7 research outputs found

    Speech Replay Detection with x-Vector Attack Embeddings and Spectral Features

    Full text link
    We present our system submission to the ASVspoof 2019 Challenge Physical Access (PA) task. The objective for this challenge was to develop a countermeasure that identifies speech audio as either bona fide or intercepted and replayed. The target prediction was a value indicating that a speech segment was bona fide (positive values) or "spoofed" (negative values). Our system used convolutional neural networks (CNNs) and a representation of the speech audio that combined x-vector attack embeddings with signal processing features. The x-vector attack embeddings were created from mel-frequency cepstral coefficients (MFCCs) using a time-delay neural network (TDNN). These embeddings jointly modeled 27 different environments and 9 types of attacks from the labeled data. We also used sub-band spectral centroid magnitude coefficients (SCMCs) as features. We included an additive Gaussian noise layer during training as a way to augment the data to make our system more robust to previously unseen attack examples. We report system performance using the tandem detection cost function (tDCF) and equal error rate (EER). Our approach performed better that both of the challenge baselines. Our technique suggests that our x-vector attack embeddings can help regularize the CNN predictions even when environments or attacks are more challenging.Comment: Presented at Interspeech 201

    Replay detection in voice biometrics: an investigation of adaptive and non-adaptive front-ends

    Full text link
    Among various physiological and behavioural traits, speech has gained popularity as an effective mode of biometric authentication. Even though they are gaining popularity, automatic speaker verification systems are vulnerable to malicious attacks, known as spoofing attacks. Among various types of spoofing attacks, replay attack poses the biggest threat due to its simplicity and effectiveness. This thesis investigates the importance of 1) improving front-end feature extraction via novel feature extraction techniques and 2) enhancing spectral components via adaptive front-end frameworks to improve replay attack detection. This thesis initially focuses on AM-FM modelling techniques and their use in replay attack detection. A novel method to extract the sub-band frequency modulation (FM) component using the spectral centroid of a signal is proposed, and its use as a potential acoustic feature is also discussed. Frequency Domain Linear Prediction (FDLP) is explored as a method to obtain the temporal envelope of a speech signal. The temporal envelope carries amplitude modulation (AM) information of speech resonances. Several features are extracted from the temporal envelope and the FDLP residual signal. These features are then evaluated for replay attack detection and shown to have significant capability in discriminating genuine and spoofed signals. Fusion of AM and FM-based features has shown that AM and FM carry complementary information that helps distinguish replayed signals from genuine ones. The importance of frequency band allocation when creating filter banks is studied as well to further advance the understanding of front-ends for replay attack detection. Mechanisms inspired by the human auditory system that makes the human ear an excellent spectrum analyser have been investigated and integrated into front-ends. Spatial differentiation, a mechanism that provides additional sharpening to auditory filters is one of them that is used in this work to improve the selectivity of the sub-band decomposition filters. Two features are extracted using the improved filter bank front-end: spectral envelope centroid magnitude (SECM) and spectral envelope centroid frequency (SECF). These are used to establish the positive effect of spatial differentiation on discriminating spoofed signals. Level-dependent filter tuning, which allows the ear to handle a large dynamic range, is integrated into the filter bank to further improve the front-end. This mechanism converts the filter bank into an adaptive one where the selectivity of the filters is varied based on the input signal energy. Experimental results show that this leads to improved spoofing detection performance. Finally, deep neural network (DNN) mechanisms are integrated into sub-band feature extraction to develop an adaptive front-end that adjusts its characteristics based on the sub-band signals. A DNN-based controller that takes sub-band FM components as input, is developed to adaptively control the selectivity and sensitivity of a parallel filter bank to enhance the artifacts that differentiate a replayed signal from a genuine signal. This work illustrates gradient-based optimization of a DNN-based controller using the feedback from a spoofing detection back-end classifier, thus training it to reduce spoofing detection error. The proposed framework has displayed a superior ability in identifying high-quality replayed signals compared to conventional non-adaptive frameworks. All techniques proposed in this thesis have been evaluated on well-established databases on replay attack detection and compared with state-of-the-art baseline systems

