7 research outputs found

    Vibration, Control and Stability of Dynamical Systems

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Computational and conceptual blends: the epistemology of designing with functionally graded materials

    Get PDF
    Operating within the landscape of new materialism and considering recent advances in the field of additive manufacturing, the thesis is proposing a novel method of designing with a new type of material that is known as functionally graded. Two of the additive manufacturing advances that are considered of radical importance and at the same time are central to the research have to do with the progressively increasing scales of the output of 3D printing, as well as with the expanding palette of materials that can now be utilised in the process. Regarding the latter, there are already various industrial research initiatives underway that explore ways that various materials can be combined in order to allow for the additive manufacturing of multi-material (otherwise known as functionally graded material) parts or whole volumes that are continuously fused together. In light of this and pre-empting this architectural-level integration and fusing of materials within one volume, the research initially outlines the anticipated impacts of the new way of building that this technology heralds. Of a total of six main anticipated changes, it then focuses on the impact that functionally graded materiality will have on how design is practiced. In this attempt to deal with the uncertainty of a material realm that is unruly and wilful, an initial criticism posed of the scant existing methods for designing with multi-materials in the computer is that they do not consider the intrinsic behaviour of materials and their natural propensity to structure themselves in space. Additionally, these models essentially follow a similarly arbitrary assignment of sub-materiality within larger multi-materials, to the hylomorphic imposition of form on matter. What is effectively proposed as a counter design technique is to computationally ‘predict’ the way materials will fuse and self-structure, with this self-arrangement being partially instigated by their physical properties. Correspondingly, this approach instigates two main objectives that will be pursued in the thesis: –  The first goal, is to formulate an appropriate epistemology (also known as the epistemology of computer simulations-EOCS), which is directly linked to the use of computer simulations to design with (computational blending). This is effectively the creation of a methodological framework for the way to set out, run, and evaluate the results of the simulations. –  The second goal, concerns the new design methodology proposed, in which the conventional material-less computer aided design methods are replaced by a process of constructing b-rep moulds and allowing digital materials to fuse with one another within these virtual frameworks. Drawing from a specific strand of materialist and cognitive theory (conceptual blending), the theoretical objective in effect is to demonstrate that form and material are not separate at any instance of the proposed process. The resulting original contribution of the design research is a process model that is created in an existing simulation software that can be used in a standard laptop computer in order to design with functionally graded materials. The various ‘stages’ of this model are mapped as a diagrammatic design work ow in the concluding end of the PhD, while its main parts are expanded upon extensively in corresponding chapters in the thesis

    Proceedings of the 6th Annual Summer Conference: NASA/USRA University Advanced Design Program

    Get PDF
    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. The study topics cover a broad range of potential space and aeronautics projects that could be undertaken during a 20 to 30 year period beginning with the deployment of the Space Station Freedom scheduled for the mid-1990s. Both manned and unmanned endeavors are embraced, and the systems approach to the design problem is emphasized

    Designing for adaptability in architecture

    Get PDF
    The research is framed on the premise that designing buildings that can adapt by accommodating change easier and more cost-effectively provides an effective means to a desired end a more sustainable built environment. In this context, adaptability can be viewed as a means to decrease the amount of new construction (reduce), (re)activate underused or vacant building stock (reuse) and enhance disassembly/ deconstruction of components (reuse, recycle) - prolonging the useful life of buildings (reduce, reuse, recycle). The aim of the research is to gain a holistic overview of the concept of adaptability in the construction industry and provide an improved framework to design for, deploy and implement adaptability. An over-arching research question was posited to guide the inquiry: how can architects understand, communicate, design for and test the concept of adaptability in the context of the design process? The research followed Dubois and Gadde s (2002) systematic combining as an over-arching approach that continuously moves between the empirical world and theoretical models allowing the co-evolution of data collection and theory from the beginning as part of a non-linear process with the objective of matching theory with reality. An initial framework was abducted from a preliminary collection of data from which a set of mixed research methods was deployed to explore adaptability (interviews, building case studies, dependency structural matrices, practitioner surveys and workshop). Emergent from the data is an expanded and revised theory on designing for adaptability consisting of concepts, models and propositions. The models illustrate many of the casual links between the physical design structure of the building (e.g. plan depth, storey height) and the soft contingencies of a messy design/construction/occupation process (e.g. procurement route, funding methods, stakeholder mindsets). In an effort to enhance building adaptability, the abducted propositions suggest a shift in the way the industry values buildings and conducts aspects of the design process and how designer s approach designing for adaptability
    corecore