
Towards GPU Utilization Prediction for Cloud Deep Learning

Gingfung Yeung Damian Borowiec Adrian Friday Richard Harper Peter Garraghan
Lancaster University

Abstract
Understanding the GPU utilization of Deep Learning (DL)
workloads is important for enhancing resource-efficiency and
cost-benefit decision making for DL frameworks in the cloud.
Current approaches to determine DL workload GPU utiliza-
tion rely on online profiling within isolated GPU devices, and
must be performed for every unique DL workload submission
resulting in resource under-utilization and reduced service
availability. In this paper, we propose a prediction engine to
proactively determine the GPU utilization of heterogeneous
DL workloads without the need for in-depth or isolated online
profiling. We demonstrate that it is possible to predict DL
workload GPU utilization via extracting information from
its model computation graph. Our experiments show that the
prediction engine achieves an RMSLE of 0.154, and can be
exploited by DL schedulers to achieve up to 61.5% improve-
ment to GPU cluster utilization.

1 Introduction

Deep Learning (DL) has begun to make significant impact
across many fields of computing. Growth in volumes of data,
in the complexity of model usage, as well as innovations in DL
architectures have all led to increasing practitioner demand.
This in turn has resulted in new ways of satisfying this de-
mand including, for example, exploiting compute accelerators
such as Graphic Processing Units (GPUs) for training and
inference computation [1–3]. Prominent cloud providers now
provision GPU1 cluster resources as part of their IaaS [4–7].
An important goal for such services is ensuring specified Ser-
vice Level Agreements (SLA) and Quality of Service (QoS)
are met in a resource-efficient manner [8, 9].

Efforts to ensure SLA and QoS guarantees for cloud-
based DL often result, however, in considerable GPU under-
utilization [10, 11]. This is because orchestration frameworks
such as Kubernetes [12] or YARN [13] prohibit explicit GPU

1A vast majority of DL workloads utilize NVIDIA GPUs, which we refer
to as GPUs unless otherwise stated.

sharing for workloads, including those for DL. Such under-
utilization decreases resource-efficiency as well as service
availability, requiring additional expensive GPU devices to
address the demand.

Numerous approaches have been proposed to improve GPU
resource-efficiency. These include exploiting workload per-
formance metrics such as execution time [8, 10, 14], com-
munication [15, 16], and GPU utilization patterns [17–19].
These information allow providers to make high-quality clus-
ter scheduling decisions to address issues such as interference
between co-located workloads, network latency and resource
under-utilization. Since GPU rental can be expensive2, it is
also beneficial for consumers to understand GPU utilization
requirements of their DL workloads prior to execution to
determine potential cost. As such, understanding DL work-
load has been identified as an important topic for designing
resource-efficient cloud-based DL systems [21–23].

A challenge confronting resource-efficient cloud-based DL,
though, is that current approaches to obtain the GPU utiliza-
tion of DL workloads are reactive, i.e. online workload profil-
ing is undertaken during execution. Online profiling entails
executing every unique submitted DL workload within an
isolated GPU (or entire machine) ensuring accurate metric
collection [14, 24], and often exploits stress testing using
micro-benchmarks to identify bottlenecks [18]. Such reactive
profiling approaches results in both reduced service availabil-
ity and resource-efficiency due to the necessity for dedicated
unreserved devices. This is particularly important due to the
growing trend of AutoML, where DL workloads are of differ-
ent configurations and/or model architecture [10].

An alternative and potentially more efficient approach is
instead to proactively predict DL workload GPU utilization
prior to execution. However, no work yet exists capable of
doing so rapidly or accurately; such prediction is difficult
when considering diverse DL model architectures, DL frame-
works (differing graph optimizations), datasets, and hardware
heterogeneity—all which alter GPU utilization patterns.

2As of March 2020, rental cost an AWS P3 instance with 8 x NVIDIA
V100 GPUs is $25/h [20]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/323304435?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper, we have designed a GPU utilization prediction
engine for heterogeneous DL workloads. In contrast to current
approaches, our prediction engine proactively provides esti-
mated values of unseen workloads based on historical profiles
which can be used by DL cluster schedulers to reduce perfor-
mance interference between workloads to increase resource
efficiency as depicted in Figure 1. Our research contributions
are specifically:

• We identify relevant DL model features (Floating Point
Operations Per second (FLOPs), number of convolution
layers, and input data size from DL workload computa-
tion graphs) that can be used to proactively predict GPU
utilization without a need for online profiling. We show
that DL workload GPU utilization can be predicted with
an RMSLE of 0.154.

• We demonstrate empirically that the prediction engine
when integrated into a DL cluster scheduler supporting
co-location can minimize performance interference due
to GPU over-allocation, achieving up to 61.5% increase
in GPU cluster utilization and up to 33.6% makespan
reduction over existing approaches.

2 Background

Understanding and achieving high resource utilization for
heterogeneous workloads (including DL) in cloud computing
is an important topic [8, 10, 14, 18, 24–37].

