions

and its impacts on results. Due to such issues, several experiments were redone

with improved approach.

• Permission was required to conduct experiments on railway station, open field

and tunnel. After permission, experiments were conducted on railway station,

a verbal permission was taken, from personals of a sensitive instalment in the

Ravensnbourne suburb of the Dunedin city, for experiments in an open field.

• The tunnel experiments were conducted in Lauder, central Otago. It was a remote

tunnel (15 km walking track off the main road), which was once used by Kiwi rail

and now this rail trail is used by cyclists. It was hard to get a team of volunteers

ready on a common day for experiments.
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• The experimental RSSI measurements at 40 m in tunnel with short range sen-

sor devices at high transmission power level (PL31) are missing, shown in Fig-

ure 4.14(a). This was observed after coming back from experimental site while

analysing data. The reason was due to malfunctioning of a particular sensor de-

vice. It was hard to conduct experiment again due to lack of logistics. Moreover,

our findings suggest that data received at PL31 is not better than low power

transmissions at PL7. So, the plan to re-conduct experiments for missing RSSI

measurements at single distance point was dropped.

• Though RSSI can be recorded with small size preambles without requirement of a

whole packet that contains information such as train location, but for consistency

sake, whole packet is used as that is required in train-anchor communication.

• We assume antennas on the train will be mounted on the engine head so as to

reduce possible impairments caused by the train itself. Due to safety and regu-

lation constraints, on-track live experiments were limited. However, I managed

to conduct experiments on railway station in the presence of trains. During ex-

periments on the railway station, a train was at the platform and another one

arrived at the station. I have compared the recorded RSSI measurements with

and without the arriving train and found that the RSSI measurements were af-

fected by reflections from large metallic bodies. However, the average RSSI was

not found to have significant differences in either case.

4.4 Experiments in Railway Representative Envi-

ronments

4.4.1 Wireless Sensor Platforms and Motes

To validate the feasibility of using RSSI for train localisation, experiments are carried

out in three representative railway environments: an open field, a railway station,

and a tunnel. In experiments, a series of Maxfor’s MTM sensor platforms (MTM,

2012) are used that are equipped with the CC2420 radio chipset and different types

of antennas. The antenna types of the motes used in the experiments include external

dipole antennas (short range), external dipole antennas with amplifier (long range),

and internal PCB antennas.

The long-range sensor device with amplifier is used in the open field experiments.
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Figure 4.1: Trichotomy of Sensor Motes Used in Experiments

The purpose to use only a large-range sensor device is to use a minimum number of

devices over large distances that are natural for the plain open fields. However, in

the hilly terrains, the number of devices can increase to cover the dark spots in the

coverage areas. The use of a fewer long-range sensor devices (transmits up to 800 m)

is more cost effective than using a large number of short-range sensor devices (with

short-range external dipole antennas or internal PCB antennas, transmits up to 150

m). In the railway station experiments, the datasets are collected using both short-

range sensor devices with external dipole antennas and long-range sensor devices with

external dipole antennas and amplifier. These devices are carefully selected for the

railway station environment in accordance with the external dipole antenna dynamics,

existing infrastructure and other operating radio frequencies. In the experimental

setup of the tunnel environment, all three types of sensor devices are used as shown

in Figure 4.1. The rock structure of tunnel causes multi-path fading, shadowing and

intense signal reflections.

In the experimental setups, the anchor sensors are placed along a line with equal

distance. Another sensor device called the gateway sensor is placed on a stand and

connected to a laptop. Though a gateway sensor that is mounted on a metallic train

is not equivalent to mounted on a stand, but experiments do incorporate existence of

metallic trains during experiments on railway station. Therefore, it is the best closest

experiments from real-world that was possible. The gateway can be moved to different

locations. At each location, the gateway broadcasts a packet, and the anchors will

send packets back to the gateway in sequence using different transmission powers after

receiving the gateway’s packet. The gateway then measures the RSSI of each packet

transmitted by each anchor sensor, and the laptop will record these RSSIs as well as
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the corresponding transmission powers.

4.4.2 Analysis of Datasets

I use the collected RSSI dataset to validate if the received signal strength follows the

log-distance path loss model in the three representative environments. In addition,

log-distance path loss model is used to find out the path loss ratio. The path loss

ratio (exponent) η is a key parameter in the log-normal path loss model, which varies

in different environments. A method of least square fitting is used to compute the

best η that minimises the sum of squares of the difference between the experimental

RSSIs and their corresponding values in the log-distance path loss model, by solving

the following optimisation problem:

minimize
∑

d∈D
∑nd

i=1(RSSIe(d, i)−RSSIm(d))2

subject to 1 ≤ η ≤ 4,
(4.2)

where D is the set of transmitter-receiver distance, and nd is the number of RSSIs with

transmitter-receiver distance of d. RSSI e(d, i) represents the ith RSSI measurement

with transmitter-receiver distance of d, and RSSIm(d) denotes the RSSI value com-

puted based on log-distance path loss model with transmission distance of d. The value

of η is usually in the range of 1 to 4. Here, RSSI noise is defined as the difference be-

tween each experimental RSSI and its corresponding value from the log-distance path

loss model. Once getting the best η, Anderson-Darling test (Anderson and Darling,

1954) is applied on the dataset obtained at each location to characterise the distri-

bution of RSSI noise, which is essential to select a feasible noise filter in designing

localisation scheme.

4.5 Experiments in an Open Field Environment

In this section, the experimental setup of the open field is presented with the details

of the devices used and their transmission ranges. Moreover, an analysis is presented

in detail to discuss the nature of received dataset, log-normal model fitting and distri-

bution of noise, to conclude the feasibility of using RSSI in the open field for the train

localisation.
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Figure 4.2: Experimental Tests in the Open Field Environment

4.5.1 Experimental Setup

In this set of experiments, the MTM-CM3300-MSP sensor motes with external Dipole

antennas are used, which have a transmission range around 800m. As shown in Figure

4.2, the anchor sensors are deployed along a track of 700m, and the distance between

two adjacent anchor sensors is 25m. A gateway sensor is attached to a laptop to record

the RSSI measurements. The gateway sensor transmits a beacon packet and anchor

sensors reply with a number of packets. The gateway sensor records the RSSI of each

received packet along with the other data it contains.

4.5.2 Analysis of Open Field Datasets

Figure 4.3 shows the collected RSSI measurements as well as the best-fitted curve. The

best-fitted log-normal path loss curve is obtained as discussed, in Equation 5.22. The

black vertical stripes in the figure show the experimental RSSI collected from packets

received from the anchor sensor at each location. The best log-normal model curve is

obtained with η = 3.8, d0 = 25, and PT−PL(d0 ) = 1 .2 dBm. It can be seen that, there

are some fluctuations and the RSSI measurements follow the curve of log-normal path

loss model with fluctuations. The variations in RSSI measurements are attributed

to both the multi-path fading and the ±6 dBm error margin in RSSI measurement

for CC2420 radio transceiver (Texas Instruments, 2003). These and other sources of

errors induce noise in RSS measurements, which may compromise the use of RSS as
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Figure 4.3: Model Fitting for Open Field Experiments

an estimator. Therefore, measurement model and a noise filtering algorithm, such as

Particle Filter is required for location estimation.

Figures 4.4 and 4.5 show the noise distribution of the RSSI measurements collected

from anchor sensors at selected locations of the total deployment area. Figure 4.4(a)

explains the noise distribution for the RSSI measurements collected with a transmission

distance of 25 m. The maximum absolute deviation goes up to 18 dBm, but 95 %

of the noise is in the range between −8 dBm and 8 dBm. The noise distribution

for transmission distance of 75 m is shown in Figure 4.4(b). It can be seen that

there are two peaks in the figure, which represent the signal reflections and multi-path

fading due to the surrounding infrastructure. The impact of such signal deteriorating

factors can be seen in the noise distribution, where the absolute deviation reaches

to 21 dBm. However, still the maximum number of RSSI measurements lie between

-8dBm to 8dBm. The noise distribution of the RSSI measurements collected from

anchor sensors that are deployed at the distance of 125 m and 175 m are shown

in Figures 4.4(c) and 4.4(d), respectively. Similarly, the noise distribution of RSSI

measurements from anchor sensors deployed at distance of 225 m, 275 m, 325 m,

375 m, 425 m, and 475 m are shown in Figures 4.4(e), 4.4(f), 4.5(a), 4.5(b), 4.5(c),

and 4.5(d), respectively.

The observed behaviour shows that the noise distribution for larger transmission

distance shows much smaller deviations. However, the short-range transmissions are

more prone to multi-path fading caused by signal reflections from the surrounding en-
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Figure 4.4: Open Field Noise Distribution (Figure 1)
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Figure 4.5: Open Field Noise Distribution (Figure 2)
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vironmental objects such as the neighbouring guard rail, tracks and buildings. After

further analysing the noise distribution for measurements collected with other trans-

mission distances in open field, it is not found from normal distribution. The Figures

4.4 and 4.5 reveal that none of the RSSI noises follows the normal distribution. The

noise distribution describes the deviation of RSSI measurements from the log-normal

model RSSI. This deviation pattern is essential to be known to select a noise filter

method in the design of train localisation algorithm. The non-Gaussian distribution of

the noise is attributed several factors such as outlier RSSI measurements, constructive

or destructive interference of signal strength by reflected signals, data discrimination by

hardware error limits, RSSI measurements lost due to the environment that might have

contributed as inliers, and redundant RSSI measurements. Therefore, non-Gaussian

noise is more realistic in a railway environment, which means Particle Filter can be

used for distance estimation.

The RSSI measurements received from closest anchor sensor is stronger than anchor

sensors at large distance from gateway sensor. The rate of change of received signal

strength decreases in the measurements received from farther locations. This implies

that RSSI may not be trustworthy for distance estimations over large distances. How-

ever, as RSSI follows log-normal path loss model, it is possible to increase accuracy on

train localisation by combining it with location information of anchor sensors. Such

data fusion minimises the error range and increases the weightage of more correct RSSI

values, resulting in a robust localisation scheme.

4.6 Experiments in Railway Station Environment

In the second set of experiments, anchor sensors are deployed in the railway station

environment. This section presents the details of this experiment setup such as devices

used and their transmission ranges. Moreover, an analysis is presented in detail to

discuss the nature of received dataset, log-normal model fitting and distribution of

noise, to conclude the feasibility of using RSSI in the railway station for the train

localisation.

4.6.1 Experimental Setup

Railway Station is a representative environment that needs to be considered for train

localisation due to the presence of trains, railway tracks, platform offices and other

infrastructures that may affect the propagation of the wireless signals. The existing
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Figure 4.6: Experimental Tests in the Railway Station Environment

solutions are generally based on GPS and track circuits. GPS may not be available

on remote railway stations and track circuits are not precise and its failure has caused

several accidents in the past (Johnson, 2016; Wikil, 2016). Therefore, railway station is

an important environment for localisation. As shown in Figure 4.6, two sets of experi-

ments are carried out to validate the feasibility of using RSSI for distance estimation

in a railway station environment: (a) sparse deployment, in which the MTM-CM3300

motes with long-range external Dipole antennas (with amplifier) are used, and the dis-

tance between two adjacent anchor sensors is 25 m; (b) dense deployment, in which

the MTM-CM5000 motes with external Dipole antenna (without amplifier) are used.

The maximum transmission range of MTM-CM5000 mote is around 150 m, and the

distance between two adjacent anchor sensors is 2 m. The 2 m distance is expensive

deployment, but here it is considered due to several reasons, such as, to counter the

large number of obstacles in congested areas within railway stations and to minimise

the negative effects on radio signals. As the area of railway stations is limited as com-

pared to open field, such dense deployment can be used. Further, deployment density

within railway station can be decreased depending on specific dynamics of particular

railway station.

4.6.2 Analysis of Railway Station Datasets

Figure 4.7 shows the relationship between the raw RSSI measurements, the mean

RSSI, and the best log-normal path loss model curve for sparse deployment. The black
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Figure 4.7: Model Fitting with Sparse Deployment for Railway Station Experiments

vertical stripes in the figure show the experimental RSSI collected from packets received

from the anchor sensor at each location. The best log-normal model curve is obtained

with η = 2.1, d0 = 25 and PT − PL(d0 ) = 0 .66 dBm. It can be seen that the RSSI

measurements roughly follow the log-normal model due to larger variations, especially

for the measurements collected for short transmission distances (large difference at two

points between model and mean RSSI). In this case, RSSI to distance estimation and

vice versa is not equivalent because of noise. Therefore, the use of RSSI measurements

only for location estimation will be compromised. Another set of measurements, such

as location data can be helpful in location estimation.

Figures 4.8(a), 4.8(b), 4.8(c), and 4.8(d) show the noise distribution for RSSI data

collected from anchor sensors at transmission distances of 25 m, 75 , 125 m and 175 m,

respectively. The observation about the noise distribution is the same as the findings

in the open field experiments, which is, the RSSI data collected from long distance

transmissions has smaller average deviations as shown on the x-axis. The absolute

noise variation can be seen on x-axis, which is low, around 8 dBm at 25 m and 2 dBm

at 175 m, but the number of RSSI measurements (histogram peaks) at different noise

levels do not follow any pattern. Such irregular behaviour suggests the distribution of

noise as non-Gaussian. This inferred result is then further verified by the application

of Anderson-Darling normality test, which suggests that none of the noise distributions

lie in the definition of the Gaussian distribution. The noise distribution is important

to select noise filter such as Particle Filter.
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Figure 4.8: Railway Station Noise Distribution with Sparse Deployment
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Figure 4.9: Model Fitting with Dense Deployment for Railway Station Experiments

Figure 4.9 shows the relationship between raw RSSI, mean RSSI, and the best log-

normal model curve for dense deployment. Like model fitting graphs of other datasets,

the black vertical stripes in the figure show the experimental RSSI collected from

packets received from the anchor sensor at each location. The best log-normal curve is

obtained with η = 2.5, d0 = 1 and PT − PL(d0 ) = −39 .62 dBm.

Figures 4.10(a), 4.10(b), 4.10(c), 4.10(d), and 4.10(e) show the noise distribution

for RSSI data collected from anchor sensors at transmission distances of 10 m, 20 m,

30 m, 44 m, and 54 m, respectively. It can be observed that the noise variation is

much smaller in comparison with sparse deployment because amplified power trans-

mission is more robust to signal reflections. It can be seen that with the increase of the

distance, the maximum number of RSSI measurements, which is shown in the y-axis

scale, decreases. This trend means that several low power multi-path transmissions

either do not reach the receiver or stays under acceptable power level to be considered

as a transmission. We used Anderson-Darling Normality test to examine the noise

distribution, which suggests that none of them follows the normal distribution. It can

be seen that even in railway station environment, in almost all cases, the anchor sensor

that is closest to the gateway sensor gets the strongest RSSI and signal strength re-

duces from the anchor sensors deployed at farther places. Log-normal path loss model

also suggests that received signal strength decreases with the square of the distance

between transmitter and receiver, which validates that RSSI follow log-normal model,

though there are large differences at a few points between model and mean RSSI. This
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Figure 4.10: Railway Station Noise Distribution with Dense Deployment
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observation suggests that RSSI may not be an effective metric for distance estimation

and therefore, noise filtration algorithms such as Particle Filter will be required for

distance estimation.

4.7 Experiments in Tunnel Environment

In the third set of experiments, anchor sensors are deployed in the tunnel environment.

This section presents the details of this experimental setup such as devices used and

their transmission ranges. Moreover, an analysis is presented to discuss the nature of

received dataset, log-normal model fitting and distribution of noise, to conclude the

feasibility of using RSSI in the tunnel for the train localisation.

Figure 4.11: Experimental Tests in the Tunnel Environment

4.7.1 Experimental Setup

A tunnel is another representative environment that needs to be considered for train

localisation due to its distinctive characteristics such as the absence of GPS signals and

serious multi-path fading. The rough rock structure can cause serious signal reflections,

and each copy of the signal may experience different attenuation, delay and phase shift,

thereby resulting in large variations on RSSI measurements. In such environments, a

long-range transmission with a large transmission power can lead to much serious signal

reflections. However, to study the impacts of several sensor motes, the following three

types of sensor platforms are used: (a) MTM-CM3300 platforms with external Dipole
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antennas (with amplifier) that have maximum transmission range of around 800 m;

(b) MTM-CM5000 platforms with external Dipole antennas (without amplifier) that

have maximum transmission range of around 150 m (c) MTM-CM4000 platforms with

internal antennas that have maximum transmission range of around 150 m. As shown

in Figure 4.11, anchor sensors along the central line of the tunnel are deployed, and

the distance between two adjacent anchors is 10 m. In these experiments, deployment

was tested with several patterns such as sensors on the side of tunnel, on stand in the

middle and the one which is discussed here, that is, on the central line. The experi-

ments received large number of RSSI measurements in central line deployment. These

issues are discussed in experimental concerns in section 4.3. In the experiments, the

transmission power levels are adjusted to investigate the impact of transmission powers

on RSSI measurements. The highest transmission power is at PL31, which operates at

0 dBm, and lowest transmission powers is at PL7, which operates at −15 dBm.

4.7.2 Analysis of Tunnel Datasets

Figure 4.12(a) shows the RSSI measurements and the best log-normal path loss fit-

ting on the data collected with external Dipole antennas with amplifier using high

transmission power at power level PL31. The black vertical stripes in the figure show

the experimental RSSI collected from packets received from the anchor sensor at each

location. The best log-normal model curve is obtained with η = 1 .7 , d0 = 10 and

PT −PL(d0 ) = 12 .5 dBm. It can be seen that the RSSI measurements roughly follow

the log-normal model with larger variations. An important common observation be-

tween experimental RSSI measurements and log-normal path loss model based RSSI

values is that, received signal strength reduces with the increase of the distance between

receiver and transmitter. The large fluctuations are attributed to tunnel properties.

However, there is need to improve RSSI as an estimator by combining it with other

data such as anchor sensor locations to filter out noisy measurements. The noise dis-

tribution is calculated in the RSSI measurement collected from the anchor sensors at

each location. Figures 4.12(b), 4.12(c), and 4.12(b) show the noise distribution for

RSSI data at transmission distance of 10 m, 30 m, and 50 m at PL31 , respectively.

