
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications, Department of Mathematics Mathematics, Department of

2009

Connections Between Computation Trees and
Graph Covers
Deanna Dreher
University of Nebraska - Lincoln

Judy L. Walker
University of Nebraska - Lincoln, judy.walker@unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mathfacpub

Part of the Applied Mathematics Commons, and the Mathematics Commons

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Faculty Publications, Department of Mathematics by an authorized administrator of DigitalCommons@University
of Nebraska - Lincoln.

Dreher, Deanna and Walker, Judy L., "Connections Between Computation Trees and Graph Covers" (2009). Faculty Publications,
Department of Mathematics. 170.
https://digitalcommons.unl.edu/mathfacpub/170

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/224735558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/mathfacpub/170?utm_source=digitalcommons.unl.edu%2Fmathfacpub%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages

Connections Between Computation Trees and Graph
Covers

Deanna Dreher and Judy L. Walker
Department of Mathematics

University of Nebraska–Lincoln
Lincoln, NE 68588, USA.

Email: {s-dturk1, jwalker}@math.unl.edu

Abstract—Connections between graph cover pseudocodewords
and computation tree pseudocodewords are investigated with
the aim of bridging the gap between the theoretically attractive
analysis of graph covers and the more intractable analysis of
iterative message-passing algorithms that are intuitively linked
to graph covers. Both theoretical results and numerous examples
are presented.

I. I NTRODUCTION

Low density parity-check codes, along with their iterative
message-passing decoders such as min-sum and sum-product,
have been shown to achieve good bit error rates and perform
close to capacity on channels of practical interest. While
these iterative message-passing decoders are optimal on trees,
iterative message-passing decoders are, in general, computa-
tionally efficient sub-optimal decoders for low density parity-
check codes, and their efficiency makes them ideal for im-
plementation. On the other hand, there is still little theoretical
understanding of the effectiveness of these codes. One notable
contribution in this direction is that of density evolution,
which examines ensembles of codes [8], [9]. However, density
evolution does not explain the non-codeword errors that arise
in iterative message-passing decoding of a particular code.

The iterative message-passing decoders work, roughly
speaking, as follows: initially, probabilities are assigned to
each variable node based on the received word. The variable
nodes send their information to their neighboring check nodes,
which make calculations based on the information they receive
and send some information back to their neighboring variable
nodes. The variable nodes make some calculations with the
information coming in from their neighboring check nodes
and their original information, and send another message to
their neighboring check nodes; this process continues until a
stopping criteria is reached.

In particular, the decoders work locally: at each step of the
algorithm, all that is needed for a particular vertex to makeits
calculation is data stored at that vertex and at its immediate
neighbors. Intuitively, this leads one to considerfinite coversof
the Tanner graph, which look locally identical to the original
Tanner graph but may be significantly larger.

Based on this intuition, many authors (see, e.g., [5], [6],
[10]) have studiedgraph cover pseudocodewords, developing
both a rich general theory and examining several specific
examples in great detail. For example, zeta functions have

been used to cleanly characterize pseudocodewords of cycle
codes, and the fundamental cone gives a compact description
of pseudocodewords for general codes. Additionally, there
has been significant progress in characterizing problematic
pseudocodewords for certain families of codes, such as codes
constructed using finite geometries [7].

On the other hand, one thing we know for sure about both
the min-sum and sum-product algorithms is that their behavior
on Tanner graphs is precisely modeled by their behavior on
computation trees. More precisely, Wiberg [11] showed that
the output of the min-sum algorithm afterm iterations is the
vector whoseith entry is the value assigned to the root node by
a minimal cost configuration on a computation tree of depth
m rooted at theith variable node.

The downside of Wiberg’s characterization of these iterative
message-passing algorithms is that computation trees are ex-
tremely difficult to study. Their size grows exponentially with
each iteration, and the number of configurations on a tree is
typically exponential with the size of the tree.