DL workload are represented as Deep Neural Networks
(DNN) as a Directed Acyclic Graph (DAG) or computation
graph in execution. Each graph node is an operation (i.e.
layer), containing parameter information and has access to
its predecessor and successor. Since model parameters are
typically stored as floating point values, larger models result
in a higher number of Floating Point Operations (FLOPs), and
increased GPU device memory requirements. It has recently
been shown that increasing DNN model depth and width im-
proves accuracy in DL [38,39]. For example, in the ImageNet
image classification challenge, the ResNet50 model with 4.1
GFLOPS and EfficientNet-B7 with 37 BFLOPs, achieved
93.0% and 97.1% Top-5 accuracy, respectively.

GPUs are well-suited for DL computation due to their abil-
ity to perform iterative matrix multiplication, utilizing thou-
sands of processing units, where a group of processing units
is referred to as a Streaming Multiprocessor (SM). SM exe-
cutes kernels in Single-Instruction-Multiple-Thread (SIMT)
paradigm3, hence each kernel defines the number of threads
required, which are called thread blocks. Each thread block is
composed of a number of warps4, where each warp contains
32 threads [40]. Thus, a complex DL model with a large num-
ber of layers (i.e. kernels), results in a significant amount of

3Kernel—In this context, GPU implementation of DNNs operations
4A warp is the basic scheduling unit within an Nvidia GPU.

Node n

Cloud Resource Manager

Prediction Engine

Workload
Definition

Computation
Graph

Computation
Model

Performance
Score

W
o

rk
lo

ad
Q

u
eu

e

Resource
Pool

Scheduler

Node 1

Node 2

C
lo

u
d

Su
b

m
is

si
o

n
P

o
rt

al

Enriched
Definition

Feature
Extraction

Figure 1: Proposed GPU utilization prediction engine deployed within a
cloud resource manager

computation performed by the GPU processing units, driven
by the number of FLOPs.

GPU utilization is known to be non-trivial to calcu-
late [41]. To determine how the GPU is utilized during kernel
execution, users can obtain relevant metrics from an NVIDIA
System Management Interface (nvidia-smi), and through
this observe the GPU and Memory utilization. GPU utiliza-
tion is defined as the percentage of time over the past sample
period that one or more kernels are executed on the GPU.
Whereas Memory utilization is defined as the percentage of
time over the past sample period that global (device) memory
was read from or written to. Although both measurements are
not the actual utilization of the SM core (chip area containing
the floating-point, integer and tensor units5), nor the amount
of read/write bytes from device memory and caches, they are
a good estimate of the amount of warps required to keep the
GPU busy. Thus, recent online profiling approaches use one
or more of these metrics for decision making [10, 19, 37].

GPU profiling is performed by executing workload on a
dedicated GPU located in an isolated machine [14, 18, 24],
with various device metrics obtainable by profiling tools6. Pro-
filing can be categorized as one of two types: Coarse grained
profiling obtains the number of kernels, kernel configuration,
GPU/memory utilization, and kernel execution time. Based
on our own experimentation, obtaining a good coarse grained
profile requires several minutes of profiling depending on
workload. Fine-grained profiling requires accessing hardware
performance counters per kernel including SM Efficiency,
Achieved Occupancy and Bytes read/write from DRAM. This
method is more intensive, and based on our experiments, min-
utes to hours of profiling may be required depending on the
metrics measured and workload complexity.

5Compute Capability >= 7.0
6For Nvidia profiling: NVIDIA NSight Systems, NVIDIA NSight Com-

pute and NVProf

Architecture Permutations

MobileNetV2 [42] [default, channel: 2i0...n]
ResNet [43] [18, 34, 50, 18 - bottleneck],
GoogLeNet [44] [default]
VGGNet [45] [19]
ResNeXt [46] [11 - cardinality: 2, width :16]
SqueezeNetV1 [47] [1.0]
DenseNet [48] [121, 161, 169]
ShuffleNetV2 [49] [0.5, 1.0, 2.0]
MNASNet [50] [0.5, 1.0, 1.3],
PyramidNet [51] [depth: [48,84], alpha: [66,110]],
DualPathNetwork [52] [92, blocks :[2,2,2,2]]

Transformer [53] emb/hidden: [64, 128], attenhead : 4

LSTM [54]
emb/hidden: [64, 128], layers: [1, 2]

bidirectional

Table 1: Analyzed DL models. Datasets Cifar10 [55], WikiText2 [56] and
news commentary v14 en-zh [57] were used for CV and NLP domains. NLP
dataset sentence length was set as 200, and vocabulary 10000 with batch
sizes [16,32,64]. CV model batch sizes set as [64, 128, 256, 512]

