5,311 research outputs found

    The Verbal and Non Verbal Signals of Depression -- Combining Acoustics, Text and Visuals for Estimating Depression Level

    Full text link
    Depression is a serious medical condition that is suffered by a large number of people around the world. It significantly affects the way one feels, causing a persistent lowering of mood. In this paper, we propose a novel attention-based deep neural network which facilitates the fusion of various modalities. We use this network to regress the depression level. Acoustic, text and visual modalities have been used to train our proposed network. Various experiments have been carried out on the benchmark dataset, namely, Distress Analysis Interview Corpus - a Wizard of Oz (DAIC-WOZ). From the results, we empirically justify that the fusion of all three modalities helps in giving the most accurate estimation of depression level. Our proposed approach outperforms the state-of-the-art by 7.17% on root mean squared error (RMSE) and 8.08% on mean absolute error (MAE).Comment: 10 pages including references, 2 figure

    Enriched Long-term Recurrent Convolutional Network for Facial Micro-Expression Recognition

    Full text link
    Facial micro-expression (ME) recognition has posed a huge challenge to researchers for its subtlety in motion and limited databases. Recently, handcrafted techniques have achieved superior performance in micro-expression recognition but at the cost of domain specificity and cumbersome parametric tunings. In this paper, we propose an Enriched Long-term Recurrent Convolutional Network (ELRCN) that first encodes each micro-expression frame into a feature vector through CNN module(s), then predicts the micro-expression by passing the feature vector through a Long Short-term Memory (LSTM) module. The framework contains two different network variants: (1) Channel-wise stacking of input data for spatial enrichment, (2) Feature-wise stacking of features for temporal enrichment. We demonstrate that the proposed approach is able to achieve reasonably good performance, without data augmentation. In addition, we also present ablation studies conducted on the framework and visualizations of what CNN "sees" when predicting the micro-expression classes.Comment: Published in Micro-Expression Grand Challenge 2018, Workshop of 13th IEEE Facial & Gesture 201

    Chromo-dynamic multi-component lattice Boltzmann equation scheme for axial symmetry

    Get PDF
    We validate the chromo-dynamic multi-component lattice Boltzmann equation (MCLBE) simulation for immiscible fluids with a density contrast against analytical results for complex flow geometries, with particular emphasis on the fundamentals of the method, i.e. compliance with inter-facial boundary conditions of continuum hydrodynamics. To achieve the necessary regimes for the chosen validations, we develop, from a three-dimensional, axially-symmetric flow formulation, a novel, two-dimensional, pseudo Cartesian, MCLBE scheme. This requires the inclusion in lattice Boltzmann methodology of a continuously distributed source and a velocity-dependent force density (here, the metric force terms of the cylindrical Navier–Stokes equations). Specifically, we apply our model to the problem of flow past a spherical liquid drop in Re = 0, Ca regime and, also, flow past a lightly deformed drop. The resulting simulation data, once corrected for the simulation’s inter-facial micro-current (using a method we also advance herein, based on freezing the phase field) show good agreement with theory over a small range of density contrasts. In particular, our data extend verified compliance with the kinematic condition from flat (Burgin et al 2019 Phys. Rev. E 100 043310) to the case of curved fluid–fluid interfaces. More generally, our results indicate a route to eliminate the influence of the inter-facial micro-current
    • …
    corecore