5,113 research outputs found

    Spectrum Utilization and Congestion of IEEE 802.11 Networks in the 2.4 GHz ISM Band

    Get PDF
    Wi-Fi technology, plays a major role in society thanks to its widespread availability, ease of use and low cost. To assure its long term viability in terms of capacity and ability to share the spectrum efficiently, it is of paramount to study the spectrum utilization and congestion mechanisms in live environments. In this paper the service level in the 2.4 GHz ISM band is investigated with focus on todays IEEE 802.11 WLAN systems with support for the 802.11e extension. Here service level means the overall Quality of Service (QoS), i.e. can all devices fulfill their communication needs? A crosslayer approach is used, since the service level can be measured at several levels of the protocol stack. The focus is on monitoring at both the Physical (PHY) and the Medium Access Control (MAC) link layer simultaneously by performing respectively power measurements with a spectrum analyzer to assess spectrum utilization and packet sniffing to measure the congestion. Compared to traditional QoS analysis in 802.11 networks, packet sniffing allows to study the occurring congestion mechanisms more thoroughly. The monitoring is applied for the following two cases. First the influence of interference between WLAN networks sharing the same radio channel is investigated in a controlled environment. It turns out that retry rate, Clear-ToSend (CTS), Request-To-Send (RTS) and (Block) Acknowledgment (ACK) frames can be used to identify congestion, whereas the spectrum analyzer is employed to identify the source of interference. Secondly, live measurements are performed at three locations to identify this type of interference in real-live situations. Results show inefficient use of the wireless medium in certain scenarios, due to a large portion of management and control frames compared to data content frames (i.e. only 21% of the frames is identified as data frames)

    μ\muNap: Practical Micro-Sleeps for 802.11 WLANs

    Get PDF
    In this paper, we revisit the idea of putting interfaces to sleep during 'packet overhearing' (i.e., when there are ongoing transmissions addressed to other stations) from a practical standpoint. To this aim, we perform a robust experimental characterisation of the timing and consumption behaviour of a commercial 802.11 card. We design μ\muNap, a local standard-compliant energy-saving mechanism that leverages micro-sleep opportunities inherent to the CSMA operation of 802.11 WLANs. This mechanism is backwards compatible and incrementally deployable, and takes into account the timing limitations of existing hardware, as well as practical CSMA-related issues (e.g., capture effect). According to the performance assessment carried out through trace-based simulation, the use of our scheme would result in a 57% reduction in the time spent in overhearing, thus leading to an energy saving of 15.8% of the activity time.Comment: 15 pages, 12 figure

    Fair Coexistence of Scheduled and Random Access Wireless Networks: Unlicensed LTE/WiFi

    Get PDF
    We study the fair coexistence of scheduled and random access transmitters sharing the same frequency channel. Interest in coexistence is topical due to the need for emerging unlicensed LTE technologies to coexist fairly with WiFi. However, this interest is not confined to LTE/WiFi as coexistence is likely to become increasingly commonplace in IoT networks and beyond 5G. In this article we show that mixing scheduled and random access incurs and inherent throughput/delay cost, the cost of heterogeneity. We derive the joint proportional fair rate allocation, which casts useful light on current LTE/WiFi discussions. We present experimental results on inter-technology detection and consider the impact of imperfect carrier sensing.Comment: 14 pages, 8 figures, journa

    "The Good, The Bad And The Ugly": Evaluation of Wi-Fi Steganography

    Full text link
    In this paper we propose a new method for the evaluation of network steganography algorithms based on the new concept of "the moving observer". We considered three levels of undetectability named: "good", "bad", and "ugly". To illustrate this method we chose Wi-Fi steganography as a solid family of information hiding protocols. We present the state of the art in this area covering well-known hiding techniques for 802.11 networks. "The moving observer" approach could help not only in the evaluation of steganographic algorithms, but also might be a starting point for a new detection system of network steganography. The concept of a new detection system, called MoveSteg, is explained in detail.Comment: 6 pages, 6 figures, to appear in Proc. of: ICNIT 2015 - 6th International Conference on Networking and Information Technology, Tokyo, Japan, November 5-6, 201
    corecore