51,233 research outputs found

    An Energy E cient Routing Protocol for extending Lifetime of Wireless Sensor Networks by Transmission Radius Adjustment

    Get PDF
    Wireless Sensor Networks needs energy e cient routing protocols for increasing the network lifetime. e en- ergy consumption of sensor nodes can be decreased by reducing the transmission radius range. In this proposed work an Energy E cient Routing Protocol (EERP) is developed for wireless sensor network by adjusting the node transmission radius and conserves the node energy. EERP follows on demand routing method for packet forwarding from source to destination. When the node’s energy reaches certain threshold then node reduces its transmission radius again in order to achieve less energy consumption under the circumstance. e trans- mission range distribution optimizations for networks are developed in order to obtain the maximum lifetime. Analysis of the solution shows that network lifetime improvement can be obtained through optimization comes at the expense of energy-ine ciency and a wasting of system resources. e simulation results shows that EERP protocol outperforms the existing routing protocols in terms of network lifetime, energy consumption and has a balanced network load and routing tra c

    E2BNAR: Energy Efficient Backup Node Assisted Routing for Wireless Sensor Networks

    Get PDF
    In Wireless Sensor Networks (WSNs), each sensor node can only use so much power before recharging. If energy is depleted too quickly, nodes will fail one by one, bringing down the network as a whole. To this end, a design is needed to reduce the burden on the sensor nodes' power supplies while extending the network's useful life. This paper proposes a new approach, called Energy Efficient Backup Node Assisted Routing, to accomplish this (E2BNAR). Each primary node in the network has a group of backup nodes to ensure the network continues functioning. Assuming that the sensor nodes are capable of energy harvesting, E2BNAR finds the best backup node by analyzing the statistical relationship between energy harvesting and consumption rates. Periodically, residual energy is used to analyze the current energy consumption rate. When evaluating performance, several different indicators are taken into account. These include the Packet Delivery Ratio, Throughput, Average Energy Consumption, and Number of Awakened Sensor Nodes. Through analysis and experimentation in several settings, the proposed method's efficacy has been established

    Adaptive Duty Cycling MAC Protocols Using Closed-Loop Control for Wireless Sensor Networks

    Get PDF
    The fundamental design goal of wireless sensor MAC protocols is to minimize unnecessary power consumption of the sensor nodes, because of its stringent resource constraints and ultra-power limitation. In existing MAC protocols in wireless sensor networks (WSNs), duty cycling, in which each node periodically cycles between the active and sleep states, has been introduced to reduce unnecessary energy consumption. Existing MAC schemes, however, use a fixed duty cycling regardless of multi-hop communication and traffic fluctuations. On the other hand, there is a tradeoff between energy efficiency and delay caused by duty cycling mechanism in multi-hop communication and existing MAC approaches only tend to improve energy efficiency with sacrificing data delivery delay. In this paper, we propose two different MAC schemes (ADS-MAC and ELA-MAC) using closed-loop control in order to achieve both energy savings and minimal delay in wireless sensor networks. The two proposed MAC schemes, which are synchronous and asynchronous approaches, respectively, utilize an adaptive timer and a successive preload frame with closed-loop control for adaptive duty cycling. As a result, the analysis and the simulation results show that our schemes outperform existing schemes in terms of energy efficiency and delivery delay

    Adaptive scheme to Control Power Aware for PDR in Wireless Sensor Networks

    Get PDF
    Nowadays Wireless sensor networks playing vital role in all area. Which is used to sense the environmental monitoring, Temperature, Soil erosin etc. Low data delivery efficiency and high energy consumption are the inherent problems in Wireless Sensor Networks. Finding accurate data is more difficult and also it will leads to more expensive to collect all sensor readings. Clustering and prediction techniques, which exploit spatial and temporal correlation among the sensor data, provide opportunities for reducing the energy consumption of continuous sensor data collection and to achieve network energy efficiency and stability. So as we propose Dynamic scheme for energy consumption and data collection in wireless sensor networks by integrating adaptively enabling/disabling prediction scheme, sleep/awake method with dynamic scheme. Our framework is clustering based. A cluster head represents all sensor nodes within the region and collects data values from them. Our framework is general enough to incorporate many advanced features and we show how sleep/awake scheduling can be applied, which takes our framework approach to designing a practical dynamic algorithm for data aggregation, it avoids the need for rampant node-to-node propagation of aggregates, but rather it uses faster and more efficient cluster-to-cluster propagation. To the best of our knowledge, this is the first work adaptively enabling/disabling prediction scheme with dynamic scheme for clustering-based continuous data collection in sensor networks. When a cluster node fails because of energy depletion we need to choose alternative cluster head for that particular region. It will help to achieve less energy consumption. Our proposed models, analysis, and framework are validated via simulation and comparison with Static Cluster method in order to achieve better energy efficiency and PDR

