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ABSTRACT 

Extensive increase in mobile broadband applications and proliferation of smart 

phones and gadgets require higher data rates of wireless cellular networks. However, limited 

frequency spectrum has led to aggressive frequency reuse to improve network capacity at the 

expense of increased Inter Cell Interference (ICI). Fractional Frequency Reuse (FFR) has 

been acknowledged as an effective ICI mitigation scheme but in irregular geometric 

multicellular network, ICI mitigation poses a very challenging issue. The thesis developed a 

decentralized ICI mitigation scheme to improve both spectral and energy efficiency in 

irregular geometric multicellular networks. ICI mitigation was realized through Distributed 

Resource Allocation (DRA) deployed at the cell level and region level of an irregular 

geometric cell. The irregular geometric cell consists of a minimum of four regions 

comprising three sectors and a central region. DRA at the cell level is defined as Multi 

Sector DRA (MSDRA), and at the region level is defined as Distributed Channel Selection 

and Power Allocation (DCSPA). MSDRA allocates discrete power to every region in a cell 

based on Game Theory and Regret Learning Process with correlated equilibrium as the 

optimum decision level. The DCSPA allocates power to every channel in a region based on 

non-coalesce liquid droplet phenomena by selecting optimum channels in a region and 

reserving appropriate power for the selected channels. The performance was evaluated 

through simulation in terms of data rate, spectral efficiency and energy efficiency. The 

results showed that MSDRA significantly improved cell data rate by 58.64% and 37.92% in 

comparision to Generalized FFR and Fractional Frequency Reuse-3 (FFR-3) schemes, 

respectively. The performance of MSDRA at the cell level showed that its spectral and 

energy efficiency improved 32% and 22%, respectively in comparison to FFR-3. When the 

number of sectors increased from three to four, data rate was improved by 30.26% and  for 

three to six sectors,  it was improved by 56.32%. The DCSPA further improved  data rate by 

41.07% when compared with Geometric Water Filling, and 86.46% in comparison to 

Asynchronous Iterative Water Filling. The DCSPA enhanced data rate achieved in MSDRA 

by 15.6%.  Overall, DRA has shown to have significant improvement in data rate by 53.6%, 

and spectral efficiency by 38.10% as compared to FFR-3. As a conclusion, the DRA scheme 

is a potential candidate for Long Term Evaluation – Advanced, Fifth Generation networks 

and can be deployed in future heterogeneous irregular geometric multicellular Orthogonal 

Frequency Division Multiple Access networks. 
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ABSTRAK 

Peningkatan meluas aplikasi jalur lebar mudah alih dan pertumbuhan pesat telefon 

pintar dan alatannya memerlukan kadar data berkelajuan tinggi bagi rangkaian selular tanpa 

wayar. Namun begitu, spektrum frekuensi terhad membawa kepada penggunaan semula 

frekuensi secara agresif untuk meningkatkan kapasiti rangkaian dengan mengorbankan 

peningkatan Gangguan Antara Sel (ICI). Penggunaan Semula Frekuensi Pecahan (FFR) 

diakui sebagai skim pengurangan ICI yang berkesan tetapi di dalam rangkaian selular 

berbilang geometri tidak sekata, pengurangan ICI menimbulkan isu yang amat mencabar. 

Tesis ini  membangunkan skim pengurangan ICI tidak berpusat yang boleh meningkatkan 

kecekapan spektrum dan tenaga dalam rangkaian selular berbilang geometri tidak sekata. 