Similarly, the experiment is repeated with the same set of sensor motes to anal-

yse the impact of low power transmissions at power level PL7. The Figure 4.13(a)

shows the RSSI measurements and the best log-normal path loss fitting for the data

collected with external Dipole antennas with amplifier using high transmission power

at PL7. The best log-normal model curve is obtained with η = 1 .8 , d0 = 10 and
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Figure 4.12: Tunnel Experiments with Long Range Sensor Devices at PL31

PT − PL(d0 ) = 6 .8 dBm. It can be seen that the RSSI measurements follow the log-

normal model more closely compared to Figure 4.12(a), even though there are still

prohibitively large variations. However, the large density of RSSI measurements are

close to the mean RSSI, and large number of deviated RSSI measurements are not

received due to low power transmissions at PL7, which were received in PL31 trans-

missions. This observation suggests that largely deviated RSSI measurements are not

recorded due to signal strength beyond acceptable level. The tunnel structure results

as a wave guide and leads to a large number of signal reflections. Therefore, the use of

low power transmissions significantly reduces the number of signal reflections.

The RSSI measurements and the analysis of the noise distribution with the short-

range external dipole antenna MTM-CM5000 motes are shown in Figures 4.14 and
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Figure 4.13: Tunnel Experiments with Long Range Sensor Devices at PL7

4.15 at PL31 and PL7, respectively. The missing RSSI measurements at distance

40m in figure of model fitting at PL31 is discussed in section 4.3. Figure 4.14(a)

shows the RSSI measurements and the best log-normal path loss fitting for the data

collected with external Dipole antennas using high transmission power at power level

PL31. The best log-normal model curve is obtained with η = 1 .1 , d0 = 20 and PT −
PL(d0 ) = −19 .1 dBm. It can be seen that the RSSI measurements follow the log-

normal path loss model with significant variations and can not be used as an estimator

directly. However, to improve localisation accuracy, location coordinates of anchor

sensors can be combined with RSSI measurements to lower weights of noisy RSSI

measurements. Figures 4.14(b), 4.14(c), and 4.14(d) show the noise distribution with

transmission distance of 20 m, 30 m and 50 m at PL31 , respectively. The variations
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in the noise increase in the RSSI data collected from anchor sensors at the farther

locations, which means multi-path fading increases due to a large number of signal

reflections. The RSSI measurements are severely affected by large number of signal

reflections by dense deployment of anchor sensors. The reflected signals are directly

proportional to the number of transmitters. In this set of experiments, 10 sensors

transmit their signals to the gateway sensor and result in the increase of multi-path

fading because the number of paths for each transmitter accumulate to increase the

multi-path fading.
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Figure 4.14: Tunnel Experiments with Short Range Sensor Devices at PL31

The RSSI dataset is also collected with the same motes but through low power

transmissions to study the impact of reducing the transmission power on the noise

distribution in the RSSI data. Figure 4.15(a) shows the RSSI measurements, mean
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RSSI and the log-normal path loss model curve for low power transmissions at power

level PL7 . The best log-normal model curve is obtained with η = 1 .1 , d0 = 10 and

PT − PL(d0 ) = −28 .5 dBm. It can be seen that the RSSI measurements follow the

log-normal path loss model more closely compared to transmissions at high power level

PL31 as given in Figure 4.14(a). The variations in the RSSI, length of black vertical

stripes, decrease with the increase in the distance between anchor and the gateway.

However, the deviation of mean RSSI from the log-normal curve decreases with the

decrease in the transmission power, thus implying the reduction of signal reflection

and scattering into the multiple paths. Figures 4.15(b), 4.15(c), and 4.15(d) show the

noise variation in RSSI measurements received at PL7 from anchor at 10 m, 30 m, and

50 m distance from the gateway. The noise variation, x-axis scale, in RSSI from anchor

sensor at 50 m is reduced to 15 dBm (at PL7) from 31 dBm (at PL31). Therefore,

noise variation reduces significantly with the transmission power and low transmission

power results in low interference. According to the Anderson-Darling Normality test,

none of the noise distributions at any power level follows a normal distribution. RSSI

from low power transmissions follows the log-normal path loss model more closely as

compared with high power transmissions. It can be seen that, despite signal reflections,

anchor sensors closest to the gateway get the strongest RSSI and signal strength reduces

from the anchor sensors deployed at farther places, which validates that RSSI follows

log-normal model and can be used for distance estimation even in tunnel environments.

However, as RSSI is prone to signal reflections and other signal deterioration factors, it

may not be useful to use RSSI alone as distance estimator. There is a need to eliminate

the noisy measurements by using another type of data, that is, location coordinates.

Therefore, RSSI, as an estimator, needs to be improved by using Particle Filter.

Another type of motes, the MTM-CM4000, are used to collect the RSSI measure-

ments and to perform the analysis of the noise distribution. This device mentioned

above operates with PCB internal antennas. The results are shown in Figures 4.16 and

4.17 for PL31 and PL7, respectively. Figure 4.16(a) shows the RSSI measurements

and the best log-normal fitting for internal antennas where the transmission power is

set to the maximum power level (PL31). The best log-normal path loss model curve

is obtained with η = 1 .2 , d0 = 10 , and PT − PL(d0 ) = −9 .5 dBm. Figures 4.16(b),

4.16(c), and 4.16(d) show the noise distribution with transmission distance of 10 m,

30 m and 50 m at PL31 , respectively. It can be seen that RSSI measurements col-

lected from farther anchors tend to have larger variations. The signals from long-range

transmissions can experience more reflections, and each reflected copy with different
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Figure 4.15: Tunnel Experiments with Short Range Sensor Devices at PL7

signal strength influences the original signal over the time it takes to reach the gateway.

Similarly, for low power transmission, Figure 4.17(a) shows the results obtained

with a lower transmission power at PL7. The best log-normal path loss model curve

is obtained with η = 1 .8 , d0 = 10 , and PT − PL(d0 ) = −23 .61 dBm. It can be seen

that the RSSI measurements follow the same trend, but the noise is much smaller in

comparison with large transmission powers. Figures 4.17(b), 4.17(c), and 4.17(d) show

the noise distribution with transmission distance of 10 m, 30 m and 50 m at PL7 ,

respectively. In the Figure, 4.17(c), the noise distribution with transmission distance

of 30 m at low power transmission (PL7 ) is shown. Moreover, in this figure, the noise

variation is decreased to 19 dBm (−10 dBm to 9 dBm) in RSSI measurements received

by low power transmission compared with noise variation in high power transmission
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Figure 4.16: Tunnel Experiments with Internal Radio Sensor Devices at PL31

(PL31) which is 27 dBm (−18 dBm to 9 dBm) in Figure 4.16(c). According to the

Anderson-Darling Normality test, none of the noise distributions at any power level

follows a normal distribution. Though RSSI follows the log-normal path loss model

while using high power transmissions, it has more fluctuations compared with low

power transmissions. Therefore, the low power transmission can yield more accurate

distance estimation.

4.8 Concluding Remarks

The feasibility analysis of the datasets collected in the experiments conducted in all

three railway environments yields the following observations: (a) In an open field en-
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Figure 4.17: Tunnel Experiments with Internal Radio Sensor Devices at PL7

vironment, the use of long-range sensor motes, MTM-CM3300, are feasible to cover

large transmission areas by a few devices. The RSSI data obtained from closer sensors

from the gateway are more trustworthy, but it may not serve the purpose of sole esti-

mator and there will still be need of another type of data to become a useful distance

estimator; (b) In the railway station environment, the use of short-range sensor motes,

MTM-CM5000, is more feasible to be used with dense deployment settings. The col-

lected datasets have better log-normal model data fit with fewer fluctuations compared

with the datasets obtained through long-range sensor motes, but it is still not precise

and there is need to incorporate secondary data, anchor sensor locations, to develop

better estimator; (c) In the tunnel environments, use of internal antenna sensors has a

better fitting of RSSI measurements with the log-normal path loss model, because the
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internal antenna has a gain of 4 .5 dBi (Andersen, 2008) whereas the external Dipole

antenna has a gain of 1 .9 dBi (Jonsrud, 2008). Therefore, internal antennas have bet-

ter signal reception and low power transmission energy loss compared with external

antenna sensors. Though outcome of sensors with internal radios are better options

among existing devices, it is still a rough outcome and needs filtering algorithm for

train localisation; (d) The noise variation increases with the distance from the gateway

because long distance transmissions are more prone to reflections from tunnel walls;

and (e) The noise variation reduces in the RSSI measurements received using low power

transmissions from the anchor sensor at the same distance. Therefore, the use of low

power signals are useful for more accurate distance estimation.

The experimental results in the above three environments demonstrate that, by

choosing proper devices and appropriate configurations, the difference between exper-

imental RSSI and log-normal path loss model improves. The experiments also show

that RSSI measurements are noisy, which implies that the RSS is not a good choice

for distance estimation due to its fragile nature. Therefore, there is a need to filter

the noisy measurements to improve RSSI as an estimator. The location coordinates of

anchor sensors can help to determine the noisy measurements while using a Particle

Filter. Such data fusion improves feasibility of using RSSI as distance estimator and

becomes a good metric for distance estimation for train localisation.

4.9 Summary

The railway environment is significantly different from other open field environments,

because it is harsh and involves metals, rough terrains, a large number of uneven sur-

faces for multi-path fading and interference from other frequency channels (WLAN or

microwave on railway station or tunnel). Therefore, in this chapter, I conducted exper-

iments to collect the RSSI datasets to fulfil the need to validate the feasibility of using

RSSI for distance estimation in train localisation system. The extensive experiments

are conducted with the variation of several sensor motes and power levels in open field

along the railway track, railway station and tunnel environments.

In the remainder of the chapter, I performed an analysis on the recorded datasets

from each of the railway environment setup to get log-normal path loss model fitting,

which is a well-known signal propagation model used for distance estimation, by using

different path loss ratios and minimum mean square error (MMSE) method. In future,

with improved experimental designs, it needs to be examined against multiple configu-
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rations per environment. Further, an analysis including a normality test is performed

to evaluate the noise distribution of RSSI data received from anchor sensors at each

location. It is observed that though the RSSI datasets are noisy and non-Gaussian, it

still follows the log-normal path loss model with fluctuations, which validates the idea

that RSSI can be used effectively in fusion with other measurements (geographic coor-

dinates of anchor sensors) for distance estimation by using noise filtration technique.

Finally, I presented some experimental observations to select the most feasible

dataset from each railway environment experiments. These datasets are then used

in later chapters for WSN-based train localisation simulations. In the next chapter, I

shall present the proposed beacon-based anchor sensors’ wake-up scheme.
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Chapter 5

Beacon-driven Wake-up Scheme for

Train Localisation using Wireless

Sensor Networks

In this chapter, I shall present the beacon-based wake-up scheme for anchor sensors in

the absence of a train’ schedule. I first give the upper bound of sleep time which can

guarantee the wake-up of anchor sensors when the train arrives. Then, I present the

energy analysis of the proposed scheme. In the remainder of the chapter, I describe

the simulation setup and results to verify the feasibility of the scheme.

5.1 System Model

The wireless sensor network consists of two types of sensor nodes: anchor sensors and

gateway sensors, as shown in Figure 5.1. A set of anchor sensors {a0 , a1 , ..., an} are

uniformly deployed along a straight track with equal distance da between any two

consecutive anchor sensors. The uniform deployment of anchor sensors offer several

benefits, such as, it results in uniform battery drainage, network life increases, a few

nodes can provide coverage of target area and it is considered to be a non-complex

deployment strategy (Bendigeri and Mallapur, 2015). Each anchor sensor is equipped

with a single radio transceiver with transmission range of Rc. It is assumed that each

anchor sensor is hard-coded with its geographic coordinates before deployment. A

single gateway sensor is installed on the train. The gateway sensor is equipped with

two radio transceivers: TS c and TS b. TS c is used to communicate with the anchor

sensors that fall into its transmission range, and TS b is used to continually broadcast
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derive an upper bound on the amount of sleep time
in one duty-cycle, and design a beacon-driven anchor
sensor wake-up protocol.

• We analyze the energy efficiency of our scheme, and
gave the optimal setting for the amount of sleep time
in one duty-cycle in terms of minimizing the total
energy consumption at each anchor sensor node.

• We evaluate the performance of our scheme through
simulations. Simulation results demonstrate that our
scheme can timely wake up anchor sensors at a very
low cost on energy consumption.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III describes the system
model and our research problems. Section IV gives the details
of the wake-up scheme for train localization. Section V ana-
lyzes the energy efficiency of our scheme. Section VI presents
the simulation results. Finally, Section VII concludes the paper
and sheds some lights on future work.

II. RELATED WORK

Existing wake up schemes can be divided into two classes:
synchronous wake-up and asynchronous wake-up. In syn-
chronous wake-up protocols, sensor nodes periodically wake
up at the same time to communicate with one another [6],
[7]. Since all the participating nodes have to synchronize
their clocks, synchronous duty-cycling is most appropriate for
single-hop networks in which all the nodes can hear each
another. The tracking scheme proposed in [8] is based on a
combinatorics approach that sets delay bound at maximum
target speed and it ignores the need of timely tracking of
objects under minimized energy consumption. However, real-
time train localization is not delay tolerant due to the fast train
speed. Also it is often difficult to predict at what time a train
will pass by which anchor sensor, and thus it is impossible
for synchronous duty-cycling protocols to use a static global
schedule for all nodes to wake up or sleep. Moreover, it is
nontrivial to synchronize the clocks of a large amount of sensor
nodes [9].

In asynchronous duty-cycling protocols, sensor nodes are
not required to synchronize their clocks with each other and
sensor nodes can wake up independently. Since there are fewer
communications among sensor nodes, asynchronous protocols
are more energy efficient than synchronous protocols. Existing
work on asynchronous wake-up schemes [10], [6] mainly
focuses on the tradeoff between energy efficiency (i.e. network
lifetime) and transmission latency. While our objective is to
guarantee timely sensor wake up with the minimum energy
consumption. Hence communication latency will affect the
accuracy and reliability of localization and is not tolerable.

Other related works include a variety of MAC protocols
designed based on asynchronous duty-cycling [11], [12], [13],
[14]. Asynchronous duty-cycling provides a periodic channel
sampling mechanism to detect potential transmissions. In order
to start transmission, a sensor node transmits a long preamble
packet to make it detectable by the neighbor nodes while each
neighbor node performs CCA checks. A neighbor sensor node
receives the preamble packet and prepares to receive data.
Asynchronous duty-cycling protocols such as B-MAC [11], X-
MAC [12] and Wise-Mac [13] deal with preamble packets in

a way that the transmitter takes the responsibility to activate
the receiver for data transmission. RI-MAC [14] eliminates
the overhead of the preamble packet by letting the receivers
initiate transmissions. However, these protocols are designed
for general purpose and not suitable for train localization.

III. SYSTEM MODELS AND PROBLEM STATEMENT

A. Network Model
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TSc TSb

RbRb
Rc Rc

da
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Fig. 1: A WSN network model for train localization

The network consists of two types of sensor nodes: anchor
sensors and gateway sensors, as shown in Figure 1. A set of
anchor sensors {a0, a1, ..., an} are uniformly deployed along
a straight track with equal distance da between any two
consecutive anchor nodes. Each anchor sensor is equipped
with a single radio transceiver with a transmission range
of Rc. We assume that each anchor sensor is hard-coded
with its geographic coordinates before deployment. A single
gateway sensor is installed on the train. The gateway sensor is
equipped with two radio transceivers: TSc and TSb. TSc is
used to communicate with the anchor sensors that fall into its
transmission range, and TSb is used to continually broadcast
beacon packets to activate the anchor sensors before they go
into the transmission range of TSc. The transmission range for
TSc and TSb is Rc and Rb, respectively. We assume that Rb

is larger than Rc. To avoid interference TSc and TSb operate
on two non-overlapping channels chc and chb respectively.
Each anchor sensor operates on both channels, that is, uses
chb during duty-cycling and switches to chc to communicate
with TSc. As shown in Figure 1, zone 1 is the region covered
by TSc, and zone 1, zone 2 and zone 3 are the region covered
by TSb.

The train localization scheme works as follows: as the
train moves, TSb continually broadcasts beacon packets. Each
beacon packet contains information of the current train location
and speed. Once an anchor sensor receives a beacon packet,
it stops duty-cycling and switches to channel chc to prepare
for communication with TSc. When an anchor sensor goes
into the transmission range of TSc, it sends its geographic
coordinates to the gateway sensor. After an anchor sensor fin-
ishes the communication with the gateway sensor, it switches
back to channel chb and resumes duty-cycling. Based on the
geographic coordinates received from anchor sensors as well
as the RSS information of the transmissions, the train location
will be computed at the gateway in a real-time manner.

B. Asynchronous Duty-Cycling Model

Each anchor switches between sleep and wake-up states
independently without global synchronization. Figure 2 shows
one duty cycle, in which an anchor sensor first sleeps for
tsleep second with its radio turned off, and then wakes up
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Figure 5.1: A WSN Architecture for Train Localisation

beacon packets to activate the anchor sensors before they go into the transmission

range of TS c. The transmission range for TS c and TS b is Rc and Rb, respectively. It is

assumed that Rb is larger than Rc. To avoid an interference it is assumed that TS c and

TS b operate on two non-overlapping channels chc and chb respectively. Each anchor

sensor operates on both channels, that is, uses chb during duty-cycling and switches to

chc to communicate with TS c. As shown in Figure 5.1, zone 1 is the regions covered

by TS c, and zone 1, zone 2 and zone 3 are the region covered by TS b.

The train localisation scheme works as follows: as the train moves, TS b continually

broadcasts beacon packets. Each beacon packet contains information of the current

train location (represented by the location of the gateway) and speed. Once an anchor

sensor receives a beacon packet, it stops duty-cycling and switches to channel chc to

prepare for communication with TS c. When an anchor sensor goes into the transmis-

sion range of TS c, it sends its geographic coordinates to the gateway sensor. After an

anchor sensor finishes the communication with the gateway sensor, it switches back to

channel chb and resumes duty-cycling. Based on the geographic coordinates received

from anchor sensors as well as the RSS information of the transmissions from anchor

sensors, the train location will be computed at the gateway in a real-time manner.

5.2 Duty Cycling Model

All anchor sensors operate in an asynchronous duty-cycling mode in which each anchor

sensor switches between sleep and wake-up states independently without global syn-

chronisation. Figure 3.2 shows one duty-cycle, in which an anchor sensor first sleeps for

tsleep second with its radio turned off, and then wakes up and turns its radio on to per-

form clear channel assessment (CCA) to detect incoming signals. If an incoming signal
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is detected, the anchor sensor will stay in the active state until the scheduled commu-

nication between the anchor sensor and the gateway sensor is completed; otherwise it

switches back to the sleep state and repeats another duty-cycle. The length of one

duty-cycle is represented by Td, and the time for turning on/off radio and performing

CCA is denoted by tsw and tcca , respectively.

