30,081 research outputs found

    Beyond Reuse Distance Analysis: Dynamic Analysis for Characterization of Data Locality Potential

    Get PDF
    Emerging computer architectures will feature drastically decreased flops/byte (ratio of peak processing rate to memory bandwidth) as highlighted by recent studies on Exascale architectural trends. Further, flops are getting cheaper while the energy cost of data movement is increasingly dominant. The understanding and characterization of data locality properties of computations is critical in order to guide efforts to enhance data locality. Reuse distance analysis of memory address traces is a valuable tool to perform data locality characterization of programs. A single reuse distance analysis can be used to estimate the number of cache misses in a fully associative LRU cache of any size, thereby providing estimates on the minimum bandwidth requirements at different levels of the memory hierarchy to avoid being bandwidth bound. However, such an analysis only holds for the particular execution order that produced the trace. It cannot estimate potential improvement in data locality through dependence preserving transformations that change the execution schedule of the operations in the computation. In this article, we develop a novel dynamic analysis approach to characterize the inherent locality properties of a computation and thereby assess the potential for data locality enhancement via dependence preserving transformations. The execution trace of a code is analyzed to extract a computational directed acyclic graph (CDAG) of the data dependences. The CDAG is then partitioned into convex subsets, and the convex partitioning is used to reorder the operations in the execution trace to enhance data locality. The approach enables us to go beyond reuse distance analysis of a single specific order of execution of the operations of a computation in characterization of its data locality properties. It can serve a valuable role in identifying promising code regions for manual transformation, as well as assessing the effectiveness of compiler transformations for data locality enhancement. We demonstrate the effectiveness of the approach using a number of benchmarks, including case studies where the potential shown by the analysis is exploited to achieve lower data movement costs and better performance.Comment: Transaction on Architecture and Code Optimization (2014

    Block-Diagonal and LT Codes for Distributed Computing With Straggling Servers

    Get PDF
    We propose two coded schemes for the distributed computing problem of multiplying a matrix by a set of vectors. The first scheme is based on partitioning the matrix into submatrices and applying maximum distance separable (MDS) codes to each submatrix. For this scheme, we prove that up to a given number of partitions the communication load and the computational delay (not including the encoding and decoding delay) are identical to those of the scheme recently proposed by Li et al., based on a single, long MDS code. However, due to the use of shorter MDS codes, our scheme yields a significantly lower overall computational delay when the delay incurred by encoding and decoding is also considered. We further propose a second coded scheme based on Luby Transform (LT) codes under inactivation decoding. Interestingly, LT codes may reduce the delay over the partitioned scheme at the expense of an increased communication load. We also consider distributed computing under a deadline and show numerically that the proposed schemes outperform other schemes in the literature, with the LT code-based scheme yielding the best performance for the scenarios considered.Comment: To appear in IEEE Transactions on Communication
    corecore