7,634 research outputs found

    Expanding cellular coverage via cell-edge deployment in heterogeneous networks: spectral efficiency and backhaul power consumption perspectives

    Get PDF
    Heterogeneous small-cell networks (HetNets) are considered to be a standard part of future mobile networks where operator/consumer deployed small-cells, such as femtocells, relays, and distributed antennas (DAs), complement the existing macrocell infrastructure. This article proposes the need-oriented deployment of smallcells and device-to-device (D2D) communication around the edge of the macrocell such that the small-cell base stations (SBSs) and D2D communication serve the cell-edge mobile users, thereby expanding the network coverage and capacity. In this context, we present competitive network configurations, namely, femto-on-edge, DA-onedge, relay-on-edge, and D2D-communication on- edge, where femto base stations, DA elements, relay base stations, and D2D communication, respectively, are deployed around the edge of the macrocell. The proposed deployments ensure performance gains in the network in terms of spectral efficiency and power consumption by facilitating the cell-edge mobile users with small-cells and D2D communication. In order to calibrate the impact of power consumption on system performance and network topology, this article discusses the detailed breakdown of the end-to-end power consumption, which includes backhaul, access, and aggregation network power consumptions. Several comparative simulation results quantify the improvements in spectral efficiency and power consumption of the D2D-communication-onedge configuration to establish a greener network over the other competitive configurations

    Modeling and Analysis of HetNets with mm-Wave Multi-RAT Small Cells Deployed Along Roads

    Full text link
    We characterize a multi tier network with classical macro cells, and multi radio access technology (RAT) small cells, which are able to operate in microwave and millimeter-wave (mm-wave) bands. The small cells are assumed to be deployed along roads modeled as a Poisson line process. This characterization is more realistic as compared to the classical Poisson point processes typically used in literature. In this context, we derive the association and RAT selection probabilities of the typical user under various system parameters such as the small cell deployment density and mm-wave antenna gain, and with varying street densities. Finally, we calculate the signal to interference plus noise ratio (SINR) coverage probability for the typical user considering a tractable dominant interference based model for mm-wave interference. Our analysis reveals the need of deploying more small cells per street in cities with more streets to maintain coverage, and highlights that mm-wave RAT in small cells can help to improve the SINR performance of the users.Comment: A 7-page version is submitted to IEEE GLOBECOM 201

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    Large-scale Spatial Distribution Identification of Base Stations in Cellular Networks

    Full text link
    The performance of cellular system significantly depends on its network topology, where the spatial deployment of base stations (BSs) plays a key role in the downlink scenario. Moreover, cellular networks are undergoing a heterogeneous evolution, which introduces unplanned deployment of smaller BSs, thus complicating the performance evaluation even further. In this paper, based on large amount of real BS locations data, we present a comprehensive analysis on the spatial modeling of cellular network structure. Unlike the related works, we divide the BSs into different subsets according to geographical factor (e.g. urban or rural) and functional type (e.g. macrocells or microcells), and perform detailed spatial analysis to each subset. After examining the accuracy of Poisson point process (PPP) in BS locations modeling, we take into account the Gibbs point processes as well as Neyman-Scott point processes and compare their accuracy in view of large-scale modeling test. Finally, we declare the inaccuracy of the PPP model, and reveal the general clustering nature of BSs deployment, which distinctly violates the traditional assumption. This paper carries out a first large-scale identification regarding available literatures, and provides more realistic and more general results to contribute to the performance analysis for the forthcoming heterogeneous cellular networks
    • …
    corecore