5.3 Problem Statement

In our train localisation scheme, each anchor sensor must be in wake-up state and

reports to the gateway once it goes into the transmission range of TS c. However, each

anchor sensor runs an asynchronous duty-cycling protocol and can be woken up only

if it detects the transmission signal from TS b by performing CCA. The duty-cycling

parameter tsleep plays a significant role in the timely waking up of anchor sensors. If

tsleep is small, each anchor sensor needs to frequently turn on and turn off its radio,

thereby wasting too much energy. From an energy saving perspective, the larger the

tsleep , the more energy each anchor sensor can conserve. However, if tsleep is too large,

an anchor sensor may miss the chance to detect the beacon packet broadcast by TS b

and fail to wake up in time. The first issue that will be addressed in this chapter is to

derive the upper bound on tsleep , which ensures that each anchor sensor can stay in a

sleep state as long as possible while still guaranteeing that it can wake up in time once

a train approaches.

The second issue that will be addressed is to design an energy-efficient wake-up

scheme, which guarantees that each anchor sensor can wake up in time once it goes

into the transmission range of TS c, and resume low power duty-cycling once it finishes

communication with the gateway. The designed scheme will be evaluated through both

theoretical analysis and simulations.

5.4 BWS: Beacon-driven Wake-up Scheme

The BWS scheme computes an upper bound on tsleep , which is then used to guarantee

the availability of anchor sensors that communicate with the gateway sensor. The rest

of the section explain BWS in detail.
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5.4.1 Upper Bound of tsleep

As shown in Figure 5.2, suppose that anchor sensor ai enters into the transmission

range of TS b at time tb and enters into the transmission range of TS c at time tc.

Since to guarantee that anchor sensor ai will be active in the communication range

of gateway, that is communication range of TS c, anchor sensor ai must be active at

time tc to communicate with TS c, it must wake up during the period tc − tb. To wake

up, anchor ai should receive at least one beacon from TS b. Therefore, the following

constraint on tsleep has to be satisfied:

tsleep ≤ tc − tb, (5.1)

otherwise, ai may just start sleeping at tb, and will remain in the sleep state at time tc,

thus will fail to wake up. Though, an anchor sensor may wake up in communication

range and can communicate with the gateway sensor, but it is not guaranteed. There-

fore, the above constraint on tsleep guarantees the train-anchor communication at any

time in Zone 1.

Gateway Gateway

ai-j ai-j+1 ai-j+2 a.. ai-1ai-2 ai+1ai ai..

Zone 2

tb tc 

ai-j+3

D

ai+k ai+k+1

Zone 1

Rb Rb
Rc Rc

Figure 5.2: BWS: Illustration of Sensor-Train Communication

Let D denote the distance travelled by train during the period of tc − tb, and dT

represent the direct distance (on 2D plane) from the gateway (train) to the line along

which the anchor sensors are deployed. To find the upper bound for tsleep , the size of

Zone 2 is determined first, as follows:

Dz2 =
√
R2

b − d2
T −

√
R2

c − d2
T.

As dT is very small, such as 2m, as compared to Rb (almost 800m) and Rc (500m on

average), this is negligible and it will have no effect on the upper bound of tsleep . The
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size of Zone 2 can be calculated as follows:

Dz2 = Rb −Rc. (5.2)

Let Smax represent the maximum train speed, at which the distance travelled by the

train in the period tc − tb is D = Smax(tc − tb). To guarantee that anchor ai must

perform CCA at least once in the period tc − tb regardless of the actual train speed,

the following condition must be satisfied:

Dz2 ≥ Smax(tc − tb) (5.3)

Based on Equations (5.1), (5.2) and (5.3), the relationship of tsleep can be formulated

with size of Z2 and maximum train speed as follows:

tsleep ≤ tc − tb ≤
Dz2

Smax

≤ Rb −Rc

Smax

. (5.4)

5.4.2 Design of Communication Protocol in BWS

The key idea behind the BWS protocol is to let the gateway broadcast beacon packets to

wake up the anchor sensors. Specifically, the TS b radio continuously broadcasts beacon

messages that contain the following information: (a) the gateway ID (GW ID), (b)

the current train speed (ST ), and (c) the current train location (LocT ). Once an anchor

sensor receives a beacon packet from the gateway, it performs the following three tasks:

Duty-cycling Suspension, communication with TS c and Duty-cycling resumption, which

are described in detail below. The pseudocode for BWS is given in Algorithm 1.

Duty-cycling Suspension

Upon receipt of a packet, the anchor sensor first checks if the packet is a beacon packet

(line 2 in Algorithm 1). As the received beacon packet contains the current train

location, the anchor sensor can check in which zone it is located by comparing its

location with the train location. If the anchor sensor is located in Zone 2, it should

first suspend the duty-cycling protocol and stay active (lines 3 and 4).

Communication with TS c

Once an anchor sensor ai finds itself in Zone 2, it starts preparing to communicate

with TS c. Anchor sensor ai first estimates the amount of time it takes to enter Zone
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1, denoted by βi, as follows:

β =

√
(xai − xT )2 + (yai − yT )2 −Rc

ST
, (5.5)

where (xai , yai) and (xT , yT ) are the coordinates of ai and the train, respectively. Then

ai starts a timer with the timeout value set to βi (line 5 in Algorithm 1). Once the

timer expires, anchor sensor ai will start communicating with TSc.

Anchor sensors in Zone 1 can report multiple times, which is controlled by TS c in

the following way: TS c periodically broadcasts data request. The interval between two

adjacent data request packets is called one report round in which all anchor sensors in

Zone 1 can communication with TS c. Due to the presence of multiple anchor sensors in

Zone 1, the communication between anchor sensors in Zone 1 and the gateway needs to

be scheduled to avoid collisions. The key idea for scheduling anchor sensors in Zone 1 is

to let the anchor sensor that is going to leave Zone 1 soonest transmit first. It is more

important to receive reports from maximum sources because it increases the accuracy

of a localisation system. A sensor mote which is about to leave communication Zone

1, transmits with highest priority. Each anchor sensor ai in Zone 1 is associated with

a priority pai , which is computed as follows:

pai =
xai − (xT −Rc)

da
, (5.6)

where da is the distance between two adjacent anchor sensors. The x-coordinates of

location of an anchor sensor ai (xai) and the train (xT ), and communication range Rc

ensures that the anchor sensor which is about to leave the Zone 1 will have highest

priority to communicate with the gateway sensor as expressed in Eq. 5.6. As illustrated

in Fig. 5.3, at time ti anchor sensor ai in the Zone 1 receives the data request packet

from the TS c and calculates its priority. This is followed by initiation of two timers,

denoted by start data and stop data to trigger the start and stop of data transmission

to TS c. The start data and stop data timers are initialised by value of pai treport and

pai treport + treport , respectively. Anchor sensors report back multiple packets, and the

RSSI value in each packet can vary. The time taken by an anchor sensor to report

multiple packets is treport . TS c calculates the average of received RSSI data to be used

in localisation algorithm. Similarly, TS c broadcasts data request packet to initiate

another data collection round and anchor sensors keep on reporting back to TS c until
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they leave Zone 1.

ai+1ai ai+2

ti

ai+4ai-2

RbRb Rc Rc

da

Gateway

Zone 3 Zone 2Zone 1

dT

Anchor sensors:
Priorities: 0 1 2

Gateway (nr=3):
pa

 Source
time ti-2 ti-1 ti

ai-1 ai+3

ai-2 ai-1 ai ai-1 ai ai+1 ai ai+1 ai+2

0 1 2 0 1 2 0 1 2

Figure 5.3: BWS Communication with the Train’s Transceiver TS c

Duty-cycling resumption

Once an anchor sensor ai goes out of the transmission range of TS c (i.e., Zone 1 in

Figure 1), it should resume the duty-cycling protocol. To achieve this, each anchor

sensor maintains another timer called stop Z1 (line 6). Once stop Z1 is expired, the

node should resume duty-cycling. The stop Z1 is initialised with value γ as given in

Eq. 5.7, which is the amount of time elapsed since the node wakes up till the time it

goes out of Zone 1.

γ =

√
(xai − xT )2 + (yai − yT )2 +Rc

ST
(5.7)

BWS enables an anchor sensor to accomplish these three tasks and guarantees the

wake up of an anchor sensor for communication with TS c. However, it is possible for

an anchor sensor to get beacon packets when it is located in Zone 3 because of large

omnidirectional transmission range of TS b. BWS adaptively avoids unnecessary wake-

ups, but it uses the gateway’s location information received in the beacon packet to

calculate its zone. If an anchor sensor lies in Zone 3, BWS ignores such beacon packets

and allows an anchor sensor to continue following duty-cycles. Although the train

location LocT may not be always accurate at a particular point of time, the associated

localisation error is acceptable by an anchor sensor to calculate its zone. However, for

correct decision making for wake-up, it is assumed that localisation error, due to time

drift between anchor sensors and the train, will never be larger than distance da due

to the frequent location broadcast by the gateway sensor.
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Algorithm 1: Beacon-driven Wake-up at Anchor Sensor ai

1 On receiving beacon packet:
2 if SourceID = GW ID then
3 if ai locates in Zone 2 then
4 duty cycling = False /* Pause duty-cycling */

5 start Z1 (

√
(xai
−xT )2+(yai

−yT )2−Rc

ST
) /* Zone-1 start timer */

6 stop Z1 (

√
(xai
−xT )2+(yai

−yT )2+Rc

ST
) /* Zone-1 end timer */

7 else
8 Ignore Beacon
9 duty cycling = True

10 else
11 Ignore Beacon
12 duty cycling = True /* Resume duty-cycling */

13 On start Z1 timer expiry (Zone-1 starts):
14 if start Z1 is expired then
15 Channel = chc /* channel switch */

16 start data (pai
treport) /* transmission start timer */

17 stop data ((pai
treport) + treport) /* transmission stop timer */

18 set priority (pai) =
xai
−(xT−Rc)

da
/* priority calculation */

19 On stop Z1 timer expiry (Zone-1 ends):
20 if stop Z1 is expired then
21 Stop Sending Packets to Gateway
22 Channel = chb /* channel switch */

23 duty cycling = True /* Resume duty-cycling */

24 On start data timer expiry:
25 if start data is expired then
26 Send Packet(xai , yai)
27 Repeat process at line 25 & 26, unless stop data is expired.

28 On stop data timer expiry:
29 if stop data is expired then
30 if Zone 1 then
31 Wait for beacon from TS c for next round.

32 else
33 Wait for stop Z1 timer to expire.
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5.5 Energy Analysis of BWS Scheme

In our system, the energy consumed at each anchor sensor can be divided into two parts:

energy consumed in duty-cycling and energy consumed in wake-up state. Table 5.1

gives the list of states in which an anchor sensor can operate and the corresponding

power level for each state.

Table 5.1: Anchor Sensor’s States and Corresponding Power Level

States Power Level Energy Consumed

Transmission Ptx Etx = ttxPtx
Idle Listening Pl El = tlPl

Packet Reception Prx Erx = trxPrx
Radio Switch Psw Esw = 2ttswPsw

CCA Pcca Ecca = tccaPcca
Sleeping Psleep Esleep = tsleepPsleep

5.5.1 Energy Consumed during Wake-up

If an anchor sensor goes to sleep at the point when it just goes into Zone 2, the amount

of time that the anchor sensor will sleep throughout Zone 2 is tsleep . However, if the

anchor sensor wakes up at the point when it just goes into Zone 2, it will receive a

beacon packet and stay active. In this case the amount of sleeping time throughout

Zone 2 is 0. Since duty-cycling is not synchronised among all anchor sensors, an anchor

sensor may wake up at any time between the above two extremes when it is in Zone 2.

The amount of time that an anchor sensor sleeps in Zone 2 follows a uniform random

distribution between 0 and tsleep . Hence, the average amount of time that an anchor

sensor stays in sleep state throughout Zone 2 is tsleep/2 .

The average amount of time that an anchor sensor stays in Zone 2 can be calculated

by
Rb −Rc

Savg
, (5.8)

where Savg is the average train speed.

Let Tz2 denote the average amount of time that an anchor sensor stays active when

it is in Zone 2 for one train pass. Then

Tz2 =
Rb −Rc

Savg
− tsleep

2
(5.9)
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Let Tz1 denote the average time that an anchor sensor stays in Zone 1 for one train

pass. Then

Tz1 =
2Rc

Savg
(5.10)

Let Twk denote the average time that an anchor sensor stays in active state for one

train pass. Since each anchor sensor will resume duty-cycling at a point when it enters

into Zone 3, it will be

Twk = Tz1 + Tz2

=
Rb +Rc

Savg
− tsleep

2

(5.11)

To simplify our analysis a reliable communication between anchor sensors and the

gateway sensor is assumed. So each anchor sensor will receive one beacon packet and

send one report packet in one data collection round. Through, this assumption does

not lead to fair comparison with other approaches, but it is a reasonable approach

to compare the baseline energy consumption and to compare the simulation-based

results with theoretical-based energy consumption. Let ttx and trx denote the time for

transmitting and receiving a packet respectively. Therefore, the amount of time that

an anchor sensor stays in idle listening state for one train pass, which is represented

by tl, can be computed as follows:

tl = Twk − ttx − trx, (5.12)

Let Ewk denote the amount of energy consumed at an anchor sensor during wake-up

state for one train pass. According to Table 5.1,

Ewk = ttxPtx + trxPrx + tlPl (5.13)

= ttxPtx + trxPrx + (Twk − ttx − trx)Pl

5.5.2 Energy Consumed during Duty-Cycling

As shown in Figure 3.2, one duty-cycle includes three parts: sleep (tsleep), CCA(tcca)

and state switch (2tsw). Let Edc denote the energy consumption for one duty-cycle.

Then from Table 5.1 It will be,

Edc = 2tswPsw + tccaPcca + tsleepPsleep (5.14)
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The time required for switching radio between on and off states and the time for CCA

check are constants, therefore the amount of energy consumed by state switching and

CCA check is fixed for one duty-cycle. For simplicity, ex is used to denote this amount

of energy, that is,

ex = 2tswPsw + tccaPcca (5.15)

Then

Edc = ex + tsleepPsleep (5.16)

5.5.3 Total Energy Consumption for a Period

Let L be the total length of the time that a anchor sensor operates and Td be the length

of one duty-cycle. λ is used to denote the total number of times that a train passes by

an anchor sensor. Let E total
dc be the total energy consumed during duty-cycling for the

whole period L. Then

Etotal
dc =

L− λTwk
Td

Edc, (5.17)

where L−λTwk

Td
is the total number of duty-cycles in time period L. Let E total

wk be the

total energy consumed during wake up for whole period L. Then

Etotal
wk = λEwk (5.18)

Let E total
L represent the total energy consumed by an anchor sensor in time period L.

Then

Etotal
L = Etotal

dc + Etotal
wk (5.19)

Based on Equations (5.17) and (5.18), Equation (5.19) can be expressed as,

EL
total =

L− λTwk
Td

Edc + λEwk (5.20)

By substituting Equations (5.11), (5.13) and (5.16) in Equation (5.20), it will be,

Etotal
L =

1

2tsw + tcca + tsleep

(
L− λ

(Rb +Rc

Savg
− tsleep

2

))
(ex + tsleepPsleep)

+ λ
(
ttxPtx + trxPrx +

((Rb +Rc

Savg
− tsleep

2

)
− ttx − trx

)
Pl

) (5.21)
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5.5.4 Optimal tsleep for minimising energy consumption

The minimisation of energy consumed at each anchor sensor can be formulated as the

following optimisation problem:

minimize EL
total

subject to 0 < tsleep 6 tubsleep
(5.22)

where tubsleep is the upper bound for tsleep which is given in Section 5.4.1. As can be

seen from Equation (5.21), the only variable is tsleep , and it can be proved that EL
total is

strictly decreasing with the increase of tsleep . The optimal tsleep in terms of minimising

the total energy consumption at each anchor sensor is tubsleep = Rb−Rc

Smax
.

5.6 Simulation Setup

To evaluate our proposed beacon wake-up scheme (BWS) and average energy consumed

by an anchor sensor, extensive simulations are carried out to evaluate the performance

of the BWS scheme. In our simulations, 145 to 4000 anchor sensors are deployed

with various distances between the adjacent anchor sensors; called deployment density,

da. Moreover, the maximum train speed, Smax , ranges from 10 m/s to 40 m/s . The

wireless channel model has 10 % packet loss rate with no requirement of packet re-

transmission because there are no contenders for channel Chb as only gateway uses this

channel to transmit beacon packets. Similarly, anchor sensors communicate with the

gateway sensor by sending multiple packets without requirement of acknowledgement

packets.

5.6.1 Parameter Configurations

The detailed parameter configuration used in our simulation setup are given in Table 5.2

along with their values.

In BWS, the successful wake-up of anchor sensors in Zone 2 is guaranteed for any

tsleep less than given tubsleep . We conduct four set of simulations with different ST and

tsleep settings. The size of Zone 2 is 40 m and the size of Zone 1 is 500 m which

means a maximum of 6 anchor sensors with da = 100 m can stay in Zone 1. The set

of {ST , tubsleep} can be calculated by Eq. 5.4 such as {10 m/s , 4 s}, {20 m/s , 2 s},
{30 m/s , 1 .33 s} and {40 m/s , 1 s}. In each set of the simulation, the configuration

shows the average percentage of anchor sensors that stay awake for specific percentage
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Table 5.2: Simulation Parameters (BWS)

Parameters Values

Simulation time period L (s) 10000
Simulation iterations 50

Train trip frequency λ 1
Smax (m/s) 10, 20, 30, 40

No. of Anchor Sensors 145-4000
tubsleep (s) 1-4

Size of Zone-1(m) 500
Dist b/w Sensors (m) 100-700

of time in Zone 1 (ST{tubsleep ,Avg%}). For example, if on average 5 out of 6 anchor

sensors stay active throughout Zone 1 then it can be stated as the percentage of time

at least 83 % anchor sensors stay active in Zone 1. Similarly, on average 4 out 6 active

anchor sensors throughout Zone 1 makes the percentage of 66 % of anchor sensors that

stayed awake in Zone 1. It can be seen that in all cases when the tsleep ≤ tubsleep , BWS

nearly achieves the theoretical performance thresholds and wakes up 99 .5 % to 100 % of

anchor sensors. Figure 5.4 also shows that for a given increase in the tsleep , the average

percentage of active anchor sensors decreases, while the chances of observing at least

83 % active sensors stays high. The requirement for gateway sensor to communicate

with multiple anchor sensors is intended to increase the localisation accuracy. However,

if at least one anchor sensor can communicate its location information and RSSI value,

the gateway can still calculate a reasonably accurate location. The rationale for this

compromise is the minimisation of energy consumption.

