72 research outputs found

    Distributed resource allocation for inter cell interference mitigation in irregular geometry multicell networks

    Get PDF
    Extensive increase in mobile broadband applications and proliferation of smart phones and gadgets require higher data rates of wireless cellular networks. However, limited frequency spectrum has led to aggressive frequency reuse to improve network capacity at the expense of increased Inter Cell Interference (ICI). Fractional Frequency Reuse (FFR) has been acknowledged as an effective ICI mitigation scheme but in irregular geometric multicellular network, ICI mitigation poses a very challenging issue. The thesis developed a decentralized ICI mitigation scheme to improve both spectral and energy efficiency in irregular geometric multicellular networks. ICI mitigation was realized through Distributed Resource Allocation (DRA) deployed at the cell level and region level of an irregular geometric cell. The irregular geometric cell consists of a minimum of four regions comprising three sectors and a central region. DRA at the cell level is defined as Multi Sector DRA (MSDRA), and at the region level is defined as Distributed Channel Selection and Power Allocation (DCSPA). MSDRA allocates discrete power to every region in a cell based on Game Theory and Regret Learning Process with correlated equilibrium as the optimum decision level. The DCSPA allocates power to every channel in a region based on non-coalesce liquid droplet phenomena by selecting optimum channels in a region and reserving appropriate power for the selected channels. The performance was evaluated through simulation in terms of data rate, spectral efficiency and energy efficiency. The results showed that MSDRA significantly improved cell data rate by 58.64% and 37.92% in comparision to Generalized FFR and Fractional Frequency Reuse-3 (FFR-3) schemes, respectively. The performance of MSDRA at the cell level showed that its spectral and energy efficiency improved 32% and 22%, respectively in comparison to FFR-3. When the number of sectors increased from three to four, data rate was improved by 30.26% and for three to six sectors, it was improved by 56.32%. The DCSPA further improved data rate by 41.07% when compared with Geometric Water Filling, and 86.46% in comparison to Asynchronous Iterative Water Filling. The DCSPA enhanced data rate achieved in MSDRA by 15.6%. Overall, DRA has shown to have significant improvement in data rate by 53.6%, and spectral efficiency by 38.10% as compared to FFR-3. As a conclusion, the DRA scheme is a potential candidate for Long Term Evaluation – Advanced, Fifth Generation networks and can be deployed in future heterogeneous irregular geometric multicellular Orthogonal Frequency Division Multiple Access networks

    Fractional frequency reused based interference mitigation in irregular geometry multicellular networks

    Get PDF
    Recent drastic growth in the mobile broadband services specifically with the proliferation of smart phones demands for higher spectrum capacity of wireless cellular systems. Due to the scarcity of the frequency spectrum, cellular systems are seeking aggressive frequency reuse, which improve the network capacity, however, at the expense of increased Inter Cell Interference (ICI). Fractional Frequency Reuse (FFR) scheme has been acknowledged as an effective ICI mitigation scheme, however, in literature FFR has been used mostly in perfect geometry network. In realistic deployment, the cellular geometry is irregular and each cell experiences varying ICI. The main objective of this thesis is to develop ICI mitigation scheme that improves spectrum efficiency and throughput for irregular geometry multicellular network. Irregular Geometry Sectored-Fractional Frequency Reuse (IGS-FFR) scheme is developed that comprises of cell partitioning and sectoring, and dynamic spectrum partitioning. The cell-partitioning and sectoring allows full frequency reuse within an irregular geometry cell. Nevertheless, the sub-regions in an irregular cell have varying coverage areas and thus demands diverse spectrum requirements. The IGSFFR scheme is designed to dynamically allocate the spectrum resources according to the traffic demands of each sub-region. An enhanced IGS-FFR has been developed to optimally allocate the spectrum resources to individual users of each sub-region. Enhanced IGS-FFR has been realized using two different approaches, Auction based Optimized IGS-FFR (AO-IGS-FFR) and Hungarian based Optimized IGS-FFR (HO-IGS-FFR). The results show that IGS-FFR has significantly improved the cell throughput by 89%, 45% and 18% and users’ satisfaction by 112%, 65.8% and 38% compared to Reuse-1, Strict-FFR and FFR-3 schemes, respectively. The findings show that the ICI mitigation in IGS-FFR is reinforced by users’ satisfaction. As the number of sectors in IGS-FFR increases from 3 to 4 and 6, the cell throughput increase by 21% and 33% because of spatial diversity exploitation along with orthogonal sub-band allocation. AO-IGS-FFR and HO-IGS-FFR have further improved the cell throughput of the basic FFR-3 by 65% and 72.2%, respectively. HO-IGS-FFR performs 7% better than the AO-IGS-FFR at the expense of 26.7% decrease in the users’ satisfaction and excessive complexity. Although, AO-IGS-FFR compromises sub-optimal bandwidth allocation, it is a low complexity scheme and can mitigate ICI with high users’ satisfaction. The enhanced IGS-FFR can be deployed in future heterogeneous irregular geometry multicellular OFDMA networks