3 Related Work

Many existing cloud DL systems already profile workload
to improve resource-efficiency, obtaining metrics such as
training progress [58], workload communication distribu-
tion [15, 16] and workload execution time [8, 59]. In terms of
profiling GPU utilization, Gandiva [10] focuses on DL work-
load time-sharing on GPUs, and conducts online workload
profiling within isolated machines to determine suitable co-
location and migration strategies. Thinakaran el al. [37] also
conduct online workload profiling on isolated machines for
co-location strategies to harvest under-utilized resources. Xu
et al. [19] leverage characteristics of virtualized GPUs, and
propose an interference-aware scheduler. It exploits workload
usage patterns such as GPU, memory, and vCPU utilization
obtained from isolated profiling, to predict performance slow-
down from co-located DL workloads. Wang et al [22] obtain
DL workload features and infrastructure features to decide a
training regime (AllReduce, Parameter server/worker). Qi et
al [60] is the closest to our work, where they utilize model
and device features, and profile per-layer execution time to
predict overall training time.

4 Characterizing DL Utilization

To create our prediction engine, it is first necessary to study
the relationship between DL workload characteristics and
GPU utilization. We have profiled 13 prominent computer
vision (CV) and natural language processing (NLP) models
architecture 7, including convolution neural networks (CNNs)
and recurrent neural networks (RNNs), with varying config-

7Models obtained from github: pytorch/vision, kuangliu/pytorch-cifar
dyhan0920/PyramidNet-PyTorch [61], allenlp/allennlp [62]

0

10

20

30

40

50

60

70

80

90

100

G
P

U
 U

ti
liz

at
io

n
 %

(a) GPU Utilization per model

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

GF
LO

Ps

GPU Utilization %

(b) GFLOPs vs. GPU Utilization

Figure 2: DL workload characteristics

urations including mini-batch sizes, hidden dimensions and
number of layers, as shown in Table 1. We attempted to cap-
ture as many unique DL models configurations as possible
within the memory constraints of our GPU devices, resulting
in a total of 81 different DL workloads executed.

Micro-benchmarks were conducted using a dedicated ma-
chine with 4 x Nvidia GeForce 1080 GPUs and Intel i7-
6850K CPU. We used Nvidia Docker 2 container runtime,
CUDA Toolkit 10.0, cuDNN 7.5, and PyTorch 1.1 DL Frame-
work [63]. All micro-benchmarks were executed in isolation
and ran multiple times to ensure metric consistency, with
metrics collected using nvidia-smi.

Figure 2a depicts the GPU utilization of micro-benchmark
models, with DL workload ranging between 20 - 90% GPU
utilization for their default parameter configurations, and
batch size at 64 and 16 for vision and language models respec-
tively. It is observable that model complexity relates to higher
GPU utilization, particularly FLOPs8, as shown in Figure 2b.
There exist several models with low FLOPs and high GPU
utilization, which we postulate is likely resultant of model
architectures producing high number of intermediate feature
maps (e.g ResNet). These findings are supported by prior
studies in the field of neural architecture search and model
compression [38, 42, 64, 65].

DL models with greater complexity in terms of FLOPs and
high number of feature maps, result in more kernels launched
and longer kernel execution time. We show the difference
between two models in a 30ms period as shown in Figure 3a
extracted via Nvidia Nsight System. We also conducted
experiments within two different GPU architectures - Pascal
(1080) and Turing (2080) - with the same workload param-
eters, and observed that they follow the similar utilization
proportions with Pascal exhibiting higher utilization as shown
in Figure 3b. We intend to investigate further with different
hardware architectures. Based on these observations, it ap-
pears possible to exploit DL model architecture structure to
predict GPU utilization.

8calculated with respect to input data size

(a) Example kernel patterns

0

20

40

60

80

100

LS
TM

G
oo

gL
en

et

LS
TM

M
ob

i le
N

et
v2

Re
sN

et
5

0
Sh

uf
fle

N
et

_0
_5

VG
G

19
G

oo
gL

en
et

M
ob

i le
N

et
v2

Re
sN

et
5

0
Sh

uf
fle

N
et

_0
_5

VG
G

19

G
PU

 U
ti

liz
at

io
n

%

Nvidia 1080

Nvidia 2080

Ba
tc

h
16

Ba
tc

h
64

Ba
tc

h
12

8

(b) Utilization per device

Figure 3: DL workload utilization

5 Prediction Engine

Overview. Our prediction engine extracts key DL workload
features described in Table 2 via a process9 that iterates
through the DL model as shown in Figure 4. These features
are normalized and provided as numerical inputs to a machine
learning model. It requires an offline training stage on his-
torical DL workload profiles. Such profiles can be acquired
via developers running benchmarks or DL workloads mo-
mentarily being the sole occupant of a GPU device, which
we believe provides advantages over - and can be combined
with - existing reactive approaches [10, 19, 37], as after suc-
cessful model training, there is no need for isolated profiling
for unique DL workload entering the system. The machine
learning model can be periodically retrained after collecting
additional profiles.