5.6.2 Number of Active Anchor Sensors in Zone 1

The results in Figure 5.4 can be seen in another way in Figure 5.5, which shows the

switching pattern of anchor sensors between sleep and wake-up states in Zone 1 with

several settings of tsleep for initial 900 s of simulation time. According to Equation

5.4, the maximum tsleep that can guarantee timely wake up of anchor sensors is 4 s at

10 m/s train speed. It can be seen that, for all cases where tsleep is not larger than

4 s , the number of active anchor sensors that are active in Zone 1 fluctuates between

3 and 4. For the case where tsleep = 8 s , the number of active anchor sensors in Zone

1 varies from 0 to 4, and most of the time there are only 1 or 2 active anchor sensors.

This is because the value of tsleep (i.e., 8 s) exceeds the upper bound tubsleep . This figure

validates the finding given in the Figure 5.4 that though the increase in the sleep time
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Figure 5.4: Percentage of Wake-up Anchor Sensors in Zone 1 using the BWS Protocol

results in the compromise in the number of active anchor sensors, it can save energy

by letting anchor sensors sleep for a long time.
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Figure 5.5: Number of Active Anchor Sensors in Zone 1 at Different tsleep

The impact of multiple gateway sensors or trains on the average number of active

anchor sensors is also studied and shown in the Figure 5.6. In the simulation, trains

arrive with uniform distribution and an anchor sensor may wake up again to serve a

gateway sensor on the train after doing so for another train. The inclusion of multiple
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Figure 5.6: Number of Active Anchor Sensors in Zone 1 under Multiple tsleep and
Gateway Settings

trains is useful to analyse the BWS ability to wake-up anchor sensors for more than

one time. The communication of an anchor sensor with several gateway sensors still

follows the pattern of communication with a single gateway sensor at a time. In the

Figure 5.6, the number of active anchor sensors in Zone 1 is shown for several sleep

times and the gateway sensors with da = 100 m. It can be seen that as the tsleep being

followed by the anchor sensors exceeds the tubsleep = 4 s , the average number of active

anchor sensors in Zone 1 drops. However, the total average number of active anchor

sensors in Zone 1 increases with the rise in the number of gateway sensors (trains) due

to multiple Zone 1.

The rationale of gateway sensor to communicate with maximum number of anchor

sensors is to increase the localisation accuracy level, which is directly proportional to

the number of inputs from anchor sensors. However, if at least one anchor sensor

can communicate its location information and RSS value, gateway can still calculate

significantly accurate location. However, there is a tradeoff between the number of

anchor sensors involved in the communication with the gateway sensor and the total

energy consumed in the network of anchor sensors.

5.6.3 Energy Consumption

Figure 5.7 shows the average energy consumption at each anchor sensor in simulation

compared with their theoretical counterparts during simulation duration of 10,000s.

All calculations are based on the current and voltage specifications of CC2420 radio

chipset data sheet. Each anchor sensor stays in Zone 1 for a long time when the train
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Figure 5.7: Comparison of Theoretical and Simulation based Energy Consumed by an
Anchor Sensor at Different Train Speed Values for simulation duration of 10000s

speed is slow, such as 10 m/s . However, when the train speed is fast, such as 40 m/s ,

it passes through an anchor sensor rapidly and the anchor sensor stays in Zone 1 for

a shorter time. Therefore, the energy consumed by an anchor sensor in wake-up state

drops with the increase in the train speed because the active time duration reduces. So

there is a tradeoff between the sleep time and the energy consumption. It can be seen

from the Figure 5.7 that energy consumed by an anchor sensor is high when the train

speed is 10 m/s . Moreover, with the increase in the train speed up to 40 m/s , the

energy consumed drops in both theoretical-based and simulation-based calculations.

Here it is worth mentioning that the simulation-based results are elevated because

theoretical results are based on average calculations and considering the single packet

transmission in the reliable transmission mode for the sake of simplicity. However, the

theoretical-based and simulation-based results verify that the time an anchor sensor

stays in wake-up state to communication with the gateway sensor decreases with the

increase in the train speed.

The impact of the presence of multiple gateway sensors or trains on the energy

consumption by an anchor sensor is shown in the Figures 5.8 and 5.9 at train speed

of 10 m/s. In these figures, 5.8 and 5.9, the average energy consumption is shown over

multiple tsleep settings and gateway sensors 5 and 10 respectively. The multiple gateway

sensors represents the passing of multiple trains on track at different times. Vertical
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Figure 5.8: Energy Consumed by an Anchor Sensor at Different tsleep Values with 5
Gateway Sensors
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Figure 5.9: Energy Consumed by an Anchor Sensor at Different tsleep Values with 10
Gateway Sensors

axis represents the energy consumed (joules). It can be seen that, in all cases, as tsleep

increases, energy consumed during wake up decreases and energy consumed during duty

cycling increases. However, the rate of reduction in the wake-up energy consumption

depends on the number of gateway sensors and their configuration. In our simulation,

gateway sensors’ inter-arrival time follows a uniform distribution. Therefore, there

is possibility that when an anchor sensor finishes communication with one gateway

sensor, it falls into the Zone 1 of another gateway sensor. This wake-up pattern of an

anchor sensor increases the time spent in the wake-up states.

One aspect of train-anchor communication is that, if there is at least one active

anchor sensor available for communication with train during Zone 1, gateway sensor

can estimate train’s location. In such case, the estimation errors will be large, there-
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fore, there is an associated compromise in the system performance against a few active

anchor sensors in Zone 1. However, such compromise results in a decrease of average

energy consumption at each anchor sensor, which in return increases the network life-

time. In the simulations, energy consumption is recorded for 10000 s. On the other

hand, if due to performance compromise, some of the anchor sensors are allowed to

sleep for a longer time, the amount of energy consumed during duty-cycling slightly

increases. This increase is because of the increase in the amount of time that each

anchor stays in sleep mode, whereas, the amount of energy consumed in the active

state is subject to the number of trains passing through anchor sensors.

5.7 Related Work

In the train localisation, the sensors deployed along the track report to the gateway

sensor on the train, the gateway sensor then uses these noisy measurements to com-

pute its location through localisation schemes. Typically, sensors follow duty-cycling

to enhance their battery life, which makes them unreliable to be available for com-

munication. Therefore, a wake-up scheme can guarantee the wake-up of the sensors

when train is passing by them. The existing wake-up schemes can be divided into two

classes: synchronous wake-up and asynchronous wake-up.

In synchronous wake-up schemes, sensor nodes synchronise their duty-cycles in such

a way that they wake-up and sleep at the same time. The benefit of such protocols is

that they enable sensor nodes to be available for any communication. However, there

is a an associated shortcoming with such schemes, that is, the synchronisation cost,

overhead, may exceed the available resources and thus make such schemes unreliable

for large networks. Synchronous protocols cut down the idle-listening period of sensors

nodes, which is one of the major causes of energy consumption. SMAC is one of

the synchronous protocols (Wong et al., 2007). SMAC allows sensor nodes to exchange

SYNC packets to synchronise the duty-cycling sleep and wake-up intervals of neighbour

sensor nodes (Ye et al., 2004). Thus, reduces the power consumption. TMAC is another

synchronous wake-up protocol that enhances the functionality of SMAC protocol by

allowing sensor node to immediately returning to duty-cycling if the even of interest is

not detected while performing CCA checks (Van Dam and Langendoen, 2003). Likewise

TMAC, ADMAC (Kim et al., 2008) allows unintentional receivers of packets to get

back to their duty-cycling without receiving complete packets. DWMAC synchronises

transmitter and receiver by exchanging scheduling (SCH) and its confirmation packets
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(Sun et al., 2008). Time duration is reserved between both sensor nodes and for

successful reservation from sleep period, the chances of collision at destination node is

almost zero. In TSMP (Pister and Doherty, 2008) time is divided into several small

slots. Transceiver of nodes sense the potential transmission at the start of each slot.

For a transmission for itself, it stays active; otherwise resumes its duty-cycling.

In asynchronous wake-up schemes, sensor nodes follow independent sleep schedules

without having a global view of duty-cycles of their neighbour nodes. In such pro-

tocols, control over head is minimised and therefore energy consumption is reduced.

However, performance efficiency also suffers due to unavailability of sensor nodes at the

same time for communication. Several protocols are proposed by researcher to over-

come this issue. One of initial efforts towards this issue was BMAC protocol (Polastre

et al., 2004). In BMAC protocol, a potential transmitter tries to wake-up its intended

receiver by transmitting preambles. A receiver detects energy level in the medium and

cooperates for a successful transmission. Though BMAC saves huge control overhead

traffic for synchronisation, but it generates large overhead by continuously transmitting

preambles and becomes infeasible in large networks. Buettner et al. (2006) proposed

improvements in BMAC and developed XMAC. XMAC uses small frequent preamble

packets that reduces the overhead traffic. Though XMAC improves overhead cost but

still it can deplete bandwidth resources in high traffic network. WiseMAC protocol

deals with this shortcoming by enabling sensor nodes to remember the sleep schedules

of neighbouring nodes to avoid preambles in frequent destination nodes (El-Hoiydi

and Decotignie, 2004). WiseMAC significantly improves network performance. Con-

tikiMAC (Dunkels, 2011) considers the energy efficiency of MAC protocol and allows

sensor nodes to optimise their duty-cycle intervals. RI-MAC (Sun et al., 2008) pro-

posed a significantly improved system by eradicating the need of preambles. Potential

receivers advertise their availability once they are in wake-up state and senders start

transmission. A hybrid approach was introduced by Chen et al. (2001), in which sensor

nodes with high resources stay active and coordinate between other nodes. Coordina-

tor nodes buffer the packets and allow receivers to get their packets from coordinator

once they are active.

5.8 Summary

In this Chapter, I have presented a new scheme, a beacon-based wake-up scheme, to

wake-up the anchor sensors that operates on the asynchronous duty cycles. The WSN-
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based train localisation system heavily depends on the communication between anchor

sensors and the gateway sensor, where the gateway sensor computes the location of

the train by using transmitted geographic coordinates of the anchor sensors and the

RSSI measurements of corresponding transmissions. The arrival time of the train and

sleep times of anchor sensors are unknown, and none of the entities have this global

knowledge of the system. In such a situation, the availability of anchor sensors for

communication plays a vital role in the accuracy and reliability of WSN-based train

localisation system. To achieve this task, keeping anchor sensors always active and in

idle listening state is expensive in terms of energy consumption, whereas, the duty-

cycling does not guarantee the timely activation of the anchor sensors to communicate

with the gateway sensor. Another approach, in which, anchor sensors wake up each

other by communication before arrival of train, is not a feasible approach. We studied

this approach and found infeasible as the train’s speed, train location and duty-cycling

pattern of neighbouring sensors are unknown. Therefore, a relation can not be derived

between the speed of train and speed of packets transmitted to neighbouring sensors

to wake them.

BWS provides a new solution to ensure the wake-up of the anchor sensors before

they reach in the communication range of the gateway sensor. This scheme enables the

gateway sensor to broadcast the beacon packets that contain the recent location of the

train. Moreover, BWS also computes the upper bound on the sleep time that an anchor

sensor can sleep in a duty-cycle. During the regular channel scanning period (CCA),

anchor sensors wake up to detect the incoming packets and if they receive a beacon

packet, they stay active and prepare to communicate with the gateway sensor. Based

on the received geographic information and signal strength measurements, the gateway

sensor computes its new location and broadcasts it again. Finally, the proposed scheme

is analysed theoretically and with the simulations for its ability to wake up the anchor

sensors and the energy consumption.

In the next Chapter, I will present the Particle-Filter-based train localisation scheme

that uses the RSSI measurements and geographic coordinates of anchor sensors, and

develops a weighted likelihood function to compute the location of the train.
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Chapter 6

Particle Filter based Train

Localisation

In this chapter, I begin by introducing the Particle Filtering technique, its components,

and propose a novel Particle-Filtering-based train localisation scheme. Moreover, a

weighted RSSI-based likelihood function is introduced to estimate the likelihood of the

particles for best representation of the train’s location. In the remainder of the chapter,

extensive simulations, that take real-data, are used to evaluate the developed scheme.

The real-data is collected from field experiments.

6.1 Introduction

The associated benefits of using WSN technology for train localisation include cost

effectiveness and feasible alternative in the absence of GPS technology. However, RSSI

measurements are prone to noise, caused by the infrastructure in the surrounding

environment and other overlapping frequencies such as microwave. To counter the

fragile nature of RSSI, a measurement model is introduced that comprises of data such

as RSSI readings and the geographic coordinates transmitted from anchor sensors.

The Particle Filtering technique is used to smoothen the noise elements in the RSSI

measurements and to increase the accuracy of train location estimation. In the Particle

Filtering technique, a large number of particles are spread in the target area and weight

is assigned to each particle. The weights are assigned based on the likelihood function

and represents the likeliness of particles to represent the location of the train. The

details of the Particle Filtering technique and train localisation algorithm are given in

the following sections of this chapter.
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6.2 Bayesian Filtering

In train localisation or any other tracking problem, system has few variables such as

target, state and data measurements. An object that needs to be identified is called

target. The parameters of an object define its state such as its location, speed and

movement angle. Data measurements are readings received from sensor nodes and

demonstrate the evolution of state of an object at new time interval.

Generally, to represent the evolution of target state at any time t, hidden markov

model (Ghahramani, 2001) is used as shown in Figure 6.1. Zt refers to data measure-

ments received at time t.

Xt-1 Xt Xt+1

Zt-1 Zt Zt+1

. . .

Figure 6.1: Hidden Markov Model

In the Bayesian Filtering, the estimation of new state of a target is related to recur-

sive approach. A probability density function (PDF) P (Xt|Zt) is required, from which

new state will emerge and represented by attributes with highest probability. PDF

comprises of two stages such as prediction and update stages. Chapman-Kolmogrov

developed a model of equations for these stages. The proposed model was discussed

in detail by Klepal et al. (2007a,b) and its equations are expressed in Equations 6.1

(predict stage), 6.2 (update stage), 6.3 (normalise) and 6.4 (new state). Later on,

in development of Particle Filter based localisation scheme, models are developed on

these basic equations.

P (Xt|Zt−1) =

∫
P (Xt|Xt−1)P (Xt−1|Zt−1)dXt−1. (6.1)

When data measurements Zt are received at time t, the update stage can be ex-

102



pressed as follows:

P (Xt|Zt) = P (Xt|Zt, Zt−1)

=
P (Zt|Xt, Zt−1)P (Xt|Zt−1)

P (Zt|Zt−1)

=
P (Zt|Xt)P (Xt|Zt−1)

P (Zt|Zt−1)
(6.2)

P (Zt|Zt−1) =

∫
P (Zt|Xt)P (Xt|Zt−1)dXt (6.3)

and here, the normalising factor is given in equation 6.3.

As discussed before, a PDF is developed in the update stage once data measure-

ments are received. New state Xt and its error is then computed from the developed

PDF.

Xt =

∫
XtP (Xt|Zt)dXt (6.4)

The equations as discussed by Klepal et al. (2007a,b), analyse the model basics and

state evolution with the help of data measurements from sensor nodes. However, for

non-linear and Gaussian noise, analytical solution is hard. Therefore, an approximate

solution is desired and for which noise filters play a vital role in estimation of target’s

location.

6.3 Basics of Particle Filter

Particle Filter offers a solution, for non-linear problems ideally for non-Gaussian noise,

by implementing Bayes Filter recursively. It works with the set of particles, or weighted

samples, to represent probability density. The set of particles and their associated

weights are used to compute the posterior probability. The posterior probability esti-

mation of the state is expressed as

P (Xt|Zt) ≈
N∑

i=1

wtσ(Xt −X i
t) (6.5)

where X i
t is the i-th particle (1 < i < N) and wt is the associated weight of the particle.

Every single particle represents the state Xt at particular time t, with the probability

of its correctness as its weight.

In the proposed scheme, it takes two models as input to estimate the position
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of a train. First one is the motion (movement) model that describes the new state

emergence from the old one with time (i.e., the train movement model). The second

model is observation (movement) model that relates to the data received at particular

time and state (i.e., the RSSI measurement model). The principle of Particle Filter is

to develop a PDF on existing set of measurements for a particular state. Afterwards,

it filters the calculated position recursively, once new set of measurements are received.

In the proposed scheme, the estimated location of a train is denoted by Xt = (xt, yt), a

set of measurements (RSSI and anchor sensor location coordinates) are denoted by Zt

at particular time t. Further, Particle Filter constitutes of two stages such as prediction

and update stages.

6.3.1 Prediction Stage

In the prediction stage, the PDF of new state, at next time interval, is predicted based

on the movement model. The movement model facilitates determination of the position

of particles at every time instant in the prediction stage. It includes the noise factor

to estimate the realistic particle positions.

6.3.2 Update Stage

The predicted PDF gets corrected in update stage through measurement model. This

happens after new set of data measurements are received. In the train localisation

system, measurements model comprises of RSSI measurements and location informa-

tion received from anchor sensors in anchor-gateway communication in Zone 1. The

rationale to use multiple pieces of information is to minimise the interim impact of

environmental factors on RSSI measurements.

6.4 Particle Filtering based Train Localisation Al-

gorithm

A posterior PDF function P (Xt|Zt) is computed at time t by using particles, {X [i]
t }.

Each particle is linked with a weight w
[i]
t . Each particle X

[i]
t has an associated weight

w
[i]
t . The particles and their associated weights are updated using latest measurements

and predictions, respectively.

A Particle-Filter-based train localisation algorithm is developed that consists of five

steps, given in Algorithm 2: initialisation, prediction, update, resampling, and location
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estimation. However, with the addition of another step, an improved Particle Filter-

ing algorithm is developed for train localisation, that is, Particle-Filter-based Signal

Strength Rectification (PF-SSR), which contains pre-processing of raw measurement

model before using it for the particles’ weight update and a novel weighted RSSI likeli-

hood function that considers the probability function to update the particles’ weights.

The PF-SSR-based train localisation algorithm is given in Algorithm 3.