    Voice Spoofing Countermeasures: Taxonomy, State-of-the-art, experimental analysis of generalizability, open challenges, and the way forward

    Full text link
    Malicious actors may seek to use different voice-spoofing attacks to fool ASV systems and even use them for spreading misinformation. Various countermeasures have been proposed to detect these spoofing attacks. Due to the extensive work done on spoofing detection in automated speaker verification (ASV) systems in the last 6-7 years, there is a need to classify the research and perform qualitative and quantitative comparisons on state-of-the-art countermeasures. Additionally, no existing survey paper has reviewed integrated solutions to voice spoofing evaluation and speaker verification, adversarial/antiforensics attacks on spoofing countermeasures, and ASV itself, or unified solutions to detect multiple attacks using a single model. Further, no work has been done to provide an apples-to-apples comparison of published countermeasures in order to assess their generalizability by evaluating them across corpora. In this work, we conduct a review of the literature on spoofing detection using hand-crafted features, deep learning, end-to-end, and universal spoofing countermeasure solutions to detect speech synthesis (SS), voice conversion (VC), and replay attacks. Additionally, we also review integrated solutions to voice spoofing evaluation and speaker verification, adversarial and anti-forensics attacks on voice countermeasures, and ASV. The limitations and challenges of the existing spoofing countermeasures are also presented. We report the performance of these countermeasures on several datasets and evaluate them across corpora. For the experiments, we employ the ASVspoof2019 and VSDC datasets along with GMM, SVM, CNN, and CNN-GRU classifiers. (For reproduceability of the results, the code of the test bed can be found in our GitHub Repository

    Spoofing Detection in Voice Biometrics: Cochlear Modelling and Perceptually Motivated Features

    Full text link
    The automatic speaker verification (ASV) system is one of the most widely adopted biometric technology. However, ASV is vulnerable to spoofing attacks that can significantly affect its reliability. Among the different variants of spoofing attacks, replay attacks pose a major threat as they do not require any expert knowledge to implement and are difficult to detect. The primary focus of this thesis is on understanding and developing biologically inspired models and techniques to detect replay attacks. This thesis develops a novel framework for implementing an active cochlear filter model as a frontend spectral analyser for spoofing attack detection to leverage the remarkable sensitivity and selectivity of the mammalian auditory system over a broad range of intensities and frequencies. In particular, the developed model aims to mimic the active mechanism in the cochlea, enabling sharp frequency tuning and level-dependent compression, which amplifies and tune to low energy signal to make a broad dynamic range of signals audible. Experimental evaluations of the developed models in the context of replay detection systems exhibit a significant performance improvement, highlighting the potential benefits of the use of biologically inspired front ends. In addition, since replay detection relies on the discerning channel characteristics and the effect of the acoustic environment, acoustic cues essential for speech perception such as amplitude- and frequency-modulation (AM, FM) features are also investigated. Finally, to capture discriminative cues present in the temporal domain, the temporal masking psychoacoustic phenomenon in auditory processing is exploited, and the usefulness of the masking pattern is investigated. This led to a novel feature parameterisation which helps improve replay attack detection

    Voice biometric system security: Design and analysis of countermeasures for replay attacks.

