21,984 research outputs found

    Identifying progressive imaging genetic patterns via multi-task sparse canonical correlation analysis: a longitudinal study of the ADNI cohort

    Get PDF
    Motivation Identifying the genetic basis of the brain structure, function and disorder by using the imaging quantitative traits (QTs) as endophenotypes is an important task in brain science. Brain QTs often change over time while the disorder progresses and thus understanding how the genetic factors play roles on the progressive brain QT changes is of great importance and meaning. Most existing imaging genetics methods only analyze the baseline neuroimaging data, and thus those longitudinal imaging data across multiple time points containing important disease progression information are omitted. Results We propose a novel temporal imaging genetic model which performs the multi-task sparse canonical correlation analysis (T-MTSCCA). Our model uses longitudinal neuroimaging data to uncover that how single nucleotide polymorphisms (SNPs) play roles on affecting brain QTs over the time. Incorporating the relationship of the longitudinal imaging data and that within SNPs, T-MTSCCA could identify a trajectory of progressive imaging genetic patterns over the time. We propose an efficient algorithm to solve the problem and show its convergence. We evaluate T-MTSCCA on 408 subjects from the Alzheimer’s Disease Neuroimaging Initiative database with longitudinal magnetic resonance imaging data and genetic data available. The experimental results show that T-MTSCCA performs either better than or equally to the state-of-the-art methods. In particular, T-MTSCCA could identify higher canonical correlation coefficients and capture clearer canonical weight patterns. This suggests that T-MTSCCA identifies time-consistent and time-dependent SNPs and imaging QTs, which further help understand the genetic basis of the brain QT changes over the time during the disease progression. Availability and implementation The software and simulation data are publicly available at https://github.com/dulei323/TMTSCCA. Supplementary information Supplementary data are available at Bioinformatics online

    Multiple testing for SNP-SNP interactions

    Get PDF
    Most genetic diseases are complex, i.e. associated to combinations of SNPs rather than individual SNPs. In the last few years, this topic has often been addressed in terms of SNP-SNP interaction patterns given as expressions linked by logical operators. Methods for multiple testing in high-dimensional settings can be applied when many SNPs are considered simultaneously. However, another less well-known multiple testing problem arises within a fixed subset of SNPs when the logic expression is chosen optimally. In this article, we propose a general asymptotic approach for deriving the distribution of the maximally selected chi-square statistic in various situations. We show how this result can be used for testing logic expressions - in particular SNP-SNP interaction patterns - while controlling for multiple comparisons. Simulations show that our method provides multiple testing adjustment when the logic expression is chosen such as to maximize the statistic. Its benefit is demonstrated through an application to a real dataset from a large population-based study considering allergy and asthma in KORA. An implementation of our method is available from the Comprehensive R Archive Network (CRAN) as R package 'SNPmaxsel'
    corecore