Algorithm 2: PF based Train Localisation Algorithm

1 Step 1: Initialisation
2 t = 0
3 for i← 1 to N do

4 Initialise x
[i]
0 and y

[i]
0

5 w
[i]
0 = 1

N

6 Step 2: Prediction
7 t = t + 1
8 for i← 1 to N do

9 x
[i]
t = x

[i]
t−1 + Sxt T + nxt−1

10 y
[i]
t = y

[i]
t−1 + Syt T + nyt−1

11 Step 3: Update
12 for i← 1 to N do

13 update w
[i]
t based on Equation (6.16)

14 Normalise Weights w
[i]
t =

w
[i]
t∑N

j=1 w
[j]
t

15 Step 4: Resampling

16 Generate a set of N new particles from {X [i]
t , w

[i]
t }.

17 Initialise Random variable r such that r ∈ (0,
∑
wt).

18 for i← 1 to N do

19 N new samples are based on low variance sampling [(r + i
∑
wt

N
) mod

∑
wt].

20 Step 5: Estimate the location

21 Return Xt = (xt, yt), where xt =
∑N
i=1 w

[i]
t x

i
t, yt =

∑N
i=1 w

[i]
t y

i
t;

22 t = t+ 1 and goto step 2;

6.5 Initialisation

Initially, N number of particles are evenly distributed over L meters length of track.

Therefore, L can be maximum possible error in initially estimated location at time

t = 0. Whereas, the actual location of train can be anywhere within L meters.
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Algorithm 3: Improved PF-SSR-based Train Localisation Algorithm

1 Step 1: Initialisation
2 t = 0
3 for i← 1 to N do

4 Initialise x
[i]
0 and y

[i]
0

5 w
[i]
0 = 1

N

6 Step 2: Prediction
7 t = t + 1
8 for i← 1 to N do

9 x
[i]
t = x

[i]
t−1 + Sxt T + nxt−1

10 y
[i]
t = y

[i]
t−1 + Syt T + nyt−1

11 Step 3: PF-SSR- RSSI Rectification
12 if AnchorCommunicated then
13 for l← 1 to k do
14 RSSIavg = 1

k

∑
lKalmanFilter(RSSIl)

15 else
16 RSSI = RSSILN +RSSIerr

17 Step 4: Update
18 for i← 1 to N do

19 update w
[i]
t based on Equation (6.16)

20 Normalise Weights w
[i]
t =

w
[i]
t∑N

j=1 w
[j]
t

21 Step 5: Resampling

22 Generate a set of N new particles from {X [i]
t , w

[i]
t }.

23 Initialise Random variable r such that r ∈ (0,
∑
wt).

24 for i← 1 to N do

25 N new samples are based on low variance sampling [(r + i
∑
wt

N
) mod

∑
wt].

26 Step 6: Estimate the location

27 Return Xt = (xt, yt), where xt =
∑N
i=1 w

[i]
t x

i
t, yt =

∑N
i=1 w

[i]
t y

i
t;

28 t = t+ 1 and goto step 2;
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6.6 Prediction

In train localisation system, the motion model is used to determine the new position

of particles. The estimated positions of new particles are then used to estimate the

location of a train. The adopted motion model in the proposed train localisation system

takes into account the train speed and noises.

X
[i]
t =

[
x

[i]
t−1 + Sxt T + nxt−1

y
[i]
t−1 + Syt T + nyt−1

]
(6.6)

where x
[i]
t−1,and y

[i]
t−1 represents the location coordinates of particle X

[i]
t−1. Speed param-

eters with respect of x-axis and y-axis are represented by Sxt and Syt , respectively. The

noise in the train speed at both axis are represented by nxt−1 and nyt−1 with Gaussian

distribution. T is the particle update interval.

6.7 Update

P (Zt|Xt) is the likelihood function that shows the chances of particles representing the

actual train’s position, provided Zt measurements are received. In the proposed train

localisation system, the likelihood function is developed based on weights, called novel

Weighted RSSI Likelihood Fuction (WRLF) Before going into the details of WRLF,

some notations are required to represent entities. Let RSSI(j, t) be the RSSI reading

received from an anchor sensor aj at time instant t, and Zt are RSSI readings received

from M anchor sensor nodes at time t.

6.7.1 WRLF for Particle Update

In order to update the weights of the particles, WRLF is used. The Equation 6.7

defines the weighted RSSI likelihood function that is used for particles’ weight update.

P (Zt|Xt) = ε+ exp

(
(Xt − Lt)2

2σ2

)
, ε << 1 (6.7)

where ε is the model parameter and a constant value and σ is the deviation of particles.

Lt is the location that can be computed as in Equation (6.8). The value of ε ranges

from 0 to 1. I have simulated this system variable with several sets of values and used
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0 as most suitable value.

Lt =

[∑M
j=1 h

j
tL

x
t,j∑M

j=1 h
j
tL

y
t,j

]
(6.8)

where hjt is the associated weight of RSSI reading RSSI(j, t), and Lt,j is the location

computed based on the log-normal path-loss model and the anchor sensor locations.

6.7.2 Weighted RSSI Function

The following four methods are used to calculate hjt for RSSI(j, t) and are important

to analyse the effects of weight assignment methodology on the localisation accuracy.

Equally Weighted RSSI Function

In this scheme, equal weights are assigned to all RSSI measurements from anchor

sensors. The total weight that is divided among all RSSI readings is 1. Hence,

ht =
1

M
(6.9)

and the train location can be computed as,

Lt =




∑M
j=1 L

x
t,j

M∑M
j=1 L

y
t,j

M


 (6.10)

WRLF. With Lt,j is associated with the weight hj
t , Lt is calculated by using Equation

(5.9). Where weights hj
t = {W0, W1, W2..W6} as shown in the Figure 5.3.

Weights

w0w3 w4w2w1w5 w6

ai11

GS

ai ai+1 aj11ai+j aj+1aj

d RR

da

Figure 5.3: Equally Weighted RSSI Scheme

Hence we have

hj
t =

1

M
(5.8)

Lt =

2
4

PM
j=1 Lx

t,j

MPM
j=1 Ly

t,j

M

3
5 (5.9)

However, since the RSSI readings from remote sensor are more susceptible to noise

and less accurate, they should have less impact on the likelihood function. Therefore,

the following alternatives of weight assignment has been proposed.

5.6.2 Strength Weighted RSSI:

In this scheme, weights hj
t is distributed based on the strength of RSSI value. Anchor

sensors with stronger RSSI value will have higher weights and it gradually decreases

with the decrease in RSSI values, as illustrated by Figure 5.4. In the Lt calculation,

the RSSI values with higher weights are used and the RSSI values with lower weights

are eliminated. The weight hj
t is calculated by using Equation (5.10)

We have

hj
t =

RSSI(j, t)PM
i=1 RSSI(i, t)

(5.10)

By eliminating the RSSI values with lower weights, there is more impact on the

accuracy of the likelihood function.
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Figure 6.2: Equally Weighted RSSI Method
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Strength Weighted RSSI Function

In this scheme, higher weights are assigned to stronger RSSI, as illustrated by Fig-

ure 6.3. I have,

hjt = 1− RSSI(j, t)∑M
i=1 RSSI(i, t)

(6.11)

range of the L meters on the central line of the track. Although
we present our algorithm for 2-D space, it is easily adaptable
to 3-D locations.

Algorithm 1: Particle Filter Localization Algorithm
Step 1: Initialization
t=0;
for i 1 to N do

Initialize x
[i]
0 and y

[i]
0 ;

w
[i]
i = 1

N ;
Step 2: Prediction
for i 1 to N do

x
[i]
t = x

[i]
t�1 + Sx

t T + nx
t�1;

y
[i]
t = y

[i]
t�1 + Sy

t T + ny
t�1;

Step 3: Update
for i 1 to N do

update w
[i]
t based on Equation (10)

Normalize Weights w
[i]
t = w

[i]
tPN

j=1
w

[j]
t

;

Step 4: Resampling
Resample with replacement N particles from {X

[i]
t , w

[i]
t }

according to the updated weights;
Step 5: Estimate the location
Return Xt = (xt, yt), where xt =

PN
i=1 w

[i]
t xi

t,
yt =

PN
i=1 w

[i]
t yi

t;
t = t + 1 and goto step 2;

(2) Prediction: The motion model P (Xt|Xt�1) predicts the
movement and the status of each particle that represents the
estimated position. We use the following motion model which
takes into account the train speed and noises.

X
[i]
t =

"
x

[i]
t�1 + Sx

t T + nx
t�1

y
[i]
t�1 + Sy

t T + ny
t�1

#
(5)

where x
[i]
t�1,and y

[i]
t�1 are coordinates of particle X

[i]
t�1, and Sx

t

and Sy
t are the x-axis and y-axis speeds of the train at time t.

nx
t�1 and ny

t�1 are the x-axis and y-axis movement noises with
Gaussian distribution. T is the interval for particle update.

(3) Update: The likelihood function P (Zt|Xt) gives the
likelihood that the gateway sensor receives measurements Zt at
location Xt. To calculate the likelihood function, we propose
a novel Weighted RSSI Likelihood Function (WRLF). Let
RSSI(j, t) be the RSSI reading received from anchor sensor
aj at time instant t, and Zt contains the RSSI readings and
the sensor locations received at time instant t from M anchor
sensors. We define our WRLF as follows:

P (Zt|Xt) = 1� |Xt � Lt|
D

(6)

where D = 2
p

R2 � d2 which is the distance covering all
the M anchor sensors that can communicate with the gateway

sensor, as shown in Figure 5. Lt is calculated based on
Equation (7).

Lt =

"PM
j=1 hj

tL
x
t,jPM

j=1 hj
tL

y
t,j

#
(7)

where hj
t is the weight associated to RSSI(j, t), and Lt,j is

the location computed based on Equation (1) and the anchor
sensor locations using trigonometry.

ai-1

GS

ai ai+1 aj-M-1ai+j aj+1
D

aj+M

d R

Weights

htht hthththt ht

R

0135 2 4 6

Fig. 5: Weighted RSSI Scheme

We use the following three schemes to calculate hj
t for

RSSI(j, t) so that we can compare the impact of weight
assignment on the localization accuracy.

1. Equally Weighted RSSI: The weights are equally dis-
tributed among all the RSSI readings from anchor sensors.
Therefore, each anchor sensor contributes equally to the
WRLF. Hence we have

Lt =

2
4
PM

j=1
Lx

t,j

MPM

j=1
Ly

t,j

M

3
5 (8)

However, since the RSSI readings from remote sensor are
more susceptible to noise and less accurate, they should have
less impact on the likelihood function. Therefore, we propose
the following alternatives of weight assignment.

2. Strength Weighted RSSI: In this scheme, anchor sensors
with stronger RSSI will have higher weights, as illustrated by
Figure 5. We have

hj
t = 1� RSSI(j, t)

PM
i=1 RSSI(i, t)

(9)

3. Single Strongest RSSI: In this scheme, we only use the
strongest RSSI reading to compute Lt. Suppose RSSI(k, t) =
maxM

j RSSI(j, t). Then we assign 1 to hk
t , and 0 to all the

other weights.

Lt is computed at every simulation step in the localization
process. Each time a new Lt is computed, the WRLF for each
particle is calculated based on Equation (6). Then the weight
of each particle is updated as follows according to the WRLF.

w
[i]
t = P (Zt|X [i]

t ) ⇤ w
[i]
t�1

= (1� |X [i]
t � Lt|

D
) ⇤ w

[i]
t�1 (10)

Figure 6.3: Strength Weighted RSSI Method

Single Strongest RSSI Function

In this scheme, only the strongest RSSI reading is used to compute Lt. Suppose

RSSI(k, t) = maxMj RSSI(j, t). Then, 1 is assigned to hkt , and 0 to all the other

weights.

Weights

w0w3 w4w2w1w5 w6

ai11

GS

ai ai+1 aj11ai+j aj+1aj

d RR

da

Figure 5.4: Strength Weighted RSSI Scheme

5.6.3 Single Strongest RSSI:

In this scheme, maximum strongest weight will be used and it will have maximum

weight as shown in the Figure 5.5. The RSSI values which are less than the maximum

RSSI value will be assigned to zero weight. The maximum strongest RSSI reading will

be used to compute Lt and . Suppose RSSI(k, t) = maxM
j RSSI(j, t). hk

t = 1, and for

j = 1, M, j 6= k, hj
t = 0.

ai#1

GS

ai ai+1 aj#1ai+j aj+1aj

d R

++++++Weight+(W0)=1

R

Figure 5.5: Single Strongest RSSI Scheme

5.6.4 Gaussian Weighted RSSI:

In this scheme, weight hj
t follows the gaussian distribution for the given RSSI value

RSSI(j, t). The function mean µ(RSSIj), and standard deviation �(RSSIj), are

obtained by using Equation .Once learned, function µ(RSSIj) and �(RSSIj) the are

used in the weight distribution associated with RSSI values by using Equation 5.11

and 5.12.

µ(RSSIj) =

PM
j=1 RSSIj

M
(5.11)
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Figure 6.4: Single Strongest Weighted RSSI Method

Gaussian Weighted RSSI Function

In this scheme, weights are assigned based on Gaussian distribution to the RSSI re-

ceived from the anchor sensors. Therefore, the stronger RSSI measurements contribute
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�(RSSIj)
2 =

1

M

MX

j=1

(RSSIj � µ(RSSIj))
2 (5.12)

Each time a new measure is received, the weight associated with RSSI values is

updated considering the strength the of the RSSI values.

Weights

w0w3 w4w2w1w5 w6

ai11
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ai ai+1 aj11ai+j aj+1aj

d RR

da

Figure 5.6: Gaussian Weighted RSSI Scheme

hj
t =

1

�(RSSIj)
p

2⇡
exp(�(RSSIj � µ(RSSIj))

2

2�(RSSIj)2
) (5.13)

By following the Gaussian distribution, there is a clear split between the RSSI values

associated with the higher weights and RSSI values associated with lower weight as

shown in the Figure 5.6. The RSSI values with lower weights are eliminated and RSSI

values with higher weights are use in the calculation of Lt. Table 5.1 explains the

di↵erent schemes of weight distribution in WRLF. The calculated Lt will be used in

the update stage of WRLF particle filter localization algorithm.

W3 W1 W0 W2 W4

WRLF Schemes Equally Weighted RSSI 0.2 0.2 0.2 0.2 0.2

Strength Weighted RSSI 0.05 0.295 0.40 0.295 0.05

Gaussian Weighted RSSI 0.01 0.249 0.50 0.249 0.01

Single Strongest RSSI 0 0 1 0 0

Table 5.1: WRLF Likelihood Schemes
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Figure 6.5: Gaussian Weighted RSSI Method

more to the WRLF and weaker RSSI measurements contribute less to the WRLF.

µRSSIj =
ΣM

j=1RSSIj

M
,

σ2
RSSIj

= 1
M

ΣM
j=1(RSSIj − µRSSIj)2,

hjt = 1
σRSSIj

√
2π
exp(− (RSSIj−µRSSIj

)2

2σ2
RSSIj

) (6.12)

6.7.3 Weighted Particles Update Function

The WRLF, as expressed in Eq. 6.7, is used to update the particle weight of each parti-

cle and the weight represents the likelihood of true representation of train’s location by

that particle. The initial weights of the particles’ are equally distributed at time t = 0.

Following are the methods that can be used to update the weight of the particles.

Squared Weighted Particle Update

In this scheme, weight wit is calculated by dividing the square of the difference between

the particles X
[i]
t and computed location Lt to the square of total transmission distance

D. The rationale of squared weighted particle update scheme is that it increases

the strong weights and decreases the weak weights. Therefore, particles with low

probability gets eliminated sooner.

Gaussian Weighted Particle Update

In this scheme, weight wit follows the Gaussian distribution for the given particle’s

distance X
[i]
t . The function mean µ(Lt), and standard deviation σ(Lt), are obtained

by using following equations. The rationale of Gaussian weighted particle is that it

increases the weights of particles that are close to train’s actual location and decreases

the weights of particles that have large differences with the train’s actual location. The
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difference between Gaussian and Squared method is that Gaussian method converges

particles quickly than squared method.

µ(Lt) =
ΣM
j=1Lt

M
(6.13)

σ(Lt)
2 =

1

M
ΣM
j=1(Lt − µ(Lt))

2 (6.14)

wit =
1

σ(Lt)
√

2π
exp(−X

[i]
t − µ(Lt))

2

2σ(Lt)2
) (6.15)

By following the Gaussian distribution, there is a clear split between the parti-

cles associated with the higher weights and RSSI values associated with lower weight.

In this procedure, low weighted RSSI readings get eliminated and only strong RSSI

readings becomes candidate in the calculation of Xt.

w
[i]
t = P (Zt|X [i]

t )× w[i]
t−1 (6.16)

Weights are normalised after update stage in such a way that
∑N

i=1w
[i]
t = 1. The

weighted average of particles’ location gives the estimated train location.

6.8 Particle Filter based Signal Strength Rectifica-

tion (PF-SSR)

The gateway sensor receives signal strength measurements when it initiates the data

collection rounds. It is possible that the RSSI measurements vary due to noise, also, it

is possible that the gateway sensor may not receive measurements from anchor sensors

due to some failure, such as battery outage, physical damage or changed antenna dy-

namics. In such a scenario, the lack of available measurements or noisy measurements

can affect the location estimation. There are many techniques to deal with the noisy

measurements and outliers such as the Dixon method (Feng et al., 2012), Grubs method

(Grubbs, 1969), Tukey’s rule (Anscombe, 1960), but some of these methods work on

Gaussian data assumption and some have sample size limitations. In addition, it is

hard to segregate the noisy measurements from the outliers. Therefore, in PF-SSR,

a Kalman Filter is used to rectify the noisy measurements. Moreover, in PF-SSR,

measurements are generated based on log-normal path loss model for those anchor
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sensors that failed to wake-up and communicate with the gateway sensor. The gen-

erated measurements are the boundary measurements (weakest measurements) within

the acceptable range to minimise the fabricated effects. The Kalman Filter works in

two stages: (a) prediction stage, and (b) correction stage. In the prediction stage,

the system state is predicted based on error covariance, and the measurement stage

corrects the predicted system state by calculating the trust factor of received noisy

measurements. The trust factor is known as Kalman gain, which computes the gain of

received measurements. It is worth noting that here the system state (RSSI measure-

ments) is not modified with any control input. Also, it is assumed that processed noise

in the RSSI generation is neglectable as compared to measurement noise, from sender

to the receiver. These assumptions results in the simplified Kalman Filter equations

for prediction stage.