Pengurangan ICI direalisasikan melalui Peruntukan Sumber Teragih (DRA) yang ditakrifkan 

pada peringkat sel dan peringkat kawasan sel geometri tidak sekata. Sel geometri tidak 

sekata terdiri daripada sekurang-kurangnya empat kawasan, iaitu tiga sektor dan satu 

kawasan pusat. DRA pada peringkat sel ditakrifkan sebagai DRA Berbilang Sektor 

(MSDRA) dan DRA di peringkat kawasan ditakrifkan sebagai Pemilihan Saluran dan 

Peruntukan Kuasa Teragih (DCSPA). MSDRA membahagikan kuasa diskret di setiap 

kawasan dalam sel berdasarkan Teori Permainan dan Proses Pembelajaran Sesal dengan 

keseimbangan tersekait sebagai tahap keputusan yang optimum.  DCSPA memperuntukkan 

kuasa bagi setiap saluran dalam suatu kawasan berdasarkan fenomena titisan cecair tidak 

bertaut dengan memilih saluran optimum di suatu kawasan dan menyimpan kuasa yang 

sesuai untuk saluran yang terpilih. Prestasinya dinilai melalui simulasi dari segi kadar data, 

kecekapan spektrum, dan kecekapan tenaga. Dapatan kajian menunjukkan MSDRA telah 

meningkatkan kadar data sel dengan ketara yang masing-masing sebanyak 58.64% dan 

37.92% berbanding skim FFR Teritlak dan Penggunaan Semula Frekuensi Pecahan-3 (FFR-

3). Prestasi MSDRA pada tahap sel menunjukkan kecekapan spektrum dan tenaga yang 

masing-masing meningkat sebanyak 32% dan 22% apabila dibandingkan dengan FFR-3. 

Dengan peningkatan bilangan sektor daripada tiga kepada empat, kadar data meningkat 

sebanyak 30.26% manakala bagi tiga kepada enam sektor, meningkat sebanyak 56.32%. 

DCSPA meningkatkan lagi kadar data masing-masing sebanyak 41.07% apabila 

dibandingkan dengan Geometri Pengisian Air, dan 86.46% apabila dibandingkan dengan 

Pengisian Air Lelaran Tak Seragam. DCSPA meningkatkan kadar data yang dicapai dalam 

MSDRA sebanyak 15.6%. Pada keseluruhannya, DRA menunjukkan peningkatan kadar data 

yang ketara sebanyak 53.6% dan kecekapan spektrum sebanyak 38.10% berbanding FFR-3. 

Kesimpulannya, skim DRA berpotensi bagi Penilaian Jangka Panjang-Termaju, rangkaian 

Generasi Kelima dan boleh digunakan dalam rangkaian selular berbilang heterogen geometri 

tidak sekata Capaian Berbilang Bahagian Frekuensi Ortogon pada masa hadapan. 
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CHAPTER 1

INTRODUCTION

1.1 Background

The growth in the cellular system is increasing extensively with the passage
of time. This extensive increase is due to new smart gadgets such as smart phones,
tablets and other data hungry equipment’s. There is a huge increase in the demand
of broadband application services with the passage of time over the last couple of
years [1]. Recently a mobility report is published indicating that the exponential rise
in the mobile data will reach to 9 fold escalation by the year 2020 [2]. The Global
mobile data traffic increased by 66 percent as predicted during 2013-2014, which was
raised from 1.5 Exabyte’s (EB) to 2.5 EB per month. The expected increase in future
data rate up to 24.3 EB per month by 2019 is reported recently by Cisco [3]. It is
reported also that mobile data traffic will increase by 57 percent from 2014 to 2019 at
a compound annual growth rate (CAGR).

International Telecommunication Union (ITU) defined a new standard for
Next generation wireless communication systems which target the higher data rates,
increased network capacity, extended coverage, low complexity and latency. The
formulation of the Long Term Evolution (LTE) transformed into LTE-Advanced (LTE-
A), making it possible to meet the International Mobile Telecommunication Advanced
(IMT-A) criteria (peak downlink data rates of 1Gbit/s and peak uplink data rate of
500Mbit/s) for the Fourth Generation (4G) mobile communication [4]. It is mentioned
in Cisco Visual Networking index (VNI) report [5] that 4G has generated 10 fold more
data traffic in comparison of non-4G in 2014 and its boost 40 percent of the total mobile
data traffic. The statistics show that 4G mobile technology is the most acceptable
choice for the mobile traffic in near future.