Thus, we seek a way to connect the well-developed theory
of graph covers and graph cover pseudocodewords to the much
less well-developed, but more precisely related to decoding,
theory of computation trees. One approach to this problem
is via theuniversal coverof the Tanner graph. The universal
cover is simultaneously the infinite computation tree of the
Tanner graph (for any root node) and a cover of the Tanner
graph that also covers every finite connected cover of the
Tanner graph. Thus, if one can fully understand configurations
on the universal cover and devise a decoder on the universal
cover that simultaneously extends both graph cover decoding
[10] and min-sum decoding, then one can possibly use the
theory of graph covers and graph cover pseudocodewords
to better understand computation trees and computation tree
pseudocodewords, and, ultimately, the behavior of min-sum
decoding. This is precisely what is attempted by the authors
and their collaborators in [2]–[4].

In this paper, we take a different approach. Rather than
lift computation trees and graph covers up to the universal
cover and then come back down, we aim to relate computation
trees and graph covers more directly. The remainder of this
section introduces some definitions and relevant background.
In Section II we give theoretical results on the relationship
between the set of graph cover configurations and the set

proyster2
Typewritten Text
Published in 2009 Information Theory and Applications Workshop (2009) DOI: 10.1109/ITA.2009.5044971

proyster2
Typewritten Text

of computation tree configurations, and we present examples
illustrating these results in Section III.

We now formalize some of the above discussion with the
following definitions.

Definition 1.1: An unramified cover, or simply acover, of
a finite graphG is a graphG̃ along with a surjective graph
homomorphismπ : G̃ → G, called acovering map, such that
for each vertexv of T and each̃v ∈ π−1(v), the neighborhood
of ṽ is mapped bijectively to the neighborhood ofv. For a
positive integerM , an M -cover of G is coverπ : G̃ → G

such that for each vertexv of G, π−1(v) contains exactlyM
vertices ofG̃. If G̃ is anM -cover ofG, we say thedegreeof
G̃ is M .

We say that a graphG is connectedif, for any two vertices
u, v of G, there is a pathu = v0, v1, . . . , vk = v from u to v

in G. In the remainder of this paper, we will assume that the
Tanner graphs for our codes are connected.

Definition 1.2: Let G = (X ∪ F,E) be a bipartite graph.
A configurationon G is a an assignmentc = (cx)x∈X of 0’s
and 1’s to the vertices inX such that for eachf ∈ F , an even
number of the neighbors off are assigned a 1 and the rest
are assigned a 0.

Given a Tanner graphT with variable nodesx1, . . . , xn

and anM -cover π : T̃ → T of T , we label the elements of
π−1(xi) asxi,1, . . . , xi,M .

Definition 1.3: Let T be a Tanner graph for a binary linear
code C and let c̃ = (c1,1, . . . , c1,M : · · · : cn,1, . . . , cn,M)

be a configuration on someM -cover T̃ of T . Two kinds
of graph cover pseudocodewordsare associated tõc: The
unscaledgraph cover pseudocodeword corresponding toc̃ is
the vector

p(c̃) = (p1, . . . , pn)

of nonnegative integers, where, for1 ≤ i ≤ n,

pi = #{j | ci,j = 1}.

The normalizedgraph cover pseudocodeword corresponding
to c̃ is the vector

ω(c̃) =
1

M
p(c̃).

Definition 1.4 (Wiberg [11]):Let T be a Tanner graph, and
assume an iterative message-passing algorithm has been runon
T for a total ofm iterations, where a single iteration consists
of message-passing from the variable nodes to the check nodes
and then back to the variable nodes. Thedepthm computation
tree for T with root nodev is the treeR obtained by tracing
the computation of the final cost function of the algorithm at
the variable nodev of T recursively back through time, along
with a surjective graph homomorphismπ : R → T , such that
for each vertexv of T and each̃v ∈ π−1(v) that is not on
level m, the neighborhood of̃v is mapped bijectively to the
neighborhood ofv.