RSSI ′k = RSSIestk−1 (6.17)

P ′k = Pk−1 (6.18)

and the correction stage equations are,

Kk =
P ′k

P ′k +R
(6.19)

RSSIestk = RSSI ′k +Kk(RSSI
k
aj
−RSSI ′k) (6.20)

Pk = (1−Kk)P
′
k (6.21)

Let k be the number of RSSI measurements received at time ti from anchor sensor

aj. The RSSI ′k, RSSI
est
k and RSSIkaj are the predicted RSSI, estimated RSSI at cor-

rection stage and original RSSI measurement received at gateway sensor, respectively.

Kk is the Kalman gain computed for kth noisy measurement, R is the measurement

noise covariance and 0.1 is its value. A Kalman Filter does not expect R to be accu-

rate as it converges with time and number of samples. P ′k and Pk are the priori and

posteriori error variance estimates, respectively. Eq. 6.19 & 6.20 suggests that with

the high gain, the Kalman Filter trusts more on the received measurements, and with

a low Kalman gain, the Kalman Filter trust the prediction more than measurements,

thus making it tolerant and less responsive to the noisy measurements. Eq. 6.21, Pk

re-estimates the error variance which refers to the environmental noise factors related

to the current time and location of train. It changes with the train location and im-

proves significantly with the decrease in the added factors of measurements noise, such
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as reflection due to terrains and infrastructure. Similarly, the gateway sensor knows

the deployment density and generates the weakest RSSI measurement in the accept-

able range for the anchor sensor failed to communicate. This incorporation of RSSI

measurements against failed sensors improves the accuracy of estimation because its

unavailability may result in increase of error. Information received from several anchor

sensors helps to consolidate the assumed signal measurements based on log-normal

path loss model RSSI and minimises the location estimation error. PF-SSR improves

the particle filter ability to estimate location of the train as given in Algorithm 3. PF-

SSR relies on the input from sensor nodes and its accuracy improves with number of

replies from multiple sensor nodes.

6.9 Resampling

In the process of particles’ update, particles with lower weights get eliminated and

number of particles decreases. In such case, the accuracy of location estimation suffers

in such a way that the likelihood of a particle to represent accurate train’s location

may fluctuate large. Resampling enables the procedure to increase the number of

particles by duplicating high weight particles. In Particle-Filtering-based schemes, a

low variance sampler scheme (Baker, 1987) is used, that focus on to duplicate particles

of higher weights. The samples are drawn in such a way that particles are kept in a list

and occupy the length of list according to their weights. After that, It draws N samples

using a single randomly generated number. Let the random number generated be r,

such that r ∈ (0,
∑
Wt). It is assumed that r is drawn from a uniform distribution.

Then, the first sample is drawn from location r in the list, the second from location

[(r + 2
∑
wt

N
) mod

∑
wt], the i’th sample from location [(r + i

∑
wt

N
) mod

∑
wt] and

so on, until N new samples have been generated.

6.10 Train Location Estimation

Estimation of the location Xt = (xt, yt) is calculated based on the updated weights of

the particle at time t by following equations.

xt =
ΣN
i=1w

[i]
t x

i
t

ΣN
j=1w

[j]
t

(6.22)
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yt =
ΣN
i=1w

[i]
t y

i
t

ΣN
j=1w

[j]
t

(6.23)

All the weights are normalised so that
∑N

i=1 w
[i]
t = 1. The weighted average of the

particles location gives the estimated train location. By simplifying the Equations 6.22

and 6.23 can be expressed as,

xt = ΣN
i=1w

[i]
t x

i
t (6.24)

yt = ΣN
i=1w

[i]
t y

i
t (6.25)

Therefore, (xt, yt) gives the estimated train location at time t.

6.11 Performance Analysis of Particle-Filtering-based

Train Localisation

Schemes

In this section, the performance of Particle-Filtering-based train localisation schemes,

PF and PF-SSR, are analysed through extensive simulations in the OMNET++ sim-

ulator (Köpke et al., 2008), using real-world RSSI measurements.

6.12 Performance Metrics

The Kalman Filter is explicitly implemented to process the received measurements for

the PF-SSR-based train localisation scheme. In addition, the PF-based localisation

scheme is implemented and results are compared with the PF-SSR-based train local-

isation scheme. I use maximum localisation error and average localisation error as

metrics.

Definitions

• Maximum Localisation Error: The range of maximum localisation error is

the maximum absolute difference between the actual and estimated train location

in every 100s. An average of maximum error range is computed over range of

maximum error.

• Average Localisation Error: The range of average localisation error is the

average absolute difference between the actual and estimated train location in
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every 100s. An average of average error range is computed over range of average

localisation error.

6.12.1 Simulation Setup

In the simulations, 145 to 4000 anchor sensors are deployed with various distances be-

tween the adjacent anchor sensors, called the deployment density, da. Unless specified

otherwise, the default values are used for several parameters, such as da, ST and anchor

sensor failure percentage, to evaluate the reliability of the proposed schemes (Table 6.1).

The reliability here is defined as the successful wake-up of anchor sensors in Zone 2 or

chances of hardware or software based failure in an anchor sensor that fails an anchor

sensor to wake-up and communicate with the gateway sensor. I use da = 100 m, 4 m,

and 10 m for open field, railway station and tunnel, respectively. Moreover, the train

speed, ST is 40 m/s, 10 m/s, and 40 m/s for open field, railway station and tunnel,

respectively, reflect the realistic train speeds in corresponding environments. The im-

pacts of train speed on localisation error is studied with multiple train speed values,

such as 10 m/s, 20 m/s, 30 m/s and 40 m/s. However, when looking into impacts

of other parameters, such as reliability and deployment density, on localisation errors,

default train speed is used as mentioned earlier. Though, simulations were conducted

over other speed values, but these speed values are presented here because these speed

values represent these environments. Furthermore, the default anchor sensor failure

percentage is 0%. The impact of failed sensor nodes is studied in which several setting

of anchor sensor failure are simulated independently. Based on the analysis in Chapter

4, real-world datasets are used in the simulations, which are long-range sensors, short-

range sensors, and internal radio sensors datasets for open field, railway station, and

tunnel, respectively. There is an unreliable wireless channel model with 10% packet loss

rate (Liu et al., 2014). Similarly, anchor sensors communicate with the gateway sensor

by sending multiple packets without a requirement for acknowledgement packets.

In simulation, RSSI measurements are selected from a pool of real-world datasets

of particular distance between anchor sensor and gateway sensor. For example, in the

case of 500 m as distance between adjacent anchor sensors, RSSI measurements are

recorded by gateway sensor at each 10 m and RSSI measurements are used from that

pool randomly.
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6.12.2 Parameter Configurations

The detailed parameter configurations used in simulation setup are given in Table 6.1

along with their values.

Table 6.1: Simulation Parameters (PF-based Localisation)

Parameters Train Speed Reliability Deployment Density
OF RS TL OF RS TL OF RS TL

L (s) 10000 10000 10000 10000 10000 10000 10000 10000 10000
λ 1 1 1 1 1 1 1 1 1
Number of 145 to 145 to 145 to 145 to 145 to 145 to 145 to 145 to 145 to
Anchors 4000 4000 4000 4000 4000 4000 4000 4000 4000
Zone 1 (m) 500 500 500 500 500 500 500 500 500
dT (m) 2 2 2 2 2 2 2 2 2
Simulation 50 50 50 50 50 50 50 50 50
iterations
Smax (m/s) 10, 20 10, 20 10, 20 40 10 40 40 10 40

30, 40 30, 40 30, 40
Anchor 0 0 0 0,10,20, 0,10,20, 0,10,20 0 0 0
Failure (%) 30,40 30,40 30,40
da (m) 100 4 10 100 4 10 100-700 2-14 10-50
tubsleep (s) 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,

3, 4 3, 4 3, 4 3, 4 3, 4 3, 4 3, 4 3, 4 3, 4

6.12.3 Performance of Weighted RSSI Functions

The weighted RSSI functions play an important role in the particles update stage.

Assigning weight to a RSSI measurement develops the credibility of the geographic

coordinates of an anchor sensor. In other words, an anchor sensor closer to the gateway

sensor will have more impact on the particle’s weight update. The impact of weighted

RSSI functions on location estimation (PF-based scheme) are shown in Figure 6.6. In

this simulation, 500 m are used as distance between any two adjacent anchor sensor

nodes, and train speed is 10 m/s. Figure 6.6(a) shows the average localisation error

for different simulation runs. Among all weighing schemes, the Single Strongest RSSI

function outperforms other schemes with average error of 0.1 m. It can also be seen

that the Gaussian Weighted RSSI and Single Strongest RSSI are very close. However,

Equally Weighted RSSI function performs worst because it assigns equal weights to

unreliable RSSI measurements from anchor sensors at far locations, compared with

reliable RSSI measurements from anchor sensors at closer locations. Figure 6.6(b)
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Figure 6.6: Average Localisation Error with Different Weighted RSSI Functions.

plots the average localisation error for same weighted RSSI functions in context of

deployment densities. An important observation is that, from the collected datasets,

no large difference can be seen in performance of weighted RSSI functions. The Single

Strongest RSSI schemes performs better than other schemes. However, it will perform

worst in the presence of unreliable anchor sensors (fail to wake up) and sparse networks.

However, Gaussian Weighted RSSI function keeps average localisation error low and

will not suffer much in the presence of unreliable anchor sensors as it does not rely on

single RSSI measurement.

6.12.4 Performance of Particle-Filtering-based Train Locali-

sation Schemes

The performance of PF-based and PF-SSR-based localisation schemes are evaluated in

three train representative environments such as an open field (OF), a railway station

(RS), and a tunnel (TL). three sets of simulations are conducted to evaluate the impact

of train speed ST , anchor sensor failure (reliability), and anchor sensors’ deployment

density, on the localisation error. Along with the presentation of maximum and average

localisation errors, the range of the maximum localisation error, represented by error

bars with wide caps, and the range of the average localisation error, represented by

error bars with short caps are given in the resulting figures.
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Figure 6.7: Localisation Error at Several Train Speed Settings

Figures 6.7(a), 6.7(b), and 6.7(c) show the localisation error by PF and PF-SSR at

various train speed settings. It can be seen that the PF-SSR outperforms PF by min-

imising both maximum and average localisation error in OF, RS and TL environments.

The maximum localisation error by PF-SSR protocol increases with the train speed,

but remains under 1 m at all times, that is, 60 cm in OF, 70 cm in RS, and 75 cm

in TL, at train speed of 40 m/s. Moreover, the localisation error is higher in tunnel

environment compared with open field and railway station, which is because of high

noise in RSSI measurements due to signals fading and reflections from the tunnel walls.
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The localisation error bar shows the range of error, which suggests that the PF-SSR

estimation is more accurate in open field environment. However, in all environments,

the average localisation error stays under 0.15 m, that is, 8 cm in OF, 9 cm in RS, and

14 cm in TL, at train speed of 40 m/s.

Reliability of Particle-Filtering-based Train Localisation Schemes
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Figure 6.8: Localisation Error at Several Anchor Sensor Failure Settings

The gateway sensor estimates location of the train after communication with anchor

sensors. Therefore, the timely wake-up of anchor sensors and successful communication

is vital in the location estimation. In real-time scenarios, anchor sensors may fail
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to wake up even after the guarantee of BWS protocol because of some hardware or

software faults that may affect the accuracy of location estimation. The impact of

such reliability issues on the location estimation errors are shown in Figures 6.8(a),

6.8(b), and 6.8(c), for OF, RS and TL environments, respectively. It can be seen

that the average and maximum localisation errors increase with the number of failed

anchor sensors. The range of maximum and average localisation errors in PF and

PF-SSR schemes also increase with the number of failed anchor sensors. However,

because of the signal reconstruction feature of PF-SSR, the performance deterioration

is minimal and PF-SSR performs better than PF-based localisation scheme. From

the figure, it can also be seen that despite high reflections from tunnel walls, PF-SSR

is more reliable in tunnel environment, which is due to the low power measurements

and dense deployment settings. Consequently, with the dense deployment, if some

percentage of anchor sensors fails to wake up, there are still some anchor sensors that

can communicate in Zone 1 at that time. Therefore, reliability is related to the cost of

deployment. Similarly, among all environments, the PF-SSR scheme estimation error is

high in open field, which is due to amplified high power transmission by anchor sensors

that are prone to the noise, and the distance estimation from long-range signal power

is not very accurate. Moreover, the failure of anchor sensors from close proximity in an

open field ebbs the accurate location estimation due to unavailability of active anchor

sensors at a reliable distance to communicate with gateway sensor. In a nutshell,

PF-SSR outperforms PF and keeps the maximum localisation error at 80 cm in OF,

75 cm in RS and 100 cm in TL, at 40% anchor sensor failure rate. Also, the average

localisation errors of PF-SSR stays at 15 cm in OF, 25 cm in RS, and 29 cm in TL,

even when 40% of anchor sensors fail to wake up, thus do not communicate with the

gateway sensor.

Impact of Deployment Density (da) on Localisation Errors

The accuracy of distance estimation from signal strength relates to the distance between

sender and receiver, which means that the closer the sensors, the better the accuracy.

The impact of noisy measurements from any train localisation environment can be

reduced by having several measurements from anchor sensors at reliable, close distance

from the gateway. In the Free-space path-loss model, the signal attenuation rate is

linked with the square of the distance between the transmitter and receiver. The

significant drop in the signal power results in accurate distance estimation and that

phenomenon is observed from anchor sensors within close proximity. The impact of
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Figure 6.9: Localisation Error at Several Deployment Density Settings

deployment density on the train location estimation are shown in Figures 6.9(a), 6.9(b)

and 6.9(c) for open field, railway station and tunnel, respectively. In all figures, there

is distance between the adjacent anchor sensors (da) on x-axis. It can be seen that the

range of maximum and average localisation error increases with the distance between

the anchor sensors in all cases. However, the increase in the error is high in the tunnel

environment because of special noisy features of tunnels. In all cases, the range of upper

maximum localisation error with PF-based scheme exceeds 1 m, however, the range of

maximum error in PF-SSR-based scheme stays under 1 m even in sparse deployment

of anchor sensors, that is, 82 cm in OF with 700 m between sensors, 75 cm in RS with
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14 m between sensors, and 88 cm in TL with 50 m between sensors. From all figures,

it can be seen that dense deployment reduces the average error and its range but it has

an inverse relationship with the cost of anchor sensors deployment. PF-SSR manages

to keep the average location estimation error under 0.3 m with sparse deployment in

all cases, that is, 26 cm in OF, 17 cm in RS, and 28 cm in TL.

6.13 Related Work

In localisation or tracking problems, an initial example is to track a mobile target

with known initial location. A much harder problem is when a mobile target doesn’t

know its initial location. In such problems, there is need to estimate the location of

target by minimising location errors. Particle Filtering is a technique that is commonly

preferred in such scenarios (Montemerlo et al., 2003). It allows target to extract part

of probable space from developed PDF. Particle Filtering is efficient once space is

minimised. The benefit of Particle Filtering technique is that it allows to develop

PDF from any distribution, unlike Kalman Filter which develops PDF from normal

distribution (Fox et al., 2001). Gustafsson et al. (2002) presents an overview of Particle-

Filter-bsed localisation approaches. A distributed particle filter approach focuses on

improving robustness by introducing constant set function (Wu and Pei, 2013). In their

approach, data fusion techniques are used to increase focus on more relevant particles.

Such addition increases the accuracy of location estimation.

In another piece of research a hybrid approach is proposed for partial linear and

non-linear problem space. The proposed solution discussed the use of Kalman Filter

for linear part of a problem and incorporates it with Particle Filter. This approach

reduces the cost and complexity of the system (Schön et al., 2005).

In Simultaneous Localisation And Mapping (SLAM) problems, map of target area

needs to be learned and updated. Howard (2006) proposed a multiple robot-based

scheme to learn the map. This approach is quick and more accurate map can be

generated. However, use of multiple robots incur high resource consumption. Ren and

Meng (2009) further investigated this issue and proposed a solution based on multiple

power based transmissions. The proposed scheme increased efficiency of map learning.

The SLAM problem is investigated by few researchers and proposed a FastSLAM

algorithm (Montemerlo et al., 2002). In FastSLAM, the benefits of Kalman Filters and

Particle Filters are combined in such a way that Particle Filters represent posteriors for

several paths of mobile target and multiple Kalman Filters are linked to a each Particle
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Filter’s attribute, that is, feature of a map. FastSLAM algorithm also considers less

important features of a map and lowers its impact on estimation by reducing its weight

(Durrant-Whyte et al., 2003; Majumder et al., 2000).

Particle Filtering also offer solutions to develop service robots, where identification

of their position is prime requirement for rest of navigation. Schulz et al. (2001);

Montemerlo et al. (2002) focused in service robot solutions. In each of the developed

approach, Particle Filters were used to track objects. In the former approach, factored

Particle Filter was introduced that compute likelihood of particles based on received

measurements. In the later approach, features are extracted by comparison of maps,

that is, new map acquired by range measurements and previously constructed maps.

Another effort in localisation using Particle Filters in maps was proposed by Avots

et al. (2002).

Conditional Particle Filters are proposed by Montemerlo et al. (2002), in which

pose of a mobile target is located against several number of people sitting in the sur-

roundings. In this approach, large distribution function is constructed for people space

and mobile target’s position is located by comparing its small distribution function.

This approach is efficient as it is tolerant to sensor noise and uncertainty.

6.14 Summary

In this chapter, I introduced the Particle Filtering technique, its derivation, stages

and models. Based on the Particle Filtering technique, I developed novel PF-based

and PF-SSR-based localisation algorithms and presented their several steps in detail.

Particle Filtering is a common solution for tracking object problems that predicts the

state of a target through a motion model and updates the state estimation through a

measurement model. In train localisation, the location of the train is predicted through

the motion model. In the measurement model, two types of measurements are used

such as the geographic coordinates of anchor sensors and the signal strength of their

corresponding transmissions. RSSI reduces with the increase of distance between the

sender and the receiver as suggested by log-normal path loss model. However, there are

several environmental factors that can also influence the RSSI measurements such as

interference of other frequency channels, reflection of signal or multi-path fading. The

proposed Particle-Filtering-based train localisation algorithms relies on RSSI measure-

ments received from anchor sensors. Due to the fragile nature of RSSI, the localisation

accuracy gets affected and Particle Filter is used to increase the accuracy. However,
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Particle Filter uses location information of anchor sensors along with RSSI in mea-

surement model. Therefore, this novel measurement model enables the gateway sensor

on the train to minimise the negative influences on RSSI measurements by using the

geographic coordinates. The particles represent the location of the train with some

probabilities as their associated weights. A weighted RSSI-based likelihood function is

developed to assign and update the weights of the particles. The PF-based localisation

train algorithm is then improved by adding another step of signal strength rectification

in PF-SSR-based train localisation algorithm.