    Eficiência energética avançada para sistema OFDMA CoMP coordenação multiponto

    Get PDF
    Doutoramento em Engenharia EletrotécnicaThe ever-growing energy consumption in mobile networks stimulated by the expected growth in data tra ffic has provided the impetus for mobile operators to refocus network design, planning and deployment towards reducing the cost per bit, whilst at the same time providing a signifi cant step towards reducing their operational expenditure. As a step towards incorporating cost-eff ective mobile system, 3GPP LTE-Advanced has adopted the coordinated multi-point (CoMP) transmission technique due to its ability to mitigate and manage inter-cell interference (ICI). Using CoMP the cell average and cell edge throughput are boosted. However, there is room for reducing energy consumption further by exploiting the inherent exibility of dynamic resource allocation protocols. To this end packet scheduler plays the central role in determining the overall performance of the 3GPP longterm evolution (LTE) based on packet-switching operation and provide a potential research playground for optimizing energy consumption in future networks. In this thesis we investigate the baseline performance for down link CoMP using traditional scheduling approaches, and subsequently go beyond and propose novel energy e fficient scheduling (EES) strategies that can achieve power-e fficient transmission to the UEs whilst enabling both system energy effi ciency gain and fairness improvement. However, ICI can still be prominent when multiple nodes use common resources with di fferent power levels inside the cell, as in the so called heterogeneous networks (Het- Net) environment. HetNets are comprised of two or more tiers of cells. The rst, or higher tier, is a traditional deployment of cell sites, often referred to in this context as macrocells. The lower tiers are termed small cells, and can appear as microcell, picocells or femtocells. The HetNet has attracted signiffi cant interest by key manufacturers as one of the enablers for high speed data at low cost. Research until now has revealed several key hurdles that must be overcome before HetNets can achieve their full potential: bottlenecks in the backhaul must be alleviated, as well as their seamless interworking with CoMP. In this thesis we explore exactly the latter hurdle, and present innovative ideas on advancing CoMP to work in synergy with HetNet deployment, complemented by a novel resource allocation policy for HetNet tighter interference management. As system level simulator has been used to analyze the proposed algorithm/protocols, and results have concluded that up to 20% energy gain can be observed.O aumento do consumo de energia nas TICs e em particular nas redes de comunicação móveis, estimulado por um crescimento esperado do tráfego de dados, tem servido de impulso aos operadores m oveis para reorientarem os seus projectos de rede, planeamento e implementa ção no sentido de reduzir o custo por bit, o que ao mesmo tempo possibilita um passo signicativo no sentido de reduzir as despesas operacionais. Como um passo no sentido de uma incorporação eficaz em termos destes custos, o sistema móvel 3GPP LTE-Advanced adoptou a técnica de transmissão Coordenação Multi-Ponto (identificada na literatura com a sigla CoMP) devido à sua capacidade de mitigar e gerir Interferência entre Células (sigla ICI na literatura). No entanto a ICI pode ainda ser mais proeminente quando v arios n os no interior da célula utilizam recursos comuns com diferentes níveis de energia, como acontece nos chamados ambientes de redes heterogéneas (sigla Het- Net na literatura). As HetNets são constituídas por duas ou mais camadas de células. A primeira, ou camada superiora, constitui uma implantação tradicional de sítios de célula, muitas vezes referidas neste contexto como macrocells. Os níveis mais baixos são designados por células pequenas, e podem aparecer como microcells, picocells ou femtocells. A HetNet tem atra do grande interesse por parte dos principais fabricantes como sendo facilitador para transmissões de dados de alta velocidade a baixo custo. A investigação tem revelado at e a data, vários dos principais obstáculos que devem ser superados para que as HetNets possam atingir todo o seu potencial: (i) os estrangulamentos no backhaul devem ser aliviados; (ii) bem como sua perfeita interoperabilidade com CoMP. Nesta tese exploramos este ultimo constrangimento e apresentamos ideias inovadoras em como a t ecnica CoMP poder a ser aperfeiçoada por forma a trabalhar em sinergia com a implementação da HetNet, complementado ainda com uma nova perspectiva na alocação de recursos rádio para um controlo e gestão mais apertado de interferência nas HetNets. Com recurso a simulação a níível de sistema para analisar o desempenho dos algoritmos e protocolos propostos, os resultados obtidos concluíram que ganhos at e a ordem dos 20% poderão ser atingidos em termos de eficiência energética