Since computation trees are necessarily connected, any
computation tree configuration that is induced by a graph
cover configuration is induced by a connected graph cover
configuration. Thus, it is important to determine which graph
cover pseudocodewords have connected realizations.

The authors and their collaborators have shown [1] that with
a very basic restriction on our Tanner graph, every normalized
graph cover pseudocodeword has a connected realization. The
restriction on the Tanner graph is given by

ac

(
1 −

1

av

)
≥ 2,

where ac and av are the average check node degree and
average variable node degree, respectively. Thus, for the
majority of practical codes and a significant portion of cycle
codes, every normalized graph cover pseudocodeword has a
connected realization, and so every normalized graph cover
pseudocodeword induces computation tree configurations. The
inverse question of which computation tree configurations are
induced by graph cover configurations is investigated in the
next section.

II. REALIZATIONS OF COMPUTATION TREE

PSEUDOCODEWORDS

A different way to ask how computation tree configurations
and graph cover pseudocodewords relate is to ask whether,
given a computation tree configuration, there is a graph cover
configuration that induces it. As a first step in this direction,
we show that every computation tree is contained in a finite
cover of the Tanner graph.

Proposition 2.1:Let T be a Tanner graph and let(R, πR)
be a computation tree forT . Then there exists a finite cover
(T̃ , π eT

) that contains a subgraph isomorphic to(R, πR). More
precisely, letT ′ be any spanning tree ofT and let M be
the number of connected components ofπ−1

R (T ′) in R. Then
there is anM -cover(T̃ , π eT

) of T that contains a subgraphS
such that there is a graph isomorphismφ : S → R satisfying
πR ◦ φ = π eT

|S .
Proof: Note that the final condition of the proposition

says thatT̃ contains a subgraphS that is isomorphic toR in
a way that respects the labels on the nodes, i.e. ifx is a node
in R that is a copy of the vertexv of T , then the corresponding
node inS is also a copy ofv in T̃ .

Let T ′ be a spanning tree ofT and letM be the number
of connected components ofπ−1

R (T ′) in R. Since there are at
mostM copies of each vertexv of T in R, we may first form
a forestR∗ by taking the disjoint union ofR with sufficiently
many appropriately labeled isolated vertices so that thereare
exactlyM copies of each vertexv of T in R∗. We now add
edges toR∗ as follows: For each edgee = xu of T , there
areM copies ofx in R∗, M copies ofu in R∗, andme :=
|π−1

R (e)| copies ofe in R∗. Thus there are exactlyM − me

copies ofx in R∗ that are not adjacent to any copy ofu in
R∗, and there are exactlyM −me copies ofu in R∗ that are
not adjacent to any copy ofx in R∗. This means that there is a
matching between these copies ofx and ofu, and we form an
edge between each matched pair. Repeating this procedure for
each edgee of T creates anM -cover T̃ of T that containsR
as a subgraph so that the respective vertex labels (projection
maps) agree.

Proposition 2.1 shows that every computation tree is con-
tained in a graph cover, but what we really want to know is

whether every computation tree configuration is induced by a
graph cover configuration. In other words, given a computation
tree configuration, is there a graph cover configuration thatis,
in this sense, compatible with it? To answer this question, we
need a definition.

Definition 2.2: Let S = (X ∪ F,E) be a bipartite graph
and let(c, S) be a configuration onS. A configured subgraph
of (c, S) is a configuration(c′, S′), whereS′ is a subgraph of
S, andc

′ is the restriction ofc to S′.
Let T be a Tanner graph. Fori = 1, 2, let (Si, πi) be a

bipartite graph along with a bijective graph homomorphism
πi : Si = (Xi ∪ Fi, Ei) → T , and let (ci, Si) be a
configuration onSi. Then(c1, S1) and(c2, S2) areisomorphic
if there is a graph isomorphismφ : S1 → S2 such that
π2 ◦φ = π1 andc1 assigns a value of 1 tox ∈ X1 if and only
if c2 assigns a value of 1 toφ(x) ∈ X2.