Feature Description

Conv. Layers No. of convolution layers

Linear Layers No. of linear layers

Activations No. of activation functions

Other Layers No. of other NN layers

Model Size (MB) Size of the NN model in megabytes

GFLOPs Number of floating-point operations

Batch Size Size of the dataset mini-batch

Table 2: Selected DL model features for GPU utilization prediction

Features. The prediction engine iterates through the model
and calculates the FLOPs for each operation based on its
inputs, output shape, and parameters. For example, a stan-
dard general matrix multiplication in FLOPs is calculated
by inputs shape × outputs shape × batch size. Note that we
modeled LSTM cell as two linear layers, as they perform ma-
trix multiplication between the cell weights and inputs (e.g.

9Features are currently limited to PyTorch, we plan to integrate into Open
Neural Network Exchange formatting in future work.

Node Inp. Shape Out. Shape Params FLOPs

… … … … …

MAT-MUL <64, 4096> <64, 1000> 1000 262m

… … … …

Input

Transpose

W: <64,3,3,3>

Conv

B: <4096,4096>

Mat-Mul

Output Computation Model

Conv: 50
Linear: 1

FLOPs: 4.1G

Figure 4: Model graph FLOP characterization

input embedding, hidden states). Once the inputs are split
into gates, gate computation can be modeled as activations.
Finally, we counts the number of layer types. We believe that
these features are sufficient due to their prominence within
all current vision and language models.

Model Training. 81 samples of features and utilization
profiles were derived from experiments in Section 4, and is
of similar size comparable to prior work [19]. The training
procedure consists of: 1) Random shuffling and splitting sam-
ples into 80% training and 20% testing sets. 2) Applying
established regression models on training set to investigate
prediction effectiveness - we perform naive grid search on
each regressor to train the model with 5-fold cross validation
to find best parameters i.e. n estimators and max depth for
tree-based regressors. 3) Testing our models with 20% testing
set to ensure the model can generalize to unseen data.

Linear LightGBM [66] XGBoost [67] Random Forest [68]

RMSLE 0.291 0.255 0.197 0.154

Table 3: Regressors Root Mean Square Log Error (RMSLE) for GPU utiliza-
tion prediction

Model accuracy was determined via measuring regressor
Root Mean Square Log Error (RMSLE)—an established mea-
sure for regression accuracy when the under-prediction error
is enlarged. This is suitable for utilization prediction: whilst
overestimating GPU utilization is not ideal in terms of maxi-
mizing resource efficiency, it is preferable than underestima-
tion leading to unintended GPU over-allocation,performance
interference, cost budget underestimation.

We observe that the random forest model achieves RMSLE
of 0.154, and outperforms gradient boosting machine models.
We postulate that this may be due to our experiments con-
taining a large proportion of CNN models, leading to random
forests better fitted towards a set of data points as they nat-
urally have higher variance than gradient boosting methods,
where boosting are composed of weak learners [69].

1

1.5

2

2.5

3

3.5

4

4.5

5

25 50 75 100 125 150 175 200

N
or

m
al

ize
d

JC
T

slo
w

do
w

n

Cumulative GPU utilization (%)

(a) Slowdown vs. Utilization

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300

A
vg

 C
lu

st
er

 G
P

U
 U

ti
liz

at
io

n
 (

%
)

Time (m)

Slot-based

Reactive

Predictive

(b) Average cluster GPU Utilization

Figure 5: Case study: GPU cluster co-location scheduling

6 Case Study: Prediction-based Scheduling
for DL Workload Co-location

We investigate the benefit of our proposed approach in co-
location enabled DL workload scheduling (i.e. GPU sharing).
While we present scheduling as a case study, the prediction
engine has other applications in power management and cost
modelling which we intend to expand upon in future work.

Co-location. Safe co-location of DL workloads is desir-
able to improve resource-efficiency, with issues in perfor-
mance interference and slowdown stemming from GPU over-
allocation. Prior studies [10, 19] indicate that co-location im-
pacts Job Completion Time (JCT). To reinforce these findings,
we conducted an initial analysis of JCT slowdown for 276 ex-
ecution combinations of co-located DL models each set to run
for 5 epochs. Figure 5a shows that increases JCT correlates
positively with cumulative GPU utilization with typical slow-
down between 10%–200% JCT slowdown10 per DL model.

Experiment. We integrated the prediction engine into a
prototype co-location DL scheduler, deployed within a labo-
ratory cluster (12 x 2080 GPU cluster, AMD Ryzen 1920 x
12 Core Processor, Kubernetes 1.15.2). The scheduler uses a
modified First Fit Decreasing bin-packing algorithm to max-
imize GPU utilization and minimize GPU over-allocation,
allows three jobs maximum co-located per GPU, and perform
resubmission in the event of job OOM. We proactively pro-
vide predicted GPU utilization values at job submission time.
We compared our approach against slot-based (disallowed
co-location) - i.e. the default kubernetes scheduler and a re-
active online profiling approach, using a 1 minute period to
profile in isolation until we can obtain training progress time
and utilization value prior to co-location similar to [10]. Ex-
periments were conducted using a mixture of DL workloads
samples from Table 1. Each experiment scheduled 100 DL
workloads to all approaches five times each. Workloads are
configured to execute between 2 minutes to 2 hours by defin-
ing the appropriate epoch limit, scaled from prior work [15].

