2 research outputs found

    Analysis of Dynamic Brain Connectivity Through Geodesic Clustering

    No full text
    Analysis of dynamic functional connectivity allows for studying the time variant behavior of brain connectivity during specific tasks or at rest. There is, however, a debate around the significance of studies analyzing the dynamic connectivity, as it is usually estimated using short subsequences of the entire time-series. Therefore, a question that naturally arises is whether the dynamic connectivity information is robust enough to compare connectivity matrices. In this paper we investigate the importance of the choice of metric on the space of graphs to answer this question, using a dataset of twins under the assumption that twins connectivity is more similar than in any other pair of unrelated subjects. Specifically, the problem was formulated as a classification task between twin and non-twin pairs. The approach described in the paper relies on geodesic clustering of dynamic connectivity matrices to find a subset of brain states, which were then used to encode the pairwise connectivity similarities between subjects. Experiments were performed to compare the use of Euclidean distance in a vectorial space and a geodesic distance in the Riemannian space of symmetric positive definite matrices. We showed that the geodesic distance provided a better classification of twins subjects, suggesting this use of this distance can robustly compare dynamic connectivity matrices

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered
    corecore