The increase in the mobile data traffic, encourages the mobile network
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operators to enhance their system capacity along with coverage. Therefore, efficient
radio resource management is gaining more consideration in wireless communication
as it could open new opportunities for capacity and coverage enhancements [6]. These
trends have prompted the development of new cellular standards, which incorporates
the Orthogonal Frequency Division Multiple Access (OFDMA) as a radio access
technique because of its capacity gain through frequency domain diversity along with
multi-user diversity [7].

Due to the limitation of the spectrum, the Frequency Reuse (FR) scheme is
used to enhance network capacity by allowing spectrum reuse in the OFDMA based
cellular network. However, the aggressive frequency reuse introduces Inter Cell
Interference (ICI) or Co-Channel Interference (CCI), because of same spectrum and
power being used by the neighboring cells. There is a tradeoff between frequency
reuse and interference. Fractional Frequency Reuse (FFR) scheme is considered as an
enhancement of Frequency Reuse for interference mitigation technique in the OFDMA
based cellular systems [8]. The basic concept behind the FFR corresponds to the spatial
partition of the cell coverage area into regions. In addition to the regions, the spectrum
and power are allocated to each region in a way to avoid the ICI.

Wireless cellular networks, signal power and interference received by the Base
Station (BS) or users are distance dependent [9]. The use of the same channels with
respect to BSs have a high impact on the interference for the receiver. The Signal to
Interference plus Noise Ratio (SINR) is dependent on user distance and the location
of interference sources as well as the channel gains. Similarly, the network topology
has an important effect on the received SINR. Hence, the wireless cellular network
performance is dependent on the spatially configuration of BSs and network topology
[10].

Finally, to realize the requirement of both cellular operators and users in a cost
effective way, recent developments have triggered the induction of distributed decision
making (i.e. self-organization) into the future cellular networks. Distributed Resource
Allocation (DRA) mechanism is a novel approach to give network components the
ability to choose its own resources to improve network performance. DRA helps
to offload the burden of signaling and enforce to distributed intelligence among the
participating components. DRA helps to remove the effect of centralized network, by
giving an opportunity to take decisions independently and therefore, results in reducing
operational cost.
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1.2 Problem Statement

The frequency reuse concept is being used in order to overcome the problem
of frequency spectrum scarcity due to the excessive increase in the demand of capacity
for the various mobile broadband services and applications [11]. The most aggressive
reuse of the frequency is Frequency Reuse-1 (FR-1), where in, all the available radio
resources are allocated at every cell of the network. The frequency reuse can increase
the spectrum efficiency on the price of CCI or ICI [8]. Therefore, the challenging issue
is to mitigate ICI to achieve a desired data rate and maximize the network performance.
Furthermore, the ICI problem is more severe at the cell edges [12].

Due to the above mentioned challenge, interference mitigation is the primary
interest of both the academic and industry communities [13]. Review on the
present interference management approaches for OFDMA based cellular networks are
investigated in Chapter 2. It is found that, to enhance the performance of the cellular
network, FFR is a key interference mitigation scheme [4–6]. FFR is attractive due to
low complexity and significant coverage improvement for cell edge users [14]. The
main purpose of FFR is to improve the SINR and system data rate by avoiding the ICI
through orthogonal sub-band allocation at the cell edge region. In FFR, each cell is
distributing its resources in a pattern to reduce the overall interference experienced in
the network and to maximize the spectrum reuse [15].

In literature, FFR has been used with hexagonal cellular geometry models,
where each cell has a symmetrical coverage region [16]. However, in a realistic
cellular network, where the cellular layout is irregular, not only propagation conditions
vary significantly from cell to cell, but also azimuths are not aligned and hence, cells
experience vast difference of ICI [17]. As a consequences, the cell edge region may
differ in terms of size and interference levels. It is difficult to give fixed power to
cell regions to avoid ICI or replace the whole sub - band of regions of one part
of the cell to another part to avoid ICI. Therefore, the performance of basic FFR
techniques is poor in the irregular geometry cellular deployment [18]. In an irregular
geometric multicellular network, ICI mitigation in the irregular cell shape poses a very
challenging issue.