10Normalized JCT slowdown is calculated as
Tcolo−Tsolo

Tsolo
, where Tsolo is

DL JCT in isolation and Tcolo is DL JCT when co-located.

GPU Utilization (%) Makespan (m)
Avg. St. Gain Avg. St. Gain

Slot-based 43.1 16.7 - 306.9 1.15 -

Reactive 47.1 21.4 9.2% 277.6 1.72 9.5%

Proactive 69.6 26.9 61.5% 204.0 8.5 33.6%

Table 4: Preliminary performance analysis of DL schedulers

Results. As summarized in Table 4, our proactive approach
achieved average 69.6% GPU utilization in comparison to
slot-based (43.1%) and reactive (47.1%). This is due to re-
duced time waiting for an isolated machine to obtain an accu-
rate metric using online profiling, hence increasing utilization
overall. We foresee that the reactive approach will achieve
improved GPU utilization in a cluster with longer running DL
workloads (i.e. where profiling time is small as a proportion
of overall execution time), but would still require occupying a
reserved GPU that may be otherwise available to other Cloud
customers. In all experiment runs, our approach achieved the
lowest makespan with a 33.6% improvement against slot-
based, and a 24.3% improvement over the reactive approach.
We found that slot-based scheduling achieved the lowest aver-
age JCT of 1869s due to disallowing co-location, followed by
prediction (2024s) and reactive (2193s).

Summary. From our preliminary study, we have found that
our prediction engine appears to be promising approach to
benefit DL schedulers supporting co-location, and believe that
DL schedulers should encompass both reactive and proactive
GPU utilization profiling together. Though we have conducted
experiments on Pascal and Turing GPU architecture, we did
not integrate distributed workload (i.e. AllReduce, Parameter
server and workers) in our case study. We will discuss poten-
tial approach to handle distributed workload in Section 8.

7 Conclusion

Existing resource-efficient decisions for DL in the cloud made
by providers and consumers are performed by understanding
and exploiting workload metrics. However, they can only do
so by performing online profiling. In this paper, we have
proposed a prediction engine capable of predicting GPU uti-
lization for heterogeneous DL workloads without the need for
online profiling. We have identified several model features
that relate to GPU utilization (most notably model FLOPs),
and demonstrated prediction with RMSLE of 0.154. Based on
these findings, we have experimented with several regression
techniques and demonstrated the practicality of the prediction
engine within a preliminary DL scheduler implementation for
co-location, showing that it can be used to achieve an overall
cluster GPU utilization of 69.6% in comparison to slot-based
(43.1%) and conventional reactive (47.1%) approaches using
online profiling.

8 Discussion

While our study of DL model utilization is promising, there
are several directions that we believe would be highly interest-
ing to the community. We note that there are DNN architec-
tures that were excluded in this study, such as GAN and GNN.
This opens an intuitive path for further feature exploration.

Hardware. It is established that accelerator performance
is affected by the number of processing elements, cache size
and memory bandwidth. We may be able to further generalise
our approach to other GPU and accelerator architectures such
as FPGAs. Note that, we have yet to establish to what extent
GPU architectures affect the prediction methods needed.

DL Compilers. It is known that when executing convolu-
tion, cudnn selects the best algorithm from winograd, fft and
GEMM for the layer configuration, therefore it would be in-
teresting for our approach to pre-determine these decisions to
achieve higher utilization prediction accuracy. Furthermore,
existing works leverage DL compilers such as TVM [70]
for computation graph optimization to reduce the number of
kernels launched and reduce latency. It may be worth to con-
sider the intermediate outputs from these compilers to extract
further information.

Training Procedure. Since we shuffle and split our sam-
ples, it is possible for models within same architecture to
reside within the train and test set. For example: ResNet50 -
batch 64 in training set and ResNet50 - batch 256 in testing
set. We believe that in our current context it is acceptable as
when using AutoML to search for best hyperparameters, it
is possible that a DL model will be deployed with different
batch sizes. In the future, we will investigate the robustness of
our approach by randomly shuffling the samples w.r.t model
architecture type (i.e. all ResNet must be in the same set).

Distributed Workload. Our prediction engine was de-
signed for single GPU DL models, as recent analysis of pro-
duction cluster traces [11,71] have shown that 86.6% of all DL
workloads are currently trained within a single GPU. How-
ever, it is likely that distributed DL workload will become
increasingly prominent, and will result in performance bot-
tlenecks due to network latency. By considering the intricate
relationship between infrastructure i.e. Network I/O, CPU,
Memory, and models impact on GPU utilization would be
crucial towards achieving high performance and scalability in
distributed DL training or inference.