    Get PDF
    PhD ThesisVoice biometric systems use automatic speaker veri cation (ASV) technology for user authentication. Even if it is among the most convenient means of biometric authentication, the robustness and security of ASV in the face of spoo ng attacks (or presentation attacks) is of growing concern and is now well acknowledged by the research community. A spoo ng attack involves illegitimate access to personal data of a targeted user. Replay is among the simplest attacks to mount | yet di cult to detect reliably and is the focus of this thesis. This research focuses on the analysis and design of existing and novel countermeasures for replay attack detection in ASV, organised in two major parts. The rst part of the thesis investigates existing methods for spoo ng detection from several perspectives. I rst study the generalisability of hand-crafted features for replay detection that show promising results on synthetic speech detection. I nd, however, that it is di cult to achieve similar levels of performance due to the acoustically di erent problem under investigation. In addition, I show how class-dependent cues in a benchmark dataset (ASVspoof 2017) can lead to the manipulation of class predictions. I then analyse the performance of several countermeasure models under varied replay attack conditions. I nd that it is di cult to account for the e ects of various factors in a replay attack: acoustic environment, playback device and recording device, and their interactions. Subsequently, I developed and studied a convolutional neural network (CNN) model that demonstrates comparable performance to the one that ranked rst in the ASVspoof 2017 challenge. Here, the experiment analyses what the CNN has learned for replay detection using a method from interpretable machine learning. The ndings suggest that the model highly attends at the rst few milliseconds of test recordings in order to make predictions. Then, I perform an in-depth analysis of a benchmark dataset (ASVspoof 2017) for spoo ng detection and demonstrate that any machine learning countermeasure model can still exploit the artefacts I identi ed in this dataset. The second part of the thesis studies the design of countermeasures for ASV, focusing on model robustness and avoiding dataset biases. First, I proposed an ensemble model combining shallow and deep machine learning methods for spoo ng detection, and then demonstrate its e ectiveness on the latest benchmark datasets (ASVspoof 2019). Next, I proposed the use of speech endpoint detection for reliable and robust model predictions on the ASVspoof 2017 dataset. For this, I created a publicly available collection of hand-annotations of speech endpoints for the same dataset, and new benchmark results for both frame-based and utterance-based countermeasures are also developed. I then proposed spectral subband modelling using CNNs for replay detection. My results indicate that models that learn subband-speci c information substantially outperform models trained on complete spectrograms. Finally, I proposed to use variational autoencoders | deep unsupervised generative models | as an alternative backend for spoo ng detection and demonstrate encouraging results when compared with the traditional Gaussian mixture mode

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Learning disentangled speech representations

    Get PDF
    A variety of informational factors are contained within the speech signal and a single short recording of speech reveals much more than the spoken words. The best method to extract and represent informational factors from the speech signal ultimately depends on which informational factors are desired and how they will be used. In addition, sometimes methods will capture more than one informational factor at the same time such as speaker identity, spoken content, and speaker prosody. The goal of this dissertation is to explore different ways to deconstruct the speech signal into abstract representations that can be learned and later reused in various speech technology tasks. This task of deconstructing, also known as disentanglement, is a form of distributed representation learning. As a general approach to disentanglement, there are some guiding principles that elaborate what a learned representation should contain as well as how it should function. In particular, learned representations should contain all of the requisite information in a more compact manner, be interpretable, remove nuisance factors of irrelevant information, be useful in downstream tasks, and independent of the task at hand. The learned representations should also be able to answer counter-factual questions. In some cases, learned speech representations can be re-assembled in different ways according to the requirements of downstream applications. For example, in a voice conversion task, the speech content is retained while the speaker identity is changed. And in a content-privacy task, some targeted content may be concealed without affecting how surrounding words sound. While there is no single-best method to disentangle all types of factors, some end-to-end approaches demonstrate a promising degree of generalization to diverse speech tasks. This thesis explores a variety of use-cases for disentangled representations including phone recognition, speaker diarization, linguistic code-switching, voice conversion, and content-based privacy masking. Speech representations can also be utilised for automatically assessing the quality and authenticity of speech, such as automatic MOS ratings or detecting deep fakes. The meaning of the term "disentanglement" is not well defined in previous work, and it has acquired several meanings depending on the domain (e.g. image vs. speech). Sometimes the term "disentanglement" is used interchangeably with the term "factorization". This thesis proposes that disentanglement of speech is distinct, and offers a viewpoint of disentanglement that can be considered both theoretically and practically
    corecore