1,812 research outputs found

    Partitioning networks into cliques: a randomized heuristic approach

    Get PDF
    In the context of community detection in social networks, the term community can be grounded in the strict way that simply everybody should know each other within the community. We consider the corresponding community detection problem. We search for a partitioning of a network into the minimum number of non-overlapping cliques, such that the cliques cover all vertices. This problem is called the clique covering problem (CCP) and is one of the classical NP-hard problems. For CCP, we propose a randomized heuristic approach. To construct a high quality solution to CCP, we present an iterated greedy (IG) algorithm. IG can also be combined with a heuristic used to determine how far the algorithm is from the optimum in the worst case. Randomized local search (RLS) for maximum independent set was proposed to find such a bound. The experimental results of IG and the bounds obtained by RLS indicate that IG is a very suitable technique for solving CCP in real-world graphs. In addition, we summarize our basic rigorous results, which were developed for analysis of IG and understanding of its behavior on several relevant graph classes

    RASCAL: calculation of graph similarity using maximum common edge subgraphs

    Get PDF
    A new graph similarity calculation procedure is introduced for comparing labeled graphs. Given a minimum similarity threshold, the procedure consists of an initial screening process to determine whether it is possible for the measure of similarity between the two graphs to exceed the minimum threshold, followed by a rigorous maximum common edge subgraph (MCES) detection algorithm to compute the exact degree and composition of similarity. The proposed MCES algorithm is based on a maximum clique formulation of the problem and is a significant improvement over other published algorithms. It presents new approaches to both lower and upper bounding as well as vertex selection

    Community Detection via Maximization of Modularity and Its Variants

    Full text link
    In this paper, we first discuss the definition of modularity (Q) used as a metric for community quality and then we review the modularity maximization approaches which were used for community detection in the last decade. Then, we discuss two opposite yet coexisting problems of modularity optimization: in some cases, it tends to favor small communities over large ones while in others, large communities over small ones (so called the resolution limit problem). Next, we overview several community quality metrics proposed to solve the resolution limit problem and discuss Modularity Density (Qds) which simultaneously avoids the two problems of modularity. Finally, we introduce two novel fine-tuned community detection algorithms that iteratively attempt to improve the community quality measurements by splitting and merging the given network community structure. The first of them, referred to as Fine-tuned Q, is based on modularity (Q) while the second one is based on Modularity Density (Qds) and denoted as Fine-tuned Qds. Then, we compare the greedy algorithm of modularity maximization (denoted as Greedy Q), Fine-tuned Q, and Fine-tuned Qds on four real networks, and also on the classical clique network and the LFR benchmark networks, each of which is instantiated by a wide range of parameters. The results indicate that Fine-tuned Qds is the most effective among the three algorithms discussed. Moreover, we show that Fine-tuned Qds can be applied to the communities detected by other algorithms to significantly improve their results

    Finding Non-overlapping Clusters for Generalized Inference Over Graphical Models

    Full text link
    Graphical models use graphs to compactly capture stochastic dependencies amongst a collection of random variables. Inference over graphical models corresponds to finding marginal probability distributions given joint probability distributions. In general, this is computationally intractable, which has led to a quest for finding efficient approximate inference algorithms. We propose a framework for generalized inference over graphical models that can be used as a wrapper for improving the estimates of approximate inference algorithms. Instead of applying an inference algorithm to the original graph, we apply the inference algorithm to a block-graph, defined as a graph in which the nodes are non-overlapping clusters of nodes from the original graph. This results in marginal estimates of a cluster of nodes, which we further marginalize to get the marginal estimates of each node. Our proposed block-graph construction algorithm is simple, efficient, and motivated by the observation that approximate inference is more accurate on graphs with longer cycles. We present extensive numerical simulations that illustrate our block-graph framework with a variety of inference algorithms (e.g., those in the libDAI software package). These simulations show the improvements provided by our framework.Comment: Extended the previous version to include extensive numerical simulations. See http://www.ima.umn.edu/~dvats/GeneralizedInference.html for code and dat
    • …
    corecore