The following results show that the connection between
computation tree configurations and graph cover configura-
tions is extremely strong: given a computation treeR for a
Tanner graphT and a configurationc on R, there is a graph
cover configuration(c̃, T̃) that not only induces(c, R), but
also contains a configured subgraph isomorphic to(c, R). In
the case of cycle codes, the result is very clean:

Theorem 2.3:Let T be the Tanner graph of a cycle code
with minimum degree at least two, letR be a computation tree
for T , and letc be a configuration onR. Then there is a finite
cover T̃ of T and a configuratioñc on T̃ such that(c, R) is
isomorphic to a configured subgraph of(c̃, T̃). Furthermore,
T̃ can be taken to be a cover of degree eitherM or 2M , where
M is as in Proposition 2.1.

The proof of this theorem goes, roughly speaking, as
follows: Let T̃ be anM -cover ofT that contains a subgraph
isomorphic toR, as guaranteed by Proposition 2.1, and then
copy the configurationc onto that subgraph. One then proves
thatc can be extended to a configuration on all of eitherT̃ or
T̃ ′, whereT̃ ′ is a2M -cover ofT formed by twisting together
two copies ofT̃ in a manner determined byc.

In the general case, the result is not as clean. In particular,
the degree of the cover is not so simply described. Theorem 2.4
below gives an upper bound on the necessary degree of a
cover that has a configuration that induces the computation tree
configuration we started with, but that cover need not contain
the computation tree as a configured subgraph. Corollary 2.5
asserts that there is a cover that contains the computation tree
as a configured subgraph, but does not give us information
on the degree of that cover. As a curious side-result, it
follows from the proof of Theorem 2.4 that the rational point
(1
2 , . . . , 1

2) is a normalized graph cover pseudocodeword for
any parity-check matrix with minimum row degree at least
two.

Theorem 2.4:Let H be a parity-check matrix with mini-
mum row weight at least two, letT = T (H) = (X ∪ F,E)
be its Tanner graph, and letR be a computation tree forT of
some finite depthd. For eachf ∈ F , let Mf be the number
of copies off on R. SetM = maxf Mf .

Then, for any configurationc on R, there is a4M -cover T̃

of T and a configuratioñc on T̃ such that

• (c̃, T̃) induces the configuration(c, R),
• (c̃, T̃) contains a configured subgraph that is isomorphic

to (c′, R′), where(c′, R′) is the configured computation
tree subgraph of(c, R) of depthd − 1, and

• the normalized graph cover pseudocodeword correspond-
ing to (c̃, T̃) is (1

2 , . . . , 1
2).

Although the4M -cover T̃ ensured by Theorem 2.4 need
not be connected, the configured subgraph of it isomorphic
to (c′, R′) is contained in some connected componentT̃ ′ of
T̃ . The first two bullets in the theorem clearly still apply
to (c̃′, T̃ ′), where c̃

′ is the configuration oñT ′ ensured by
the theorem. However, if̃T ′ 6= T̃ , then the third bullet will
almost certainly not be valid for̃c′; see Example 3.3. Thus,
although the theorem implies that every computation tree
configuration is related to the graph cover pseudocodeword
(1
2 , . . . , 1

2), the corresponding realization(c̃, T̃) of this graph
cover pseudocodeword need not be connected. Moreover,
it is the graph cover pseudocodeword corresponding to the
connected graph cover configuration(c̃′, T̃ ′) that has any hope
of sharing properties under an appropriate cost function [10],
[11] with (c, R).

As a corollary to Theorem 2.4, we obtain a version of
Theorem 2.3 for the general case.

Corollary 2.5: Let H be a parity-check matrix with mini-
mum row weight at least two, letT = T (H) be its Tanner
graph, and let(c, R) be a computation tree configuration for
T . Then there exists a finite cover̃T of T and a configuration
c̃ on T̃ such that(c, R) is isomorphic to a configured subgraph
of (c̃, T̃).