Co-location Scheduling. Our prototype cluster scheduler
has identified that there are potentially large performance
gains possible via intelligent co-location of DL workload.
We intend to improve upon this scheduler, and believe that
optimization methods such as Mixed Integer Programming
can be leveraged to derive a co-location aware optimization
objective under resource constraints.

Acknowledgements

We would like to thank the anonymous HotCloud review-
ers and our shepherd Arvind Krishnamurthy for their highly
constructive comments and valuable feedback.

References

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers et al., “In-datacenter performance analysis
of a tensor processing unit,” in Proceedings of the 44th
Annual International Symposium on Computer Architec-
ture, 2017, pp. 1–12.

[2] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou,
L. Xie, Z. Guo, Y. Yang, L. Yu et al., “Highly scal-
able deep learning training system with mixed-precision:
Training imagenet in four minutes,” arXiv preprint
arXiv:1807.11205, 2018.

[3] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengill, M. Liu, D. Lo, S. Alka-
lay, M. Haselman et al., “Serving dnns in real time at
datacenter scale with project brainwave,” IEEE Micro,
vol. 38, no. 2, pp. 8–20, 2018.

[4] IBM. (2020) Gpus for cloud servers | ibm. [Online].
Available: https://www.ibm.com/cloud/gpu

[5] Google. (2020) Cloud gpus | google cloud. [Online].
Available: https://cloud.google.com/gpu

[6] Amazon Web Services Inc. (2020) Amazon EC2 P3 –
Ideal for Machine Learning and HPC - AWS. [Online].
Available: https://aws.amazon.com/ec2/instance-types/
p3/

[7] Microsoft Corporation. (2020) Azure VM sizes
- GPU - Azure Virtual Machines. [On-
line]. Available: https://docs.microsoft.com/en-us/
azure/virtual-machines/sizes-gpu

[8] H. Shen, L. Chen, Y. Jin, L. Zhao, B. Kong, M. Phili-
pose, A. Krishnamurthy, and R. Sundaram, “Nexus: a
gpu cluster engine for accelerating dnn-based video anal-
ysis,” in Proceedings of the 27th ACM Symposium on
Operating Systems Principles, 2019, pp. 322–337.

[9] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploit-
ing cloud services for cost-effective, slo-aware machine
learning inference serving,” in 2019 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 19), 2019, pp.
1049–1062.

[10] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,
N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao, Q. Zhang

https://www.ibm.com/cloud/gpu
https://cloud.google.com/gpu
https://aws.amazon.com/ec2/instance-types/p3/
https://aws.amazon.com/ec2/instance-types/p3/
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu

et al., “Gandiva: Introspective cluster scheduling for
deep learning,” in 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18),
2018, pp. 595–610.

[11] M. Jeon, S. Venkataraman, A. Phanishayee, J. Qian,
W. Xiao, and F. Yang, “Analysis of large-scale multi-
tenant GPU clusters for DNN training workloads,” in
2019 USENIX Annual Technical Conference (USENIX
ATC 19), 2019, pp. 947–960.

[12] K. Hightower, B. Burns, and J. Beda, Kubernetes: up
and running: dive into the future of infrastructure. "
O’Reilly Media, Inc.", 2017.

[13] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal,
M. Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth
et al., “Apache hadoop yarn: Yet another resource nego-
tiator,” in Proceedings of the 4th annual Symposium on
Cloud Computing, 2013, pp. 1–16.

[14] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars,
and L. Tang, “Prophet: Precise qos prediction on
non-preemptive accelerators to improve utilization in
warehouse-scale computers,” in Proceedings of the
Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, 2017, pp. 17–32.

[15] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,
J. Qian, H. Liu, and C. Guo, “Tiresias: A {GPU} cluster
manager for distributed deep learning,” in 16th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), 2019, pp. 485–500.

[16] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu,
and C. Guo, “A generic communication scheduler for
distributed dnn training acceleration,” in Proceedings of
the 27th ACM Symposium on Operating Systems Princi-
ples, 2019, pp. 16–29.

[17] R. Phull, C.-H. Li, K. Rao, H. Cadambi, and S. Chakrad-
har, “Interference-driven resource management for gpu-
based heterogeneous clusters,” in Proceedings of the
21st international symposium on High-Performance Par-
allel and Distributed Computing, 2012, pp. 109–120.

[18] Y. Ukidave, X. Li, and D. Kaeli, “Mystic: Predictive
scheduling for gpu based cloud servers using machine
learning,” in 2016 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). IEEE, 2016,
pp. 353–362.

[19] X. Xu, N. Zhang, M. Cui, M. He, and R. Surana, “Char-
acterization and prediction of performance interference
on mediated passthrough gpus for interference-aware
scheduler,” in 11th {USENIX} Workshop on Hot Topics
in Cloud Computing (HotCloud 19), 2019.