Thus, the network model along with resource allocation considered for any
interference mitigation scheme is key to analyze the performance. The network
topology along with resource distribution consideration has boomed recent research
on FFR with irregular geometry cellular networks [15, 19–21]. However, most of the
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previous work is on FFR for irregular geometry cellular model, considered a Standard
FFR technique with only two cell regions (center region and edge region) and no edge
region sectoring is considered [22] along with fixed power for the sub-band of cell
center and cell edge region [20]. Moreover, the dynamic power allocation has not
been taken in the FFR for irregular geometry multicellular networks in order to control
the interference condition and regions data rate demands. Thus, there is a need to
develop an ICI mitigation scheme using FFR which considers multiple cell regions and
dynamic power allocation for irregular cellular geometry based OFDMA multicellular
network while utilizing full frequency.

1.3 Research Objectives

The main purpose of this research is to mitigate ICI in irregular geometry
OFDMA multicellular network through dynamic power allocation. The proposed
schemes mitigates co-tier interference in multicellular network to improve the spectral
efficiency, energy efficiency and enhances the system data rate. Thus, the specific
research objectives are;

• To develop DRA scheme at the cell level for ICI mitigation in the irregular
geometry multicellular network to allocate discrete dynamic power.

• To develop DRA scheme at region level for ICI mitigation to allocate power and
optimal channel selection.

The DRA scheme, Multi Sector DRA (MSDRA) and Distributed Channel Selection
and Power Allocation (DCSPA) at the cell level in irregular geometry allocates discrete
dynamic power to all regions based on Game Theory and Regret Learning. Secondly,
allocates power at region level based on non-coalesce liquid droplet phenomena by
selecting optimum channels in the region and reserving appropriate power for the
selected channels. The performance is evaluated through data rate maximization.

1.4 Scope of the Research

In the OFDMA multicellular network, improper resource allocation can cause
the problem of ICI when overlapping regions are operating with the same frequency
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band and power. This research focuses mainly on the co-tier interference matter in the
OFDMA based multicellular network. The OFDMA is consider as a multiple access
technique as it offers the flexibility while allocating the resources based on channel
quality. The Frequency Division Duplexing (FDD) [23] access mode of the OFDMA
is assumed in this thesis.

This research emphasizes on DRA schemes for efficient resource allocation in
irregular geometry based OFDMA multicellular networks to mitigate ICI. The BSs
position is abstracted from stochastic geometry, which allows practical interference
calculations by considering the randomness among the distances of neighboring cells.
Consequently, the coverage region of each cell is considered irregular or follow
Voronoi Tessellation, where Voronoi Tessellation is a partitioning of a plane into cells
based on distance to BSs in a specific subset of plane. That set of BSs is specified
beforehand, and for each BS there is a corresponding cell. These cells are called
as Voronoi cells. Each cell is the total coverage area covered by the BS. The cell
coverage area is dependent on the transmitting power of the BS and channel condition.
The users are considered to be connected to the nearest BSs with higher SINR.
Distributed ICI mitigation schemes are developed for the irregular geometry based
OFDMA multicellular network. The proposed schemes are intelligent in the scope
that each cell of the network autonomously decides its power distribution based on the
region data rate demands, power requirements and channel conditions. Therefore, the
proposed interference mitigation schemes are aware of the diverse users and regions
data rate demand and the channel quality.

