131 research outputs found

    Towards providing reliable job completion time predictions using PCS

    Full text link
    In this paper we build a case for providing job completion time predictions to cloud users, similar to the delivery date of a package or arrival time of a booked ride. Our analysis reveals that providing predictability can come at the expense of performance and fairness. Existing cloud scheduling systems optimize for extreme points in the trade-off space, making them either extremely unpredictable or impractical. To address this challenge, we present PCS, a new scheduling framework that aims to provide predictability while balancing other traditional objectives. The key idea behind PCS is to use Weighted-Fair-Queueing (WFQ) and find a suitable configuration of different WFQ parameters (e.g., class weights) that meets specific goals for predictability. It uses a simulation-aided search strategy, to efficiently discover WFQ configurations that lie on the Pareto front of the trade-off space between these objectives. We implement and evaluate PCS in the context of DNN job scheduling on GPUs. Our evaluation, on a small scale GPU testbed and larger-scale simulations, shows that PCS can provide accurate completion time estimates while marginally compromising on performance and fairness

    vTrain: A Simulation Framework for Evaluating Cost-effective and Compute-optimal Large Language Model Training

    Full text link
    As large language models (LLMs) become widespread in various application domains, a critical challenge the AI community is facing is how to train these large AI models in a cost-effective manner. Existing LLM training plans typically employ a heuristic based parallel training strategy which is based on empirical observations rather than grounded upon a thorough examination of the search space of LLM parallelization. Such limitation renders existing systems to leave significant performance left on the table, wasting millions of dollars worth of training cost. This paper presents our profiling-driven simulator called vTrain, providing AI practitioners a fast yet accurate software framework to determine an efficient and cost-effective LLM training system configuration. We demonstrate vTrain's practicality through several case studies, e.g., effectively evaluating optimal training parallelization strategies that balances training time and its associated training cost, efficient multi-tenant GPU cluster schedulers targeting multiple LLM training jobs, and determining a compute-optimal LLM model architecture given a fixed compute budget

    Energy-Efficient GPU Clusters Scheduling for Deep Learning

    Full text link
    Training deep neural networks (DNNs) is a major workload in datacenters today, resulting in a tremendously fast growth of energy consumption. It is important to reduce the energy consumption while completing the DL training jobs early in data centers. In this paper, we propose PowerFlow, a GPU clusters scheduler that reduces the average Job Completion Time (JCT) under an energy budget. We first present performance models for DL training jobs to predict the throughput and energy consumption performance with different configurations. Based on the performance models, PowerFlow dynamically allocates GPUs and adjusts the GPU-level or job-level configurations of DL training jobs. PowerFlow applies network packing and buddy allocation to job placement, thus avoiding extra energy consumed by cluster fragmentations. Evaluation results show that under the same energy consumption, PowerFlow improves the average JCT by 1.57 - 3.39 x at most, compared to competitive baselines

    Network Contention-Aware Cluster Scheduling with Reinforcement Learning

    Full text link
    With continuous advances in deep learning, distributed training is becoming common in GPU clusters. Specifically, for emerging workloads with diverse amounts, ratios, and patterns of communication, we observe that network contention can significantly degrade training throughput. However, widely used scheduling policies often face limitations as they are agnostic to network contention between jobs. In this paper, we present a new approach to mitigate network contention in GPU clusters using reinforcement learning. We formulate GPU cluster scheduling as a reinforcement learning problem and opt to learn a network contention-aware scheduling policy that efficiently captures contention sensitivities and dynamically adapts scheduling decisions through continuous evaluation and improvement. We show that compared to widely used scheduling policies, our approach reduces average job completion time by up to 18.2\% and effectively cuts the tail job completion time by up to 20.7\% while allowing a preferable trade-off between average job completion time and resource utilization

    MISO: Exploiting Multi-Instance GPU Capability on Multi-Tenant Systems for Machine Learning

    Full text link
    GPU technology has been improving at an expedited pace in terms of size and performance, empowering HPC and AI/ML researchers to advance the scientific discovery process. However, this also leads to inefficient resource usage, as most GPU workloads, including complicated AI/ML models, are not able to utilize the GPU resources to their fullest extent -- encouraging support for GPU multi-tenancy. We propose MISO, a technique to exploit the Multi-Instance GPU (MIG) capability on the latest NVIDIA datacenter GPUs (e.g., A100, H100) to dynamically partition GPU resources among co-located jobs. MISO's key insight is to use the lightweight, more flexible Multi-Process Service (MPS) capability to predict the best MIG partition allocation for different jobs, without incurring the overhead of implementing them during exploration. Due to its ability to utilize GPU resources more efficiently, MISO achieves 49% and 16% lower average job completion time than the unpartitioned and optimal static GPU partition schemes, respectively

    POLCA: Power Oversubscription in LLM Cloud Providers

    Full text link
    Recent innovation in large language models (LLMs), and their myriad use-cases have rapidly driven up the compute capacity demand for datacenter GPUs. Several cloud providers and other enterprises have made substantial plans of growth in their datacenters to support these new workloads. One of the key bottleneck resources in datacenters is power, and given the increasing model sizes of LLMs, they are becoming increasingly power intensive. In this paper, we show that there is a significant opportunity to oversubscribe power in LLM clusters. Power oversubscription improves the power efficiency of these datacenters, allowing more deployable servers per datacenter, and reduces the deployment time, since building new datacenters is slow. We extensively characterize the power consumption patterns of a variety of LLMs and their configurations. We identify the differences between the inference and training power consumption patterns. Based on our analysis of these LLMs, we claim that the average and peak power utilization in LLM clusters for inference should not be very high. Our deductions align with the data from production LLM clusters, revealing that inference workloads offer substantial headroom for power oversubscription. However, the stringent set of telemetry and controls that GPUs offer in a virtualized environment, makes it challenging to have a reliable and robust power oversubscription mechanism. We propose POLCA, our framework for power oversubscription that is robust, reliable, and readily deployable for GPU clusters. Using open-source models to replicate the power patterns observed in production, we simulate POLCA and demonstrate that we can deploy 30% more servers in the same GPU cluster for inference, with minimal performance los

    Towards GPU Utilization Prediction for Cloud Deep Learning

    Get PDF
    Understanding the GPU utilization of Deep Learning (DL) workloads is important for enhancing resource-efficiency and cost-benefit decision making for DL frameworks in the cloud. Current approaches to determine DL workload GPU utilization rely on online profiling within isolated GPU devices, and must be performed for every unique DL workload submission resulting in resource under-utilization and reduced service availability. In this paper, we propose a prediction engine to proactively determine the GPU utilization of heterogeneous DL workloads without the need for in-depth or isolated online profiling. We demonstrate that it is possible to predict DL workload GPU utilization via extracting information from its model computation graph. Our experiments show that the prediction engine achieves an RMSLE of 0.154, and can be exploited by DL schedulers to achieve up to 61.5% improvement to GPU cluster utilization
    corecore