    Experimental Evaluation of Transmitted Signal Distortion Caused by Power Allocation in Inter-Cell Interference Coordination Techniques for LTE/LTE-A and 5G Systems

    Get PDF
    Error vector magnitude (EVM) and out-of-band emissions are key metrics for evaluating in-band and out-band distortions introduced by all potential non-idealities in the transmitters of wireless systems. As EVM is a measure of the quality of the modulated signal/symbols, LTE/LTE-A and 5G systems specify mandatory EVM requirements in transmission for each modulation scheme. This paper analyzes the influence of the mandatory satisfaction of EVM requirements on the design of radio resource management strategies (RRM) (link adaptation, inter-cell interference coordination), specifically in the downlink (DL). EVM depends on the non-idealities of the transmitter implementations, on the allocated power variations between the subcarriers and on the selected modulations. In the DL of LTE, link adaptation is usually executed by adaptive modulation and coding (AMC) instead of power control, but some flexibility in power allocation remains being used. LTE specifies some limits in the power dynamic ranges depending on the allocated modulation, which ensures the satisfaction of EVM requirements. However, the required recommendations concerning the allowed power dynamic range when inter-cell interference coordination (ICIC) and enhanced ICIC (eICIC) mechanisms (through power coordination) are out of specification, even though the EVM performance should be known to obtain the maximum benefit of these strategies. We perform an experimental characterization of the EVM in the DL under real and widely known ICIC implementation schemes. These studies demonstrate that an accurate analysis of EVM is required. It allows a better adjustment of the design parameters of these strategies, and also allows the redefinition of the main criteria to be considered in the implementation of the scheduler/link adaptation concerning the allocable modulation coding scheme (MCS) in each resource block. © 2013 IEEE

    Geometric frequency reuse for irregular cellular networks

    Get PDF
    PhD ThesisThis thesis uniquely addresses challenges of bandwidth management in cellular networks. The need for enhanced frequency assignment strategies in Long term evolution (LTE) systems arises due to the limiting e ects of intercell interference (ICI). In this study, the realistic scenario of irregular network coverage patterns is considered, and in addition, Heterogeneous cellular networks (HetNets). Firstly, extensive analysis using simulations is presented for static frequency reuse (FR) techniques in irregular Homogeneous (single-tier) cellular networks. Investigation was carried out over several network positional and deployment layouts. Second, a model is developed for irregular networks by de ning frameworks for their location parameters and relationships, FR bandwidth and power assignment, and the probability of interference in partitioned FR schemes. A novel Geometric FR (GeoFRe) algorithm is then proposed for single-tier networks with random BS placements. Third, an optimization framework based on user fairness is proposed and implemented for single-tier networks based on the concept of virtual UEs in di erent BS regions. Finally, a framework for HetNets is presented where macro and small BS deployments have imperfect coverage grid patterns. Performance analysis is then carried out for two implementations of the Soft FR (SFR) algorithm. Results from this research provide detailed analysis on impact of BS irregularity on UE performance under FR schemes, a simpli ed framework for modelling irregular macro BS, an improved FR model, accurate computations for the area of irregular network coverage patterns for intelligent bandwidth assignment, an optimization framework to improve user fairness (and edge UE performance) in single-tier networks and an FR model with performance analysis for irregular Het- Nets.National Information Technology Development Agency (NITDA) and Federal University of Technology Minna, both in Nigeria for o ering me scholarship and support

    Dynamic Fractional Frequency Reuse Based On An Improved Water-Filling For Network MIMO

    Get PDF
    In Long Term Evolution-Advanced (LTE-A) systems, Inter-cell Interference (ICI) is a prominent limiting factor that affects the performance of the systems, especially at the cell edges. Based on the literature, Fractional Frequency Reuse (FFR) methods are known as efficient interference management techniques. In this report, the proposed Dynamic Fractional Frequency Reuse (DFFR) technique improved the capacity and cell edge coverage performance by 70% compared to the Fractional Frequency Reuse (FFR) technique. In this study, an improved power allocation method was adopted into the DFFR technique to reach the goal of not only reducing the ICI mitigation at the cell edges, but also improving the overall capacity of the LTE-A systems. Hence, an improved water-filling algorithm was proposed, and its performance was compared with that of other methods that were considered. Through the simulation results and comparisons with other frequency reuse techniques, it was shown that the proposed method significantly improved the performance of the cell edge throughput by 42%, the capacity by 75%, and the coverage by 80%. Based on the analysis and numerical expressions, it was concluded that the proposed DFFR method provides significant performance improvements, especially for cell edge users
    corecore