Proof: Let R′′ be the computation tree forT obtained
by extendingR for an additional iteration. Then there is
a configurationc

′′ on R′′ that restricts to(c, R). Applying
Theorem 2.4 to(c′′, R′′) gives the result.

As we will see in Section III below, there are often graph
cover configurations(c̃, T̃) that satisfy the conclusions of
Theorem 2.4 but with the degree of̃T significantly smaller
than 4M . By taking into account the specific computation
tree configuration under consideration, a tighter bound canbe
obtained:

Theorem 2.6:Let H be a parity-check matrix with mini-
mum row weight at least two, letT = T (H) = (X ∪ F,E)
be its Tanner graph, and let(c, R) be a computation tree
configuration forT of some finite depthd. For eachf ∈ F , let
Mf (c) be the number of copies off onR such that at least one
adjacent vertex (which is necessarily a copy of somex ∈ X)
is assigned a “1” byc, and letNf (c) be the number of copies
of f on R such that every adjacent vertex is assigned a “0”
by c. SetM(c) = maxf Mf (c) andN(c) = maxf Nf (c).

Then there is a(3M(c) + N(c))-cover T̃ of T and a
configurationc̃ on T̃ such that

• (c̃, T̃) induces the configuration(c, R),
• (c̃, T̃) contains a configured subgraph that is isomorphic

to (c′, R′), where(c′, R′) is the configured computation
tree subgraph of(c, R) of depthd − 1, and

• the normalized graph cover pseudocodeword correspond-
ing to (c̃, T̃) is (2M(c)

3M(c)+N(c) , . . . ,
2M(c)

3M(c)+N(c)).

Theorem 2.6 again has this curious side-result about the
fundamental polytope containing a certain constant vectorof
rational numbers. One might ask how far that result can be
pushed. The next proposition gives the answer.

Proposition 2.7:Let H be a parity-check matrix with min-
imum row weight at least two, letT = (X ∪ F,E) be the
corresponding Tanner graph and letc be a nonnegative real
number. If at least onef ∈ F has odd degree, setδ = M−1

M
,

whereM is the smallest odd integer such that somef ∈ F

has degreeM . Otherwise, setδ = 1. Then (c, . . . , c) is a
normalized graph cover pseudocodeword if and only ifc ≤ δ.

III. E XAMPLES

In this section, we present a series of examples that illustrate
the results of Section II.

Our first example shows that, withM as in Theorem 2.4,
the minimal degree of a graph cover configuration satisfying
the conditions in Theorem 2.4 may be smaller than4M .

Example 3.1:Figure 1 shows a Tanner graphT and a
computation tree configuration(c, R) for T .

f1

f2

x1 x2 x3 x4 f1 f2

x1

x2 x3 x4 x2 x3 x4

Fig. 1. The Tanner graphT and a computation tree configuration(c, R) for
the Tanner graphT of Example 3.1. Vertices are assigned a value of 1 byc

if they are circled and 0 otherwise.

Since every check node ofT appears inR once, we
haveM = 1 in Theorem 2.4. Further, the computation tree
configuration (c′, R′) of that theorem is simply the single
vertex x1, assigned a value of 1. Therefore, we know by
Theorem 2.4 that there is a 4-coverT̃ of T and a configuration
c̃ on T̃ such that(c̃, T̃) induces(c, R), assigns a value of 1
to some copy ofx1 in T̃ , and has corresponding normalized
graph cover pseudocodeword(1

2 , 1
2 , 1

2 , 1
2).

f1

f2

x1 x2 x3 x4

f1

f2

x1 x2 x3 x4

Fig. 2. A configurationec on a 2-cover eT of the Tanner graphT of
Example 3.1.