First, DRA scheme Multi Sector DRA (MSDRA) is developed to allocate
power at the cell level of the irregular geometry based OFDMA multicellular network
to mitigate ICI. Initially, the regions are formed by partition irregular cells into two
spatial partitioning (center and edge). The partition and division of cell coverage
area into multiple portions are called regions. In our configuration minimum of 4
and maximum of 7 regions are considered based on cell spatial partitioning and edge
area sectoring. Furthermore, the division of edge area into multiple regions are called
sectors. In our configuration minimum of 3 and maximum of 6 sectors are considered.
The orthogonal set of channels (sub-band) are allocated to these regions. All these
regions are unique in their size, shape and coverage due to the irregularity of the cell.
Therefore, region’s data rate demand is unique too. Game theory is used to allocate
discretized power levels and to analyze competitive interaction among selfish regions.
Distributed Regret Learning enforces effective decision making towards optimum
decision level to improve network performance.
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Secondly, DRA scheme Distributed Channel Selection and Power Allocation
(DCSPA) is the enhancement of MSDRA at region level. The scheme is based on non-
coalesce liquid droplet considering the selection of optimal channels and allocation
continuous power. Each region is allocated with the optimal set of channels and
appropriate power and further improvement in the ICI mitigation at region level is
achieved.

In this research, users are equipped with Omni-directional antenna
configuration while the BSs are equipped with Omni-directional transmission antenna
configuration for the center region and directional antenna transmission configuration
for the edge region. The pattern of the directional antenna depends on the sectoring
pattern of edge region. Moreover, the work is considered as power allocation, the
antenna settings are considered with power control ability. The power distribution
across the amount of the sub-band is not uniformly considered due to the irregularity
of the cells. Furthermore, this research is considered with the regions and their users
are with different resource demand. The proposed schemes are evaluated and simulated
through MATLAB while considering the 3rd Generation Partnership Project (3GPP)
parameter and model settings.

1.5 Research Contribution

The major contributions of the thesis are listed as follows;

• Regions Formation and Sub-band allocation at Cell Level in the Irregular
Geometry Multicellular Network

FFR has been considered as an effective scheme to avoid the ICI in OFDMA
multicellular systems. The basic mechanism of FFR is to partitioning of the cell
coverage area in spatial regions, where each region is assigned with different
frequency sub-band along with fixed power level in order to avoid interference.
However, in case of irregular geometry cellular network, partitioning of the
cell coverage gives regions of varying coverage, number or users and data rate
demand conditions. Therefore, each region has a different resource requirement.
In literature, almost all of the previous works on FFR with irregular geometry
network models account for two regions, cell center and cell edge. In this
thesis, FFR with irregular geometry network, where the cell coverage area is
spatially partitioned into cell center and cell edge region, the cell edge region is
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further divided into a number of sectors. The frequency spectrum is accordingly
partitioned into a number of fixed sub-bands, for each region of the cell. The
sectoring of the edge region makes it possible to fully utilize the frequency
spectrum, by orthogonally allocating the fixed spectrum sub-band to each edge
region.

• Discrete Dynamic Power Allocation at Cell Level

The proposed MSDRA scheme for cell regions is based on Game theoretic
to allocate discrete dynamic power to regions and regulate region’s decision
making through their utility function as a measure of satisfaction. The Regret
learning process provides distributed learning capability that ensures near
optimal convergence. Conclusively, ICI mitigation and data rate maximization
while fulfilling the data rate demand of the region is achieved.

• Dynamic Power Allocation at Region Level

The enhancement of MSDRA is considered. In this, the pre-allocated resources
(power and channels) to regions at cell level is further allocated to users based
non-coalesce droplet phenomenon. The DCSPA scheme tackles the resource
allocation by selecting the optimum channel and allocates appropriate power for
these selected channels. This scheme furthers help to mitigate ICI at region level
and maximize the network performance by enhancing overall data rate for users.

1.6 Significance of the Research

The proposed DRA scheme in irregular geometry OFDMA multicellular
system can contribute towards the realizing self-organizing network. Due to the
proposed MSDRA and DCSPA schemes, which are able to adopt network variations at
cell level and region level and automatically implement the proposed power allocation
schemes as per the requirement when the fixed power allocation is not valid anymore.
Note that the implementation of the proposed distributed power allocation schemes
are not limited only to single tier multicellular network. The proposed scheme can be
deployed in the case of multi-tier network.

