6 research outputs found

    High resolution 3-Dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling

    Get PDF
    Cardiac arrhythmias and conduction disturbances are accompanied by structural remodelling of the specialised cardiomyocytes known collectively as the cardiac conduction system. Here, using contrast enhanced micro-computed tomography, we present, in attitudinally appropriate fashion, the first 3-dimensional representations of the cardiac conduction system within the intact human heart. We show that cardiomyocyte orientation can be extracted from these datasets at spatial resolutions approaching the single cell. These data show that commonly accepted anatomical representations are oversimplified. We have incorporated the high-resolution anatomical data into mathematical simulations of cardiac electrical depolarisation. The data presented should have multidisciplinary impact. Since the rate of depolarisation is dictated by cardiac microstructure, and the precise orientation of the cardiomyocytes, our data should improve the fidelity of mathematical models. By showing the precise 3-dimensional relationships between the cardiac conduction system and surrounding structures, we provide new insights relevant to valvar replacement surgery and ablation therapies. We also offer a practical method for investigation of remodelling in disease, and thus, virtual pathology and archiving. Such data presented as 3D images or 3D printed models, will inform discussions between medical teams and their patients, and aid the education of medical and surgical trainees

    Extracting Three-Dimensional Orientation and Tractography of Myofibers Using Optical Coherence Tomography

    Get PDF
    Abnormal changes in orientation of myofibers are associated with various cardiac diseases such as arrhythmia, irregular contraction, and cardiomyopathy. To extract fiber information, we present a method of quantifying fiber orientation and reconstructing three-dimensional tractography of myofibers using optical coherence tomography (OCT). A gradient based algorithm was developed to quantify fiber orientation in three dimensions and particle filtering technique was employed to track myofibers. Prior to image processing, three-dimensional image data set were acquired from all cardiac chambers and ventricular septum of swine hearts using OCT system without optical clearing. The algorithm was validated through rotation test and comparison with manual measurements. The experimental results demonstrate that we are able to visualize three-dimensional fiber tractography in myocardium tissues

    Doctor of Philosophy

    Get PDF
    dissertationMyocardial microstructure plays an important role in sustaining the orchestrated beating motion of the heart. Several microstructural components, including myocytes and auxiliary cells, extracellular space, and blood vessels provide the infrastructure for normal heart function, including excitation propagation, myocyte contraction, delivery of oxygen and nutrients, and removing byproduct wastes. Cardiac diseases cause deleterious changes to some or all of these microstructural components in the detrimental process of cardiac remodeling. Since heart failure is among the leading causes of death in the world, new and novel tools to noninvasively characterize heart microstructure are needed for monitoring and staging of cardiac disease. In this regards, diffusion magnetic resonance imaging (MRI) provides a promising framework to probe and quantify tissue microstructure without the need for exogenous contrast agent. As diffusion in 3-dimensional space is characterized by the diffusion tensor, MR diffusion tensor imaging (DTI) is being used to noninvasively measure anisotropic diffusion, and thus the magnitude and spatial orientation of microstructural organization of tissues, including the heart. However, even though in vivo cardiac DTI has become more clinically available, to date the origin and behavior of different microstructural components on the measured DTI signal remain to be explicitly specified. The presented studies in this work demonstrate that DTI can be used as a noninvasive and contrast-free imaging modality to characterize myocyte size and density, extracellular collagen content, and the directional magnitude of blood flow. The identified applications are expected to provide metrics to enable physicians to detect, quantify, and stage different microstructural components during progression of cardiac disease

    Novel cardiovascular magnetic resonance phenotyping of the myocardium

    Get PDF
    INTRODUCTION Left ventricular (LV) microstructure is unique, composed of a winding helical pattern of myocytes and rotating aggregations of myocytes called sheetlets. Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease characterised by left ventricular hypertrophy (LVH), however the link between LVH and underlying microstructural aberration is poorly understood. In vivo cardiovascular diffusion tensor imaging (cDTI) is a novel cardiovascular MRI (CMR) technique, capable of characterising LV microstructural dynamics non-invasively. In vivo cDTI may therefore improve our understanding microstructural-functional relationships in health and disease. METHODS AND RESULTS The monopolar diffusion weighted stimulated echo acquisition mode (DW-STEAM) sequence was evaluated for in vivo cDTI acquisitions at 3Tesla, in healthy volunteers (HV), patients with hypertensive LVH, and HCM patients. Results were contextualised in relation to extensively explored technical limitations. cDTI parameters demonstrated good intra-centre reproducibility in HCM, and good inter-centre reproducibility in HV. In all subjects, cDTI was able to depict the winding helical pattern of myocyte orientation known from histology, and the transmural rate of change in myocyte orientation was dependent on LV size and thickness. In HV, comparison of cDTI parameters between systole and diastole revealed an increase in transmural gradient, combined with a significant re-orientation of sheetlet angle. In contrast, in HCM, myocyte gradient increased between phases, however sheetlet angulation retained a systolic-like orientation in both phases. Combined analysis with hypertensive patients revealed a proportional decrease in sheetlet mobility with increasing LVH. CONCLUSION In vivo DW-STEAM cDTI can characterise LV microstructural dynamics non-invasively. The transmural rate of change in myocyte angulation is dependent on LV size and wall thickness, however inter phase changes in myocyte orientation are unaffected by LVH. In contrast, sheetlet dynamics demonstrate increasing dysfunction, in proportion to the degree of LVH. Resolving technical limitations is key to advancing this technique, and improving the understanding of the role of microstructural abnormalities in cardiovascular disease expression.Open Acces

    Micro-computed tomography for high resolution soft tissue imaging; applications in the normal and failing heart

    Get PDF
    The normal structure and function of the heart, the common pathological changes that cause abnormal function and the interventions proposed to improve or restore its function are fundamentally based on cardiac anatomy. Therefore in all these areas a detailed and accurate understanding of 3D structure is essential. However there is still disparity over some aspects of the form and function of the healthy heart. Furthermore, in heart failure (HF) the transition from compensated to decompensated HF is poorly understood, and details of ventricular, and particularly atrial, remodelling and their effects on cardiac function are yet to be fully elucidated. In addition little is known on how the 3D morphology of the cardiac conduction system is affected in disease, and further knowledge is required on the structural substrates for arrhythmogenesis associated with HF. Here we have developed contrast enhanced micro-CT for soft tissue imaging, allowing non-invasive high resolution (~5 µm attainable) differentiation of multiple soft tissue types including; muscle, connective tissue and fat. Micro-CT was optimised for imaging of whole intact mammalian hearts and from these data we reveal novel morphological and anatomical detail in healthy hearts and in hearts after experimental HF (volume and pressure overload). Remodelling of the myocardium in HF was dramatic with significant hypertrophy and dilatation observed in both atria and ventricles. The atria showed a 67% increase in myocardial volume, with the left atrium showing a 93% increase. The pectinate muscle: wall thickness ratio was significantly increased in both atria (p
    corecore