Figure 2 shows a 2-cover̃T of T and a configuratioñc
on T̃ . The bold edges show a configured subgraph of(c̃, T̃)
that induces(c, R) and contains a subgraph that is isomorphic
to the depth one truncation(c′, R′) of (c, R), and such that
the graph cover pseudocodeword corresponding to(c̃, T̃) is

(1
2 , 1

2 , 1
2 , 1

2). Thus (c̃, T̃) satisfies all of the conclusions of
Theorem 2.4, except that we needed only a 2-cover rather than
a 4-cover to do so. Of course, two disjoint copies of(c̃, T̃) is a
4-cover ofT that satisfies the theorem as well, thus showing
that the4M -cover guaranteed by Theorem 2.4 need not be
connected. On the other hand, Figure 3 gives an example of
a connected 4-cover ofT that contains the entire configured
computation tree(c, R) of Figure 1. �

f1

f2

x1 x2 x3 x4

f1
f2

x1

x2

x3

x4

f1

f2

x1x2x3x4

f1 f2

x1

x2

x3

x4

Fig. 3. A configurationec on a 4-cover eT of the Tanner graphT of
Example 3.1.

The next example illustrates that sometimes only the smaller
computation tree configuration(c′, R′) can be obtained.

Example 3.2:Consider the Tanner graphT in Figure 4 and
the computation treeR for T shown in Figure 5.

x1

x2

f1 f2 f3 f4 f5 f6

Fig. 4. The Tanner graphT for Example 3.2.

x1

f1 f2 f3 f4 f5 f6

x2 x2 x2 x2 x2 x2

Fig. 5. A computation treeR for the Tanner graphT of Example 3.2.

In this example, we again haveM = 1 in Theorem 2.4.
Thus Theorem 2.4 asserts the existence of a 4-coverT̃ of T

with certain properties. However, since there are six copies
of x2 in R, no computation tree configuration(c, R) could
be isomorphic to a configured subgraph of(c̃, T̃) for any
configurationc̃ on T̃ . �

As mentioned previously, if(c, R) is a computation tree
configuration, then the realization(c̃, T̃) of (1

2 , . . . , 1
2) that

induces(c, R) in Theorem 2.4 need not be connected. How-
ever, there is a connected component ofT̃ that also induces
(c, R), sinceR is connected; call this connected component
(c̃′, T̃ ′), wherec̃

′ is the configuratioñT ′ inherits fromT̃ . Then
(c̃′, T̃ ′) is connected and induces(c, R), but its normalized
graph cover pseudocodeword may no longer be(1

2 , . . . , 1
2).

Example 3.3 shows an occurrence of this.

Example 3.3:Figure 6 shows a Tanner graphT and a
computation tree configuration(c, R) for T .

f1

f2

x1 x2 x3

x1

f1 f2

x2 x3 x2 x3

Fig. 6. The Tanner graphT and a computation tree configuration(c, R) for
the Tanner graphT of Example 3.3.

x1

f1 f2

x2 x3
x1

x1

x1

x2 x2

x2

x3

x3

x3

f1 f1

f1

f2

f2

f2

Fig. 7. A disconnected 4-covereT and a configurationec on eT that induces
the configuration in Figure 6.

The configuratioñc on the 4-coverT̃ of T in Figure 7
satisfies all of the requirements of Theorem 2.4. However,
the configuration on the component on the left, which is
isomorphic to the original graphT , induces(c, R) and has
normalized graph cover pseudocodeword(0, 1, 1). �

Our final example concerns the relationship between The-
orem 2.4 and Theorem 2.6. It was asserted in Section II
that, given a specific computation tree configuration(c, R)
for the Tanner graphT , Theorem 2.6 gives a better upper
bound on the degree of the cover̃T of T needed to admit
a configurationc̃ that induces(c, R) and that contains a
configured subgraph isomorphic to(c′, R′), the configuration
obtained by restrictingc to the computation treeR′ of depth
one less than the depth ofR. To see this, recall that Theo-
rem 2.4 guarantees the existence of a4M -cover that admits
the desired̃c, whereM is the maximum number of copies of
any f ∈ F in R. On the other hand, Theorem 2.6 guarantees
the existence of a(3M(c) + N(c))-cover that does the trick,
whereM(c) = maxf∈F Mf (c), N(c) = maxf∈F Nf (c) and,
for anyf ∈ F , we have thatMf (c)+Nf (c) is the total number
of copies off in R. ThusM(c) ≤ M and N(c) ≤ M , and
so 3M(c) + N(c) ≤ 4M . In fact, the bound in Theorem 2.6
can yield a significant improvement over that of Theorem 2.4.
Our final example illustrates this.