In multi-tier femtocell network, Femto Base Stations (FBSs) are randomly
and independently deployed by the user within the coverage area of Macro Base
Stations (MBSs). The FBS location and number can vary continuously due to its
random deployment. The existing classical network planning tool is not useful to
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configure the femtocell network. Therefore, FBSs need to be self-configured in
order to independently adjust into the radio access network [24]. Moreover, the
same radio resources are shared by the femtocell and macrocell to enhance spectrum
efficiency. However, this sort of deployment results in cross-tier interference due to
co-channel deployment. The proposed DRA scheme can alleviate the problem of
cross-tier interference by intelligently allocating power to the orthogonal spectrum
band of femtocell and macrocell. Therefore the proposed DRA scheme is feasible
in the successful deployment of the multi-tier network.

The next generation mobile networks will be highly dense deployment for the
enhancement of the network capacity to 100-1000 times from the current existing
networks. This will lead the mobile network to more distributed, personalized and
infrastructure less [25]. This is apparent that Device-to-Device (D2D) is infrastructure
less co-channel deployment which can cause co-tier interference that would limit
the performance of this technology. The proposed DRA scheme can perfectly fit in
the D2D to avoid co-channel deployment either in single tier or multi-tier network.
Similarly, in the Machine-to-Machine (M2M) communication [26], which has been
proved to provide ubiquitous connectivity among the devices in a distributive way,
thus enabling in parts the Internet of Things (IoT) [27]. Therefore, the proposed
DRA schemes are a benchmark for the distributed network elements become more
independent and self-adjustable with lowest minimum or without the need for resource
management mechanism. DRA is attractive not only for deployment independently but
also to control the operational expenses and reducing capital cost.

1.7 Thesis Outlines

This thesis is structured as follows. Chapter 2 is composed of two main
discussions, the literature review along with a theoretical background. The theoretical
background elaborates the technical features and fundamental aspects of OFDMA
based systems, cellular network modeling, and game theory and Regret Learning
method. The literature review part of the Chapter 2 covers the discussions on
the existing centralized and decentralized interference management and mitigation
approaches available in the literature, both for regular and irregular geometric OFDMA
networks. With a focus on decentralized interference management, DRA techniques
are covered in the literature review. The prior techniques to mitigate ICI and DRA are
investigated based on their potentials and shortcomings which eventually leads towards
the research motivations of this thesis.



9

Chapter 3 presents the framework of the proposed DRA scheme with ICI
mitigation in irregular geometry based OFDMA multicellular networks. The basic
design concept of MSDRA and DCSPA schemes are presented in detail. The
algorithmic flow charts for the proposed schemes are provided and discuss in detail.
Moreover, Chapter 3 also provides the specific detail of the system model, network
model and channel model. System performance metrics used to evaluate the network
performance of the proposed schemes are provided and described. Furthermore, the
chapter includes the description of the numerical and simulation tool, whereas its
implementation concept is elaborated using a function block diagram.

Chapter 4 gives the formulation of MSDRA to mitigate ICI in the irregular
geometry multicellular networks. The formulation is followed by the detail description
of the MSDRA scheme. Then the performance analysis of the MSDRA scheme in
comparison to the basic FFR-3 and GFFR schemes, when applied to irregular geometry
networks, is presented.

The formulation of the DCSPA scheme is presented in Chapter 5. The
formulations are followed by the detail description and details of cohesion and non-
coalesce based resource allocation. Then the performance analysis of the DCSPA
scheme in comparison with Geometric Water Filling (GWF) and Asynchronous
iterative water filling (AIWF) schemes is provided.

Finally, Chapter 6 summarizes the significant achievements of MSDRA and
DCSPA schemes along with recommendations for the future works.
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