7,621 research outputs found

    Performance of direct-oversampling correlator-type receivers in chaos-based DS-CDMA systems over frequency non-selective fading channels

    Get PDF
    In this paper, we present a study on the performance of direct-oversampling correlator-type receivers in chaos-based direct-sequence code division multiple access systems over frequency non-selective fading channels. At the input, the received signal is sampled at a sampling rate higher than the chip rate. This oversampling step is used to precisely determine the delayed-signal components from multipath fading channels, which can be combined together by a correlator for the sake of increasing the SNR at its output. The main advantage of using direct-oversampling correlator-type receivers is not only their low energy consumption due to their simple structure, but also their ability to exploit the non-selective fading characteristic of multipath channels to improve the overall system performance in scenarios with limited data speeds and low energy requirements, such as low-rate wireless personal area networks. Mathematical models in discrete-time domain for the conventional transmitting side with multiple access operation, the generalized non-selective Rayleigh fading channel, and the proposed receiver are provided and described. A rough theoretical bit-error-rate (BER) expression is first derived by means of Gaussian approximation. We then define the main component in the expression and build its probability mass function through numerical computation. The final BER estimation is carried out by integrating the rough expression over possible discrete values of the PFM. In order to validate our findings, PC simulation is performed and simulated performance is compared with the corresponding estimated one. Obtained results show that the system performance get better with the increment of the number of paths in the channel.Peer ReviewedPostprint (author's final draft

    Low-complexity smart antenna methods for third-generation W-CDMA systems

    Get PDF

    Statistical Modeling of Multiple Access Interference Power: a Nakagami-m Random Variable

    Get PDF
    This paper proposes a statistical model for the total multiple access interference (MAI) power for both Direct-Sequence Code Division Multiple Access (DS-CDMA) and Multicarrier Code Division Multiple Access (MC-CDMA) systems. We consider the use of both Walsh-Hadamard (WH) and Gold spreading codes transmitting over the asynchronous uplink channel. Detailed signal models of both CDMA systems are derived illustrating the production of MAI under asynchronous conditions. The paper demonstrates the Gaussian nature of the total MAI and shows that the probability density function (pdf) of the total MAI power can be very accurately characterized by the Nakagami-m distribution

    Uplink User Capacity in a CDMA System with Hotspot Microcells: Effects of Finite Transmit Power and Dispersion

    Full text link
    This paper examines the uplink user capacity in a two-tier code division multiple access (CDMA) system with hotspot microcells when user terminal power is limited and the wireless channel is finitely-dispersive. A finitely-dispersive channel causes variable fading of the signal power at the output of the RAKE receiver. First, a two-cell system composed of one macrocell and one embedded microcell is studied and analytical methods are developed to estimate the user capacity as a function of a dimensionless parameter that depends on the transmit power constraint and cell radius. Next, novel analytical methods are developed to study the effect of variable fading, both with and without transmit power constraints. Finally, the analytical methods are extended to estimate uplink user capacity for multicell CDMA systems, composed of multiple macrocells and multiple embedded microcells. In all cases, the analysis-based estimates are compared with and confirmed by simulation results.Comment: To appear in IEEE Transactions on Wireless Communication

    Exact BER Calculation of Asynchronous DS-CDMA Systems Communicating over Hoyt Channels

    No full text
    An asynchronous binary DS-CDMA system using random spreading sequences is considered in flat Hoyt fading channels. A new closed-form expression is derived for the conditional characteristic function of the multiple access interference. The exact average BER is expressed as a single numerical integration based on the characteristic function approach. The numerical results obtained from our exact BER analysis are verified by our simulation results and also compared to those obtained by the standard Gaussian approximation

    Implementable Wireless Access for B3G Networks - III: Complexity Reducing Transceiver Structures

    No full text
    This article presents a comprehensive overview of some of the research conducted within Mobile VCE’s Core Wireless Access Research Programme,1 a key focus of which has naturally been on MIMO transceivers. The series of articles offers a coherent view of how the work was structured and comprises a compilation of material that has been presented in detail elsewhere (see references within the article). In this article MIMO channel measurements, analysis, and modeling, which were presented previously in the first article in this series of four, are utilized to develop compact and distributed antenna arrays. Parallel activities led to research into low-complexity MIMO single-user spacetime coding techniques, as well as SISO and MIMO multi-user CDMA-based transceivers for B3G systems. As well as feeding into the industry’s in-house research program, significant extensions of this work are now in hand, within Mobile VCE’s own core activity, aiming toward securing major improvements in delivery efficiency in future wireless systems through crosslayer operation

    Modeling of Orthogonal Frequency Division Multiplexing (OFDM) for Transmission in Broadband Wireless Communications

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a multi carrier modulation technique that provides high bandwidth efficiency because the carriers are orthogonal to each other and multiple carriers share the data among themselves. The main advantage of this transmission technique is its robustness to channel fading in wireless communication environment. This paper investigates the effectiveness of OFDM and assesses its suitability as a modulation technique in wireless communications. Several of the main factors affecting the performance of a typical OFDM system are considered and they include multipath delay spread, channel noise, distortion (clipping), and timing requirements. The core processing block and performance analysis of the system is modeled usingMatlab
    corecore