Example 3.4:Let T be the Tanner graph given in Figure 8,
and let (c, R) be the computation tree configuration forT

given in Figure 9.
Since there are three copies off5 in the computation treeR

of Figure 9, Theorem 2.4 asserts the existence of a 12-cover
that induces the configuration(c, R) of Figure 9. However,

x1

x2

x3

x4

f1

f2f3

f4

f5

Fig. 8. The Tanner graphT of Example 3.4.

x1

x2 x2 x3 x4 x4

x1 x3 x4 x3 x1 x3 x2 x4 x3 x1 x3 x1 x2 x3

f1 f5 f4

f5 f2 f1 f2 f2 f3 f3 f4 f3 f5

Fig. 9. A computation tree configuration(c, R) for the Tanner graph of
Example 3.4.

since M(c) = 1 and N(c) = 2, Theorem 2.6 tells us that
there is a graph cover configuration on a5-cover that does the
trick. �

ACKNOWLEDGEMENTS

This work was supported in part by National Science
Foundation grant #DMS-0602332.

REFERENCES

[1] N. Axvig, D. Dreher, K. Morrison, E. Psota, L. C. Pérez, and J. L.
Walker, Analysis of connections between pseudocodewords, Submitted
to IEEE Transactions on Information Theory, March 2008.

[2] N. Axvig, K. Morrison, E. Psota, D. Dreher, L.C. Pérez, and J. L. Walker,
Towards a universal theory of decoding and pseudocodewords, SGER
Technical Report 0801, University of Nebraska-Lincoln, March 2008.

[3] N. Axvig, K. Morrison, E. Psota, D. Turk, L. C. Ṕerez, and J .L. Walker,
Universal cover decoding, In preparation, 2008.

[4] N. Axvig, E. Price, E. Psota, D. Turk, L.C. Pérez, and J.L. Walker,
A universal theory of pseudocodewords, Proceedings of the 45th An-
nual Allerton Conference on Communication, Control, and Computing,
September 2007.

[5] C. Kelley and D. Sridhara,Pseudocodewords of Tanner graphs, IEEE
Transactions on Information Theory53 (2007), 4013–4038.

[6] R Koetter, W.-C. W. Li, P. O. Vontobel, and J. L. Walker,Pseudo-
codewords of cycle codes via zeta functions, Proc. IEEE Inform. Theory
Workshop (San Antonio, TX, USA), 2004, pp. 7–12.

[7] P. O. Vontobel R. Smarandache,Pseudo-codeword analysis of Tanner
graphs from projective and euclidean planes, IEEE Transactions on
Information TheoryIT-53 (2007), no. 7, 2376–2393.

[8] T. Richardson, A. Shokrollahi, and R. Urbanke,Design of capacity-
approaching irregular low-density parity check codes, IEEE Transac-
tions on Information Theory47 (2001), no. 2, 619–637.

[9] T. Richardson and R. Urbanke,The capacity of low-density parity
check codes under message-passing decoding, IEEE Transactions on
Information Theory47 (2001), no. 2, 599–618.

[10] P. Vontobel and R. Koetter,Graph-cover decoding and finite-length
analysis of message-passing iterative decoding of LDPC codes, To
appear inIEEE Transactions on Information Theory.

[11] N. Wiberg, Codes and decoding on general graphs, Ph.D. thesis,
Linköping University, Link̈oping, Sweden, 1996.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2009

	Connections Between Computation Trees and Graph Covers
	Deanna Dreher
	Judy L. Walker

	ITA.dvi