The proposed schemes are then evaluated through extensive simulations using real-

world RSSI measurements collected from experiments conducted in open field, railway

station and tunnel. The proposed train localisation algorithms are then compared in

context of their ability to minimise the localisation error under several deployment

density variations, train speed and reliability parameters. The results suggest that

by using Particle Filtering algorithm and suitable weighted RSSI likelihood function,

the location estimation error can be significantly reduced in all railway representative

environments. In the next chapter, I will present the consensus-based anchor sensor

management scheme to manage the anchor sensors deployed along the track.
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Chapter 7

Consensus-based Anchor-sensor

Management Scheme for Train

Localisation

In this chapter, I present the Consensus-based Anchor-sensor Management Scheme

(CAMS) for a WSN-based train localisation system. The proposed scheme enables

anchor sensors to dynamically figure out the faulty sensors among them by developing

consensus, and to report to the gateway sensor. Moreover, this scheme also helps

anchor sensors to develop consensus about the estimated path loss ratio to increase the

accuracy of WSN-based train localisation. In the remainder of the chapter, I describe

the simulation setup and results of CAMS based on the real-world collected data from

the field experiments.

7.1 Introduction

Railway systems have provided an important means of transport over the past hundred

years, with significant investments having been made in safety infrastructure. In recent

years, real-time train localisation is becoming more essential in meeting the need for

safety.

The anchor sensors along the railway track may suffer from the location errors

caused by software or hardware bugs. Therefore, they need to be re-calibrate their

geographic coordinates and send calculate the path loss of the signals. Moreover, the

presence of faulty sensors (Kaligineedi et al., 2010) in the system can also deteriorate

the accuracy of the location estimation. All these issues should be addressed in the
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WSN-based train localisation system. Manually sorting out such problems by human

beings incurs significantly higher costs. The management and maintenance of the

anchor sensors with the help of each other play an important role in the stability of

the whole localisation system.

Therefore, the need for a management scheme comes into play, which can enable

anchor sensors to detect the faulty sensors among themselves. The faults should be

reported to the gateway sensor for further analysis. Furthermore, the management

scheme should assist anchor sensors to estimate the path loss ratio of their signals,

which depends very much on the surrounding environment and affects directly the

distance estimation based on RSS. Such a management scheme can clearly improve

the accuracy of train localisation by excluding the faulty sensors and re-calibrating the

parameters of the anchor sensors like path loss ratio.

In this chapter, I propose a management scheme called CAMS (Consensus-based

Anchor-sensor Management Scheme) for our WSN-based train localisation system.

CAMS allows anchor sensors to share their opinions about trustworthiness of their

neighbour sensors and develop consensus to detect the faulty sensors.

The anchor sensors can automatically re-calibrate path loss ratio and geographical

coordinates. The main contributions of this work are summarised as follows.

- I propose a new CAMS for management and maintenance of anchor nodes in WSN-

based train localisation systems. CAMS uses a consensus-based approach to manage

anchor nodes in train localisation. Additionally our consensus algorithm uses history

data as well as the current data to reduce false detection ratio of faulty nodes and

increases the accuracy of the re-calibrated path loss ratio.

- CAMS is implemented in a simulated environment using MATLAB. The simulation

is based on the real data collected from field experiments in various environments

such as open field, train station and a tunnel.

- From the results collected from the simulations, I find that CAMS can effectively

detect the presence of faulty nodes in the system. The results show that, with the re-

calibration of the path loss ratio of the anchor nodes, the accuracy of train localisation

can be improved up to 15%.
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7.2 Challenges in the Sensors’ Management

The small size of sensor devices encouraged scientists and researchers to deploy large

networks in harsh environments. In such environments, aerial drop of sensor devices

is used as a deployment option. Along with associated benefits of small size devices,

there are some limitations on the capability of hardware resources, such as, limited

memory and power supply, and processing power. In rough environments, the limited

power supply is generally considered an important issue. Sensor devices self-configures

the network and lasts for limited network lifetime, days to months. Due to these

constraints, faults are expected to occur frequently, compared with wired networks.

The network availability and energy consumption has a trade-off and that is maintained

through the required objective of a network. Further, sensor devices are prone to

environmental conditions, such as fire, snow or rain, which may turn sensor devices

faulty. These faults can be malicious sensing data, inactive or delayed responses, etc.

For such reasons, sensor management in WSNs is an important aspect of research.

In the WSN-based train localisation system, sensors devices are exposed to the harsh

environment and are prone to several faults. Sensor devices can do self assessment to

report faults such as low battery power. Contrarily, if the hardware or software is not

capable enough to detect the existing faults, neighbouring sensor devices can detect

faults and faulty sensors among themselves. Sensor devices are also useful for estimat-

ing the path loss ratio to assist the gateway sensor to increase the accuracy of train

localisation. However, a faulty sensor node can elevate the results, consequently, com-

promising the accuracy of train localisation. In such scenarios, a sensor management

scheme can better serve the purpose in a cost effective way, compared with manually

sorting out faults in sensor network.

7.3 Problem Statement

In this chapter I consider a set ofm single hop anchor sensors denoted as {a1, a2, . . . , am},
as shown in Figure 7.1. I model the network as an undirected graph G = (V,E), where

V is the set of anchor sensors and E the set of communication links between the

sensors. An edge exists between any two sensors that are in each other’s communi-

cation range. As the anchor sensors in the network follow asynchronous duty-cycling

without any knowledge of sleep schedules of neighbouring anchor sensors, they must

wake up to perform the faulty sensor detection and calibration. Each anchor sensor
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derive an upper bound on the amount of sleep time
in one duty-cycle, and design a beacon-driven anchor
sensor wake-up protocol.

• We analyze the energy efficiency of our scheme, and
gave the optimal setting for the amount of sleep time
in one duty-cycle in terms of minimizing the total
energy consumption at each anchor sensor node.

• We evaluate the performance of our scheme through
simulations. Simulation results demonstrate that our
scheme can timely wake up anchor sensors at a very
low cost on energy consumption.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III describes the system
model and our research problems. Section IV gives the details
of the wake-up scheme for train localization. Section V ana-
lyzes the energy efficiency of our scheme. Section VI presents
the simulation results. Finally, Section VII concludes the paper
and sheds some lights on future work.

II. RELATED WORK

Existing wake up schemes can be divided into two classes:
synchronous wake-up and asynchronous wake-up. In syn-
chronous wake-up protocols, sensor nodes periodically wake
up at the same time to communicate with one another [6],
[7]. Since all the participating nodes have to synchronize
their clocks, synchronous duty-cycling is most appropriate for
single-hop networks in which all the nodes can hear each
another. The tracking scheme proposed in [8] is based on a
combinatorics approach that sets delay bound at maximum
target speed and it ignores the need of timely tracking of
objects under minimized energy consumption. However, real-
time train localization is not delay tolerant due to the fast train
speed. Also it is often difficult to predict at what time a train
will pass by which anchor sensor, and thus it is impossible
for synchronous duty-cycling protocols to use a static global
schedule for all nodes to wake up or sleep. Moreover, it is
nontrivial to synchronize the clocks of a large amount of sensor
nodes [9].

In asynchronous duty-cycling protocols, sensor nodes are
not required to synchronize their clocks with each other and
sensor nodes can wake up independently. Since there are fewer
communications among sensor nodes, asynchronous protocols
are more energy efficient than synchronous protocols. Existing
work on asynchronous wake-up schemes [10], [6] mainly
focuses on the tradeoff between energy efficiency (i.e. network
lifetime) and transmission latency. While our objective is to
guarantee timely sensor wake up with the minimum energy
consumption. Hence communication latency will affect the
accuracy and reliability of localization and is not tolerable.

Other related works include a variety of MAC protocols
designed based on asynchronous duty-cycling [11], [12], [13],
[14]. Asynchronous duty-cycling provides a periodic channel
sampling mechanism to detect potential transmissions. In order
to start transmission, a sensor node transmits a long preamble
packet to make it detectable by the neighbor nodes while each
neighbor node performs CCA checks. A neighbor sensor node
receives the preamble packet and prepares to receive data.
Asynchronous duty-cycling protocols such as B-MAC [11], X-
MAC [12] and Wise-Mac [13] deal with preamble packets in

a way that the transmitter takes the responsibility to activate
the receiver for data transmission. RI-MAC [14] eliminates
the overhead of the preamble packet by letting the receivers
initiate transmissions. However, these protocols are designed
for general purpose and not suitable for train localization.

III. SYSTEM MODELS AND PROBLEM STATEMENT

A. Network Model
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Fig. 1: A WSN network model for train localization

The network consists of two types of sensor nodes: anchor
sensors and gateway sensors, as shown in Figure 1. A set of
anchor sensors {a0, a1, ..., an} are uniformly deployed along
a straight track with equal distance da between any two
consecutive anchor nodes. Each anchor sensor is equipped
with a single radio transceiver with a transmission range
of Rc. We assume that each anchor sensor is hard-coded
with its geographic coordinates before deployment. A single
gateway sensor is installed on the train. The gateway sensor is
equipped with two radio transceivers: TSc and TSb. TSc is
used to communicate with the anchor sensors that fall into its
transmission range, and TSb is used to continually broadcast
beacon packets to activate the anchor sensors before they go
into the transmission range of TSc. The transmission range for
TSc and TSb is Rc and Rb, respectively. We assume that Rb

is larger than Rc. To avoid interference TSc and TSb operate
on two non-overlapping channels chc and chb respectively.
Each anchor sensor operates on both channels, that is, uses
chb during duty-cycling and switches to chc to communicate
with TSc. As shown in Figure 1, zone 1 is the region covered
by TSc, and zone 1, zone 2 and zone 3 are the region covered
by TSb.

The train localization scheme works as follows: as the
train moves, TSb continually broadcasts beacon packets. Each
beacon packet contains information of the current train location
and speed. Once an anchor sensor receives a beacon packet,
it stops duty-cycling and switches to channel chc to prepare
for communication with TSc. When an anchor sensor goes
into the transmission range of TSc, it sends its geographic
coordinates to the gateway sensor. After an anchor sensor fin-
ishes the communication with the gateway sensor, it switches
back to channel chb and resumes duty-cycling. Based on the
geographic coordinates received from anchor sensors as well
as the RSS information of the transmissions, the train location
will be computed at the gateway in a real-time manner.

B. Asynchronous Duty-Cycling Model

Each anchor switches between sleep and wake-up states
independently without global synchronization. Figure 2 shows
one duty cycle, in which an anchor sensor first sleeps for
tsleep second with its radio turned off, and then wakes up
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Figure 7.1: WSN-based Train Localisation System

sleeps for tubsleep time, which is computed as in Chapter 5. In CAMS, periodically, any

anchor sensor that wakes up continually broadcasts beacons for tubsleep to wake up its

neighbour sensors to detect faulty sensors and to calibrate. Once awoken, the anchor

sensors develop opinions about their neighbour sensors. The opinion of a neighbour

sensor includes the evaluation of the claimed location of the sensor. If the claimed

location of the neighbour sensor is found to be at the estimated distance according to

RSS with acceptable threshold, the opinion score of the neighbour increases; otherwise

opinion score decreases. The acceptable threshold depends upon the radio chipset’s

noise range, which is ±6dB for CC2420 radio chipset (Texas Instruments, 2003). Each

anchor sensor stores opinions about its neighbours in Neighbour Opinion Table (NOT).

The first problem I address is “how to make anchor sensors to communicate and

develop opinions about their neighbour sensors in the presence of asynchronous duty-

cycling”. The opinions are important for analysing the trustworthiness of neighbour

sensors. The untrusted anchor sensors, for example, faulty sensors must be reported

to the gateway sensor to eliminate their false input, which may affect the accuracy of

the WSN-based localisation system. To calculate opinion scores about the neighbour

sensors, they must be in wake-up state to communicate. In CAMS, BWS (as discussed

in Chapter 5) is used to enable anchor sensors to wake up.

The second problem is “how to evaluate their NOT in order to detect the faulty

sensors based on consensus of the received individual opinions”. Anchor sensors are

required to report NOT to each other. Each anchor sensor develops consensus based

on received NOTs and marks and eventually eliminates the faulty anchor sensors from

the system. The detection of such anchor sensors allows the gateway sensor to ignore

128



the inputs of the faulty anchor sensors and reduce the effects of their biased opinions.

The third problem I address is “how to assist the gateway sensor to estimate the

consensus-based re-calibration of path loss ratio estimated by the individual anchor

sensors”. The consensus-based re-calibration of path loss ratio helps the gateway sensor

to improve the accuracy of train localisation.

7.3.1 System Assumptions

CAMS is proposed under the following assumptions, though these assumptions can be

relaxed with slight modification of our existing system.

− Each anchor sensor is anchored at a fixed location along the railway track. They

cannot move without physical intervention. If a sensor is maliciously removed to a

different location, it will be treated as a faulty sensor in CAMS.

− The geographic coordinates of each sensor are hard-coded before deployment. How-

ever, the location information could be different later from the real location due to

sensor malfunction or malicious dislocation.

− The ID of an anchor sensor is unique and encrypted with the message using a shared

key. In the case of intrusion where the shared key is cracked and the ID is forged,

the sensor with the forged ID will be detected by CAMS as a faulty sensor due

to its peculiar behaviour such as incorrect claimed location. Though this is an

unsophisticated attack, but CAMS is capable of looking in to only these aspects

due to its focus on detection of faulty nodes. Other than this, CAMS is not capable

of detecting malicious nodes. All reports on faulty sensors will be sent urgently to

the management centre for immediate human response.

7.4 CAMS: Consensus-based Anchor sensor Man-

agement Scheme

CAMS enables anchor sensors to work in their consensus-based management. The

following sections discuss CAMS in detail.

7.4.1 Impacts of Faults in Anchor sensors

Anchor sensors provide gateway sensor with information such as geographic coordi-

nates. Therefore, to infer meaningful conclusions with the received information, its
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quality must be ensured. The potential occurrence of faults in the sensor network can

affect the data integrity, which can lead to wrong estimation of the train’s location.

There are several features that lead to faults in the sensors such as transducer input-

output detection range, sensor age, battery state, noise, sensor response hysteresis,

and dislocation. Input from anchor sensors with aforementioned faults can affect the

accuracy of WSN-based train localisation systems.

Over time, anchor sensors may not remain consistent with their hard-coded geo-

graphic coordinates due to change in their position by physical, unauthorised inter-

vention or because of sensor malfunction. This inconsistency leads to dissemination of

misinformation. Moreover, low battery states can also make anchor sensor’s parame-

ters such as path loss ratio deviate from the expected range. Similarly, environmental

effects such as weather can change those parameters to an unacceptable range.

CAMS allows anchor sensors to communicate with each other to detect such faulty

sensors based on consensus and assist the gateway sensor to neglect their inputs. In

addition, it allows anchor sensors to re-calibrate their path loss ratio to improve the

accuracy of WSN-based train localisation. It is worth noting that the assumption of

encrypted ID keeps the system safe from the intrusion of malicious sensors. However,

if a malicious sensor successfully breaks into the system with a forged duplicated ID,

it can be detected as a faulty sensor as soon as it starts to transmit wrong location

information. However, with any sophisticated attack, CAMS will not be able to detect

malicious behaviours. Here, it is worth mentioning that CAMS focus is to detect faulty

nodes and the security section of CAMS is part of future work.

7.4.2 Computation of Opinion Score

Periodically, anchor sensors perform calibration and exchange their opinion about each

other. When an anchor sensor wakes up to perform CAMS tasks, it continually broad-

casts beacons for tubsleep time to wake up its neighbour anchor sensors as given in the

BWS protocol. Once its single-hop neighbours are awoken and broadcast their location

information, it computes and stores the opinion scores of its neighbour sensors in its

NOT table. Initially, the opinion score computed by an anchor sensor about any of its

neighbours is zero as it knows nothing about the neighbour.

Suppose a neighbouring sensor ai broadcasts a packet to a sensor aj. The receiver

sensor aj develops its opinion about ai after examining the location information Locai

sent by ai. Let d be the distance between aj’s location Locaj and ai’s claimed location

Locai , and d′ be the distance estimated according to the log-distance path loss model
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in Eq. 7.1.

RSS(d′) = Ptx − PL(d0)− 10η log10

d′

d0

−X, (7.1)

The path loss model in Eq. 7.1 is a well-known radio propagation model (Xu et al.,

2010) that predicts the path loss a signal encounters over distance, and it has been

widely used for distance estimation.

Sensor aj computes its opinion about ai as follows. If the difference between the

estimated distance and the claimed distance of ai is within acceptable threshold (θ1),

aj gives a positive vote (v = 1) to ai; otherwise, aj casts a negative vote (v = 0) to ai.

The acceptable threshold depends upon the radio chipset’s noise range, which is ±6dB

for CC2420 radio chipset (Texas Instruments, 2003). The opinion is computed using

Eq. 7.2. It depends on the historic opinion as well.

O′j→i = pOj→i + (1− p)(1− |d− d
′|

θ1

)v, (7.2)

where, O′j→i is the update of the opinion about the trustworthiness that aj develops

about ai, p is the weight assigned to the historic opinion. The term (1− d−d′
θ1

) decreases

with the increase of deviation between d and d′ if the deviation is within the acceptable

threshold. If the deviation is larger than the threshold θ1, v is zero and the opinion is

gradually decreased to zero.

The above process is carried out in each sensor periodically. However, there is a

tradeoff between energy saving and the frequency of the process. Assuming the sensors

are not faulty very often, the process could be less frequent, say once a day. However,

the process could also be triggered by the gateway on the train if the gateway finds

the deviation of a sensor’s claimed location and its estimated location based on Eq.7.1

is larger than the threshold.

7.4.3 Consensus-based Faulty Sensor Detection

After the information exchange between the anchor sensors, each anchor sensor updates

its NOT. Then each anchor sensor broadcasts its location information, opinion about its

neighbours (NOT), transmission power (Ptx), date of deployment, and residual battery

level (which can be estimated as given in (Zhao et al., 2002)). Each sensor then

develops consensus according to the received opinions from other anchor sensors using

Eq. 7.3, where CS ′ai is the consensus score about the anchor sensor ai. It includes the
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averaged received opinions from other sensors and also incorporates historic consensus

score CSai with a weight q.

