52 research outputs found

    Connections Between Computation Trees and Graph Covers

    Get PDF
    Connections between graph cover pseudocodewords and computation tree pseudocodewords are investigated with the aim of bridging the gap between the theoretically attractive analysis of graph covers and the more intractable analysis of iterative message-passing algorithms that are intuitively linked to graph covers. Both theoretical results and numerous examples are presented

    Minimum Pseudoweight Analysis of 3-Dimensional Turbo Codes

    Full text link
    In this work, we consider pseudocodewords of (relaxed) linear programming (LP) decoding of 3-dimensional turbo codes (3D-TCs). We present a relaxed LP decoder for 3D-TCs, adapting the relaxed LP decoder for conventional turbo codes proposed by Feldman in his thesis. We show that the 3D-TC polytope is proper and CC-symmetric, and make a connection to finite graph covers of the 3D-TC factor graph. This connection is used to show that the support set of any pseudocodeword is a stopping set of iterative decoding of 3D-TCs using maximum a posteriori constituent decoders on the binary erasure channel. Furthermore, we compute ensemble-average pseudoweight enumerators of 3D-TCs and perform a finite-length minimum pseudoweight analysis for small cover degrees. Also, an explicit description of the fundamental cone of the 3D-TC polytope is given. Finally, we present an extensive numerical study of small-to-medium block length 3D-TCs, which shows that 1) typically (i.e., in most cases) when the minimum distance dmind_{\rm min} and/or the stopping distance hminh_{\rm min} is high, the minimum pseudoweight (on the additive white Gaussian noise channel) is strictly smaller than both the dmind_{\rm min} and the hminh_{\rm min}, and 2) the minimum pseudoweight grows with the block length, at least for small-to-medium block lengths.Comment: To appear in IEEE Transactions on Communication

    Tree-Based Construction of LDPC Codes Having Good Pseudocodeword Weights

    Full text link
    We present a tree-based construction of LDPC codes that have minimum pseudocodeword weight equal to or almost equal to the minimum distance, and perform well with iterative decoding. The construction involves enumerating a dd-regular tree for a fixed number of layers and employing a connection algorithm based on permutations or mutually orthogonal Latin squares to close the tree. Methods are presented for degrees d=psd=p^s and d=ps+1d = p^s+1, for pp a prime. One class corresponds to the well-known finite-geometry and finite generalized quadrangle LDPC codes; the other codes presented are new. We also present some bounds on pseudocodeword weight for pp-ary LDPC codes. Treating these codes as pp-ary LDPC codes rather than binary LDPC codes improves their rates, minimum distances, and pseudocodeword weights, thereby giving a new importance to the finite geometry LDPC codes where p>2p > 2.Comment: Submitted to Transactions on Information Theory. Submitted: Oct. 1, 2005; Revised: May 1, 2006, Nov. 25, 200

    A Unified Framework for Linear-Programming Based Communication Receivers

    Full text link
    It is shown that a large class of communication systems which admit a sum-product algorithm (SPA) based receiver also admit a corresponding linear-programming (LP) based receiver. The two receivers have a relationship defined by the local structure of the underlying graphical model, and are inhibited by the same phenomenon, which we call 'pseudoconfigurations'. This concept is a generalization of the concept of 'pseudocodewords' for linear codes. It is proved that the LP receiver has the 'maximum likelihood certificate' property, and that the receiver output is the lowest cost pseudoconfiguration. Equivalence of graph-cover pseudoconfigurations and linear-programming pseudoconfigurations is also proved. A concept of 'system pseudodistance' is defined which generalizes the existing concept of pseudodistance for binary and nonbinary linear codes. It is demonstrated how the LP design technique may be applied to the problem of joint equalization and decoding of coded transmissions over a frequency selective channel, and a simulation-based analysis of the error events of the resulting LP receiver is also provided. For this particular application, the proposed LP receiver is shown to be competitive with other receivers, and to be capable of outperforming turbo equalization in bit and frame error rate performance.Comment: 13 pages, 6 figures. To appear in the IEEE Transactions on Communication
    • …
    corecore