    M-GEAR: Gateway-Based Energy-Aware Multi-Hop Routing Protocol for WSNs

    Full text link
    In this research work, we advise gateway based energy-efficient routing protocol (M-GEAR) for Wireless Sensor Networks (WSNs). We divide the sensor nodes into four logical regions on the basis of their location in the sensing field. We install Base Station (BS) out of the sensing area and a gateway node at the centre of the sensing area. If the distance of a sensor node from BS or gateway is less than predefined distance threshold, the node uses direct communication. We divide the rest of nodes into two equal regions whose distance is beyond the threshold distance. We select cluster heads (CHs)in each region which are independent of the other region. These CHs are selected on the basis of a probability. We compare performance of our protocol with LEACH (Low Energy Adaptive Clustering Hierarchy). Performance analysis and compared statistic results show that our proposed protocol perform well in terms of energy consumption and network lifetime.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc

    Joint optimization for wireless sensor networks in critical infrastructures

    Get PDF
    Energy optimization represents one of the main goals in wireless sensor network design where a typical sensor node has usually operated by making use of the battery with limited-capacity. In this thesis, the following main problems are addressed: first, the joint optimization of the energy consumption and the delay for conventional wireless sensor networks is presented. Second, the joint optimization of the information quality and energy consumption of the wireless sensor networks based structural health monitoring is outlined. Finally, the multi-objectives optimization of the former problem under several constraints is shown. In the first main problem, the following points are presented: we introduce a joint multi-objective optimization formulation for both energy and delay for most sensor nodes in various applications. Then, we present the Karush-Kuhn-Tucker analysis to demonstrate the optimal solution for each formulation. We introduce a method of determining the knee on the Pareto front curve, which meets the network designer interest for focusing on more practical solutions. The sensor node placement optimization has a significant role in wireless sensor networks, especially in structural health monitoring. In the second main problem of this work, the existing work optimizes the node placement and routing separately (by performing routing after carrying out the node placement). However, this approach does not guarantee the optimality of the overall solution. A joint optimization of sensor placement, routing, and flow assignment is introduced and is solved using mixed-integer programming modelling. In the third main problem of this study, we revisit the placement problem in wireless sensor networks of structural health monitoring by using multi-objective optimization. Furthermore, we take into consideration more constraints that were not taken into account before. This includes the maximum capacity per link and the node-disjoint routing. Since maximum capacity constraint is essential to study the data delivery over limited-capacity wireless links, node-disjoint routing is necessary to achieve load balancing and longer wireless sensor networks lifetime. We list the results of the previous problems, and then we evaluate the corresponding results

    Un nuevo esquema de agrupación para redes sensoras inalámbricas de radio cognitivas heterogéneas

    Get PDF
    Introduction: This article is the product of the research “Learning-based Spectrum Analysis and Prediction in Cognitive Radio Sensor Networks”, developed at Sejong University in the year 2019. Problem: Most of the clustering schemes for distributed cognitive radio-enabled wireless sensor networks consider homogeneous cognitive radio-enabled wireless sensors. Many clustering schemes for such homogeneouscognitive radio-enabled wireless sensor networks waste resources and suffer from energy inefficiency because of the unnecessary overheads. Objective: The objective of the research is to propose a node clustering scheme that conserves energy and prolongs network lifetime. Methodology: A heterogeneous cognitive radio-enabled wireless sensor network in which only a few nodes have a cognitive radio module and the other nodes are normal sensor nodes. Along with the hardware cost, theproposed scheme is efficient in energy consumption. Results: We simulated the proposed scheme and compared it with the homogeneous cognitive radio-enabled wireless sensor networks. The results show that the proposed scheme is efficient in terms of energyconsumption. Conclusion: The proposed node clustering scheme performs better in terms of network energy conservation and network partition. Originality: There are heterogeneous node clustering schemes in the literature for cooperative spectrum sensing and energy efficiency, but to the best of our knowledge, there is no study that proposes a non-cognitiveradio-enabled sensor clustering for energy conservation along with cognitive radio-enabled wireless sensors. Limitations: The deployment of the proposed special device for cognitive radio-enabled wireless sensors is complicated and requires special hardware with better battery powered cognitive sensor nodes

    Energy efficient cooperative computing in mobile wireless sensor networks

    Get PDF
    Advances in future computing to support emerging sensor applications are becoming more important as the need to better utilize computation and communication resources and make them energy efficient. As a result, it is predicted that intelligent devices and networks, including mobile wireless sensor networks (MWSN), will become the new interfaces to support future applications. In this paper, we propose a novel approach to minimize energy consumption of processing an application in MWSN while satisfying a certain completion time requirement. Specifically, by introducing the concept of cooperation, the logics and related computation tasks can be optimally partitioned, offloaded and executed with the help of peer sensor nodes, thus the proposed solution can be treated as a joint optimization of computing and networking resources. Moreover, for a network with multiple mobile wireless sensor nodes, we propose energy efficient cooperation node selection strategies to offer a tradeoff between fairness and energy consumption. Our performance analysis is supplemented by simulation results to show the significant energy saving of the proposed solution
    corecore