CS ′ai = qCSai + (1− q)
∑m

j=1 Oj→i

n
(7.3)

After the anchor sensors communicate and share their opinions with each other, if

the consensus score of a sensor is below a threshold (θc), that sensor is identified as

a faulty sensor and will be excluded from the trusted sensor list. This information is

communicated in a report to the gateway sensor during anchor-gateway communica-

tion. Similarly, each anchor sensor also marks the anchor sensors with residual battery

power under the acceptable threshold (θ2) as faulty anchor sensors. The ages of anchor

sensors are computed from the date of deployment and their recommended operational

period. Each anchor sensor receives the date of deployment of other sensors and com-

putes their age. A list of anchor sensors with their expiry date under a threshold (θa)

is reported back to the gateway sensor for possible replacement.

Algorithm 4: Detection of faulty anchor sensor by aj
1 for Each anchor sensor ai do
2 if |d− d′| ≤ θ1 then

3 O′j→i = pOj→i + (1− p)(1− d−d′
θ1

)

4 else
5 O′j→i = pOj→i

6 for Each anchor sensor ai do

7 CS′ai = pCSai + (1− p)
∑m

j=1 Oj→i

n
8 if CSai < θc then
9 Enlist ai as faulty anchor sensor

10 else
11 ai is a trustworthy anchor sensor

7.4.4 Consensus-based Calibrated Path Loss Ratio Estima-

tion

The anchor sensors can also calibrate the path loss ratio (η) in Eq. 7.1 to assist the

gateway sensor in the WSN-based train localisation. Each anchor sensor broadcasts its

transmitting power (Ptx) along with geographic coordinates, which help the receiving

anchor sensors to estimate the attenuation rate of signal strength, called path loss ratio.
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Eq. 7.4 defines the simplified equation for an anchor sensor aj to calculate ηai :

ηai =
P d0
tx − P d′

rx

10logd′
, (7.4)

where P d′
rx is the receiving power. Each anchor sensor receives the calculated ηai from

other anchor sensors and calculates the consensus η′cs as shown in Eq. 7.5. The equation

considers the weighted averages of the received η according to the consensus scores

of the corresponding sensors. This gives more weight to the trusted anchor sensors’

estimation. In addition, an anchor sensor also considers the historic path loss ratio ηcs

when updating η′cs and r is the weight assigned to the historic path loss ratio.

η′cs = rηcs + (1− r)
∑n

i=1 ηaiCSai∑n
i=1 CSai

(7.5)

7.4.5 Reporting to Gateway

Each anchor sensor updates the gateway sensor about the new path loss ratio η, and

updates a list of faulty sensors when train passes. The gateway sensor later on updates

the human resource involved in the management of the anchor sensors to undertake

the necessary steps in rectification of faults or removal of faulty sensors. In the long

run such management improves the accuracy and lifetime of the system, as shown in

the next section.

7.4.6 Analysis of CAMS in the Localisation System

In the CAMS, anchor sensors are capable of detecting the faulty nodes among each

other. The Particle Filtering based train localisation system depends on the input of

anchor sensors. The proposed localisation scheme operates on several functions such as,

weighted RSSI function. One of the weighted RSSI function, that is, single strongest

RSSI function, allows the Particle Filtering based train localisation system to estimate

the location of a train even if the RSSI is received from one sensor within communication

Zone 1. This implies that if a single anchor sensor is working fine and others become

faulty, localisation system can work fine. However, the accuracy of location estimation

will be reduced. On the other side, railway operators will be required to put a threshold

on the number of faulty nodes before a maintenance operation can start.
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7.5 Performance Evaluation

In this section, I will discuss the implementation of our CAMS scheme to assist the

overall maintenance of the train localisation system. In our simulation, CAMS scheme

is implemented, which enables the anchor sensors to coordinate and mark the faulty

sensors among them, notify the faults, and calculate the path loss ratio to assist the

gateway sensor to increase the accuracy of the train localisation.

The radio characteristics of the anchor and gateway sensors used in our analysis are

taken from CC2420 chipset data sheet (Texas Instruments, 2003). All simulations are

run independently and their results are averaged for all iterations. The performance

metrics I have evaluated are consensus score, opinion score, path loss ratio estimation,

and distance estimation error. The other simulation parameters are deployment den-

sity, average number of received packets, weights for historic opinion and consensus

score, and weights for historic path loss ratio. In order to perform these computations,

sensor devices are capable of doing such computations.

7.5.1 Simulation Setup

Simulations have been done on a MATLAB simulator. In simulations, I have used real

data collected from field experiments in railway representative environments such as

open field, railway station, and tunnel. However, the faulty sensors are incorporated in

simulations through a random sensor failure model on top of RSSI measurements. Our

experiments are based on several Maxfor’s MTM sensor platforms (MTM, 2012) such

as MTM-CM3300, MTM-CM5000, and MTM-CM4000 with transmission ranges of

800 m, 150 m, 150 m, respectively. Moreover, in our field experiments, I have deployed

anchor sensors in several deployment density settings to collect RSS measurements.

The simulation results show how different variables shape the opinion and consensus

score of anchor sensors that assist each anchor sensor to mark the faulty anchor sensors.

The consensus threshold θc = 0.4 is calculated based on average difference between

consensus scores of trusted and faulty sensor over 500 iterations. In the simulation

results, I have simulated opinion score with different values of p, q and r to show the

pros and cons of large and small historic weights. However, a systematic calculation

of these values is yet not incorporated. However, the systematic calculation of these

variables depends on the system parameters, such as, number of neighbours, or number

of received packets, which is related to time allowed for communication between anchor

sensors. The longer time period is better but it has a tradeoff with energy consumption.
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The detailed configurations for the simulation parameters are given in Table 7.1.

Table 7.1: Simulation Parameters (CAMS)

Parameters Values

No. of 1-hop anchor sensors 25
Average Received Packets 25

p 0.5
r 0.5
θc 0.4

Voltage 3.0v
θ1 5 m
q 0.5
θ2 5%
0.4 θa

7.5.2 Detection of Faulty Anchor Sensors

Each anchor sensor develops an opinion about its neighbour anchor sensors by receiving

packets. The opinion score categorises anchor sensors as trusted or faulty based on

difference between the claimed and estimated distance. The number of received packets

also affects the computation of opinion score about sending anchor sensor. In the

first set of results, I have 2 faulty anchor sensors in the system. Fig. 7.2 shows the

opinion scores of both faulty anchor sensors and a trusted anchor sensor calculated

by a trusted anchor sensor. It can be seen that the opinion score fluctuates a lot

when the weight of the historic opinion is small such as p = 0.1 as shown in Fig. 7.2a.

However, opinion about other anchor sensors becomes more stable with the increase

in the weight assigned to historic opinion score to 0.5 and 0.9, respectively, as shown

in Figs. 7.2b and 7.2c. This takes more number of packets by sender to develop an

opinion score about it and thus takes longer to pass the threshold of trustworthiness

(θc). Here, it can also be seen that small number of packets transmitted may not

yield consolidated results. Therefore, large number of packets need to be transmitted

between anchor sensors. Further, the cause of fluctuations in opinion scores is because

of lack of system maturity. Here, system maturity means the availability of data.

System maturity increases (fluctuations will be reduced) with increasing history score

or by increased number of received packets.

Each anchor sensor compiles the consensus score from opinions received from other

anchor sensors. In our simulation, the number of neighbouring anchor sensors varies
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Figure 7.2: Opinion Score Computed by an Anchor Sensor

from 5 to 25, which is called deployment density. As sensor devices have transmission

ranges of 150 m and 800 m, these number of neighbouring sensor devices can develop

sparse to lightly dense network deployment scenarios. In Fig. 7.3, I have shown con-

sensus score computed by a trusted sensor about 3 anchor sensors: 1 trusted anchor

sensor, and 2 faulty anchor sensors. In Figs. 7.3a, 7.3b, and 7.3c, it shows the impact of

weight factor given to the past consensus score, which is 0.1, 0.5, and 0.9, respectively.
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Figure 7.3: Consensus Score to Mark the Faulty Anchor Sensor

It can be seen that if the consensus score, CSai , relies least on the historic data the

score is significantly high for trusted anchor sensor even if the claimed location deviates

to the far extent within the acceptable margin. However, if I increase the weight per-

centage to 0.5 and 0.9 it takes more opinions from multiple anchor sensors to develop

the consensus score and it takes more time to see the decline in the consensus score of

a trusted sensor, which turns out to be faulty later on.
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7.5.3 Estimation of Path Loss Ratio
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Figure 7.4: Impact of Consensus-based Path Loss Ratio Estimation

The estimation of consensus-based path loss ratio represents the real-world signal

attenuation rate in a particular environment. Such a parameter assists the gateway

sensor to improve the accuracy of WSN-based train localisation. The consensus-based

path loss ratio based on calibrated path loss ratio estimated by each anchor sensor

and its impact on the accuracy of the localisation system are shown in Figs. 7.4a and

7.4b, respectively. Fig.7.4a presents the path loss ratio calibrated by three trusted

anchor sensors. It can be seen that because of signal reflections, each anchor sensor’s

path loss ratio fluctuates significantly, which is based on RSS. However, I can see that

the consensus based path loss ratio is relatively more stable and it improves with the

increase in the number of packets received. The impact of consensus-based path loss

ratio for localisation error is shown in Fig 7.4b. The localisation error ranges from

0.22 m to 0.04 m and then drops down to 0.06 m to 0.001 m while using consensus-

based path loss ratio. This improves the localisation accuracy from almost 5% to 15%,

which means the error range decreases with use of more appropriate path loss exponent.
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7.6 Related Work

Management of sensors in the WSNs is an important research issue for the stability of

the system (Yu et al., 2007). In particular the safety related application, such as train

localisation, creates significant increase in the importance of sensors post deployment

maintenance and management. It includes the calibration of anchor sensors, detection

of possible faults and malicious entity in the system. Along with these typical research

benefits, anchor sensor management schemes can also assist the gateway sensor to

estimate the attenuation rate of signal strength to increase the localisation accuracy.

Marti et al. (2000) proposed watchdog and pathrater techniques to monitor the com-

promised sensors in the ad-hoc networks scenarios. In the proposed scheme, watchdog

identifies the existence of compromised nodes and pathrater technique tries to establish

route for communication by ignoring those malicious nodes. Together watchdog and

pathrater improve the system performance overall.

Though the cooperative sensing is an important technique to observe the phe-

nomenon of interest in the WSNs, it raises new concerns about the reliability and the

security, as expressed by Mishra et al. (2006). The malicious users may get access to

the network and can affect the aggregated data because by default every sensor trusts

the other neighbouring sensors. Moreover, the work in (Song and Zhang, 2008; Zhou

et al., 2010) discuss the drawback of cooperative sensing for large scale networks in

which synchronisation is another uphill task to achieve, and it gets worse with the

duty-cycling sensors.

Kaligineedi et al. (2008) discuss the detection of outlier values to filter out prior to

manipulation. It computes the trust factor to rate the reliability of user that is used as

a weighting factor in the calculation of mean values of received data. However, authors

extended their idea of cooperative sensing in (Kaligineedi et al., 2010) and used it to

detect the malicious users by the received outlier values.

Srinivasan et al. (2006) uses an interesting idea of a majority voting scheme in

which each beacon sensor with a known location computes the repute of other beacon

sensors and caste votes upon request by other sensors to judge the trust factor of that

beacon. However, if a beacon sensor pretends to be a legitimate sensor for some time

until it gains positive repute, it may not be detected as malicious if later it starts to

spread misinformation.

The sensors can also inform the gateway sensor about their residual energy level,

which is one of indication of sensor failures. Zhao et al. (2002) proposed a technique to
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monitor every level using local energy level aggregations. Each individual sensor scans

its energy and reports the range of residual energy to the gateway which aggregates the

results and send it to the servers. However, in (Mini et al., 2004) the authors presented

a technique to generate the energy map in which a sink uses local information received

from sensors to update energy level based on the activity performed at each sensor.

Sensors can also assist the gateway sensor to estimate the path loss ratio. Srinivasa

and Haenggi (2009) presented a technique that takes empirical and analytical distribu-

tion of received mean power to estimate the path loss ratio by comparing the empirical

and theoretical distribution. However, in (Mao et al., 2007) Cayley-Menger determi-

nant was proposed to determine the geometric constraints that are used to estimate

the path loss ratio.

7.7 Summary

In this chapter I have presented a novel consensus-based anchor sensor management

scheme to assist the WSN-based train localisation system for management of anchor

sensors deployed along the track. CAMS works on the mutual cooperation and con-

sensus based theory to detect the faulty anchor sensors, report the faults, and assist

the gateway sensor in the estimation of path loss ratio. CAMS is implemented in a

simulated environment using MATLAB. The simulation is based on the real data, RSS

measurements, collected from field experiments in various environments such as open

field, train station and a tunnel. Sensor node failure mode is executed in simulation on

top of real-world RSS measurements. From the results collected from the simulation,

it is observed that CAMS can effectively detect the presence of faulty sensors in the

system. Our results show that, with the re-calibration of the path loss ratio of the an-

chor sensors, the accuracy of train localisation can be improved. Moreover, it is shown

that the proposed scheme is robust in dense networks and can detect the presence of

faulty sensors.
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Chapter 8

Conclusions and Future Work

In this dissertation, I have presented a WSN-based train localisation system using

Particle Filtering technique and incorporating RSSI measurements. Simulation results

have shown that the proposed system is able to estimate the train’s location with high

accuracy. Moreover, WSNs provide additional benefits such as assisting train with

path loss ration estimation and fault diagnostics among sensor nodes along the track.

In this chapter, I summarise my contributions and discuss potential future research.

8.1 Conclusions

A train localisation system is a core component to ensure the safety and reliability in

railway transportation. The commonly used technology is GPS, which heavily depends

on line-of-sight with the satellites. There are several scenarios when GPS devices are

unable to get clear sky for connectivity and location computation, known as GPS

dark regions. In this research work, a train localisation system has been envisioned

that could provide the position of a train when localisation systems based on GPS or

other technologies are not feasible. This PhD project has progressed to the point of

proposing and testing through simulations a WSN-based train localisation that is low

in cost and conserves energy by opting the duty-cycling. The system architecture of the

WSN-based train localisation system includes two type of sensor nodes: gateway sensor

node and anchor sensor nodes, where a gateway sensor node has rich resources and is

installed on the train, and anchor sensor nodes with their known locations are deployed

along the railway track and have low-capacity in terms of energy and computation.

This thesis has described three components of a WSN-based train localisation sys-

tem: Beacon-driven Wake-up Scheme (BWS), Particle-Filter-based train localisation
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scheme and Consensus-based Anchor sensor Management Scheme (CAMS).

The first component of the WSN-based train localisation system, BWS scheme is

presented to wake up the anchor sensors when train is approaching them. As the

anchor sensors are powered through batteries and operate on duty-cycles to conserve

the energy that could have been wasted in unnecessary waiting in the idle listening

state. The beacon-driven sensor wake-up scheme (BWS) is developed to guarantee

timely communication between anchor sensors and the gateway sensor with minimum

energy consumption, which is a challenging problem for WSN-based train localisation.

BWS plays an essential role in minimising the energy consumption by each of the

anchor sensors and, consequently, prolonging the network lifetime. BWS establishes

the upper bound on the anchor sensor sleep time within one duty-cycle in order to

guarantee timely wake-up. Furthermore, a theoretical analysis of the energy efficiency

of BWS is presented and performance of the scheme is evaluated through extensive

simulations.

In the second component of the WSN-based train localisation system, Particle-

Filtering-based train localisation algorithms (PF and PF-SSR) are developed, which

use the geographic coordinates from anchor sensors and the received signal strength

information of the corresponding transmissions to compute the location of the train.

The developed localisation schemes use the combination of RSSI-based distance esti-

mation and particle filtering techniques. In addition, a novel Weighted RSSI Likelihood

Function (WRLF) is developed for particle update, based on the special characteristics

the train movement. To evaluate the performance of the presented schemes, extensive

simulations are performed on the data obtained from the on-site experiments. Simula-

tion results show that the proposed schemes can achieve significantly high localisation

accuracy, such as under 10 cm. Moreover, proposed scheme is robust to the changes of

train speed and the deployment density of the anchor sensors. The proposed schemes

are evaluated in several conditions such as sparse deployment, unreliable anchor sen-

sors’ wake-up (40% anchor sensors fail to wake up) and high train speed up to 40 m/s.

PF-SSR scheme manages to keep the average localisation error under 10 cm while eval-

uating each one of these factors’ worst test cases independently. The PF-based train

localisation scheme keeps the average location error under 30 cm in all cases.

In the third component of this thesis, the CAMS scheme is developed to assist the

train localisation system for management of anchor sensors deployed along the track.

CAMS works on the mutual cooperation and consensus-based theory to detect the

faulty anchor nodes, report the faults, and assist the gateway node in the estimation
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of path loss ratio. Such additional help improves the performance of the developed

system. It is shown through simulation that the proposed scheme is robust in dense

networks, can detect the presence of faulty sensor nodes and calibrate the path loss

ratio.

In conclusion, this thesis has shown that WSN can be used in an alternative local-

isation system that can operate in GPS-dark regions. This system can achieve high

accuracy and duty-cycling helps to reduce energy consumption at each node. Such

energy saving impact at individual nodes has cumulative effect on the whole system.

Particle Filter enables accurate location estimates for trains in a wide range of diffi-

cult railway environments, through the use of a measurement model such as RSSI and

geographic coordinates of anchor sensors. This has been shown to increase the ability

of distance estimation through RSSI compared with typical approaches that do not

perform well with RSSI in certain environments. Furthermore, the WSN-based train

localisation system was able to be evaluated on several datasets, collected from field

experiments. Finally, the WSN-based train localisation system is able to provide addi-

tional benefits, such as assisting gateway with path loss ratio estimation and automatic

diagnostics to report faults in the system.

8.2 Future Work

The contributions of this thesis raise the following issues for future research:

• In future, I plan to implement my proposed system in the railway system to

validate my methods on a real system.

• A study on the impact of using a heterogeneous sensor network can be conducted.

Such study will help to explore the insights of cross platform sensor nodes’ per-

formance in WSN-based train localisation systems.

• In future, the development of train localisation systems based on technologies

other than WSN such as RFID, WLAN and GPS is an important milestone.

The estimated location from each of the implemented technologies can then be

incorporated through the data fusion technique to raise accuracy.

• I have not addressed the security issues in the management and communication

between sensors. The security issues can be addressed at the infrastructure level

in future to make a WSN-based localisation system more secure.
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• I plan to develop an application for a train localisation system that will display

the current location of the train on a map (Heirich et al., 2013).
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