[20] Amazon Web Services Inc. (2020) EC2 Instance Pricing
– Amazon Web Services (AWS). [Online]. Available:
https://aws.amazon.com/ec2/pricing/on-demand/

[21] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah,
D. Khudia, J. Law, P. Malani, A. Malevich, S. Nadathur
et al., “Deep learning inference in facebook data centers:
Characterization, performance optimizations and hard-
ware implications,” arXiv preprint arXiv:1811.09886,
2018.

[22] M. Wang, C. Meng, G. Long, C. Wu, J. Yang, W. Lin, and
Y. Jia, “Characterizing deep learning training workloads
on alibaba-pai,” arXiv preprint arXiv:1910.05930, 2019.

[23] Y. Wang, G.-Y. Wei, and D. Brooks, “A systematic
methodology for analysis of deep learning hardware
and software platforms,” in Proceedings of Machine
Learning and Systems 2020, 2020, pp. 30–43.

[24] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos
awareness and increased utilization for non-preemptive
accelerators in warehouse scale computers,” ACM SIG-
PLAN Notices, vol. 51, no. 4, pp. 681–696, 2016.

[25] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware
scheduling for heterogeneous datacenters,” ACM SIG-
PLAN Notices, vol. 48, no. 4, pp. 77–88, 2013.

[26] C. Delimitrou, N. Bambos, and C. Kozyrakis, “Qos-
aware admission control in heterogeneous datacenters,”
in Proceedings of the 10th International Conference on
Autonomic Computing ({ICAC} 13), 2013, pp. 291–296.

[27] J. Mars, L. Tang, and R. Hundt, “Heterogeneity in
“homogeneous” warehouse-scale computers: A perfor-
mance opportunity,” IEEE Computer Architecture Let-
ters, vol. 10, no. 2, pp. 29–32, 2011.

[28] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds:
managing performance interference effects for qos-
aware clouds,” in Proceedings of the 5th European con-
ference on Computer systems, 2010, pp. 237–250.

[29] C. Delimitrou and C. Kozyrakis, “ibench: Quantifying
interference for datacenter applications,” in 2013 IEEE
international symposium on workload characterization
(IISWC). IEEE, 2013, pp. 23–33.

[30] C. Delimitrou and C. Kozyrakis, “Quasar: resource-
efficient and qos-aware cluster management,” ACM SIG-
PLAN Notices, vol. 49, no. 4, pp. 127–144, 2014.

[31] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: Improving resource efficiency
at scale,” in Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture, 2015, pp.
450–462.

https://aws.amazon.com/ec2/pricing/on-demand/

[32] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa,
“Bubble-up: Increasing utilization in modern warehouse
scale computers via sensible co-locations,” in Proceed-
ings of the 44th annual IEEE/ACM International Sym-
posium on Microarchitecture, 2011, pp. 248–259.

[33] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux:
Precise online qos management for increased utilization
in warehouse scale computers,” ACM SIGARCH Com-
puter Architecture News, vol. 41, no. 3, pp. 607–618,
2013.

[34] Y. Zhang, M. A. Laurenzano, J. Mars, and L. Tang,
“Smite: Precise qos prediction on real-system smt pro-
cessors to improve utilization in warehouse scale com-
puters,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE, 2014, pp.
406–418.

[35] R. Xu, S. Mitra, J. Rahman, P. Bai, B. Zhou, G. Bron-
evetsky, and S. Bagchi, “Pythia: Improving datacenter
utilization via precise contention prediction for multiple
co-located workloads,” in Proceedings of the 19th Inter-
national Middleware Conference, 2018, pp. 146–160.

[36] R. Yang, C. Hu, X. Sun, P. Garraghan, T. Wo, Z. Wen,
H. Peng, J. Xu, and C. Li, “Performance-aware specula-
tive resource oversubscription for large-scale clusters,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 7, pp. 1499–1517, July 2020.

[37] P. Thinakaran, J. R. Gunasekaran, B. Sharma, M. T. Kan-
demir, and C. R. Das, “Kube-knots: Resource harvesting
through dynamic container orchestration in gpu-based
datacenters,” in 2019 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 2019, pp.
1–13.

[38] M. Tan and Q. V. Le, “Efficientnet: Rethinking
model scaling for convolutional neural networks,” arXiv
preprint arXiv:1905.11946, 2019.

[39] Z. Li, E. Wallace, S. Shen, K. Lin, K. Keutzer, D. Klein,
and J. E. Gonzalez, “Train large, then compress: Re-
thinking model size for efficient training and infer-
ence of transformers,” arXiv preprint arXiv:2002.11794,
2020.

[40] NVIDIA. (2020) Using CUDA warp-
level primitives | NVIDIA developer blog.
[Online]. Available: https://devblogs.nvidia.com/
using-cuda-warp-level-primitives/

[41] Z. Guz, E. Bolotin, I. Keidar, A. Kolodny, A. Mendel-
son, and U. C. Weiser, “Many-core vs. many-thread
machines: Stay away from the valley,” IEEE Computer
Architecture Letters, vol. 8, no. 1, pp. 25–28, 2009.

[42] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp.
4510–4520.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recog-
nition, 2016, pp. 770–778.

[44] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich, “Going deeper with convolutions,” in Computer
Vision and Pattern Recognition (CVPR), 2015. [Online].
Available: http://arxiv.org/abs/1409.4842

[45] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
CoRR, vol. abs/1409.1556, 2014.

[46] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggre-
gated residual transformations for deep neural networks,”
in Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, 2017, pp. 1492–1500.

[47] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer, “Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and< 0.5 mb model
size,” arXiv preprint arXiv:1602.07360, 2016.

[48] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Wein-
berger, “Densely connected convolutional networks,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 4700–4708.

[49] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet
v2: Practical guidelines for efficient cnn architecture
design,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 116–131.

[50] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler,
A. Howard, and Q. V. Le, “Mnasnet: Platform-aware
neural architecture search for mobile,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2820–2828.

[51] D. Han, J. Kim, and J. Kim, “Deep pyramidal resid-
ual networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2017, pp.
5927–5935.

[52] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng,
“Dual path networks,” in Advances in Neural Information
Processing Systems, 2017, pp. 4467–4475.

[53] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,

https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
https://devblogs.nvidia.com/using-cuda-warp-level-primitives/
http://arxiv.org/abs/1409.4842

“Attention is all you need,” in Advances in neural infor-
mation processing systems, 2017, pp. 5998–6008.

[54] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning
to forget: Continual prediction with lstm,” 1999.

[55] A. Krizhevsky, G. Hinton et al., “Learning multiple lay-
ers of features from tiny images,” Citeseer, Tech. Rep.,
2009.

[56] S. Merity, C. Xiong, J. Bradbury, and R. Socher,
“Pointer sentinel mixture models,” arXiv preprint
arXiv:1609.07843, 2016.

[57] A. M. T. (WMT19). Shared task: Machine translation
of news. [Online]. Available: http://www.statmt.org/
wmt19/translation-task.html

[58] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus:
an efficient dynamic resource scheduler for deep learn-
ing clusters,” in Proceedings of the Thirteenth EuroSys
Conference, 2018, pp. 1–14.

[59] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri,
N. Devanur, G. Ganger, and P. Gibbons, “Pipedream:
Fast and efficient pipeline parallel dnn training,” arXiv
preprint arXiv:1806.03377, 2018.

[60] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A perfor-
mance model for deep neural networks,” in Proceedings
of the International Conference on Learning Represen-
tations, 2017.

[61] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual
networks,” IEEE CVPR, 2017.

[62] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi,
N. F. Liu, M. Peters, M. Schmitz, and L. S. Zettlemoyer,
“Allennlp: A deep semantic natural language processing
platform,” 2017.

[63] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga
et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Informa-
tion Processing Systems, 2019, pp. 8024–8035.

[64] H. Cai, C. Gan, and S. Han, “Once for all: Train one net-
work and specialize it for efficient deployment,” arXiv
preprint arXiv:1908.09791, 2019.

[65] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and
P. Dollár, “Designing network design spaces,” in CVPR,
2020.

[66] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T.-Y. Liu, “Lightgbm: A highly efficient
gradient boosting decision tree,” in Advances in neural
information processing systems, 2017, pp. 3146–3154.

[67] T. Chen and C. Guestrin, “Xgboost: A scalable tree
boosting system,” in Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery
and data mining, 2016, pp. 785–794.

[68] A. Liaw, M. Wiener et al., “Classification and regression
by randomforest,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[69] J. H. Friedman, “Stochastic gradient boosting,” Com-
putational statistics & data analysis, vol. 38, no. 4, pp.
367–378, 2002.

[70] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan,
M. Cowan, H. Shen, L. Wang, Y. Hu, L. Ceze,
C. Guestrin, and A. Krishnamurthy, “Tvm: An auto-
mated end-to-end optimizing compiler for deep learn-
ing,” in Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation,
ser. OSDI’18. USA: USENIX Association, 2018, p.
579–594.

[71] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra,
and S. Viswanatha, “Balancing efficiency and fairness
in heterogeneous gpu clusters for deep learning,” in
Proceedings of the Fifteenth European Conference on
Computer Systems, ser. EuroSys ’20. New York, NY,
USA: Association for Computing Machinery, 2020.
[Online]. Available: https://doi.org/10.1145/3342195.
3387555

http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
https://doi.org/10.1145/3342195.3387555
https://doi.org/10.1145/3342195.3387555

	Introduction
	Background
	Related Work
	Characterizing DL Utilization
	Prediction Engine
	Case Study: Prediction-based Scheduling for DL Workload Co-location
	Conclusion
	Discussion

