8 research outputs found

    The Security of Abreast-DM in the Ideal Cipher Model

    Get PDF
    In this paper, we give a security proof for Abreast-DM in terms of collision resistance and preimage resistance. As old as Tandem-DM, the compression function Abreast-DM is one of the most well-known constructions for double block length compression functions. The bounds on the number of queries for collision resistance and preimage resistance are given by O(2^n). Based on a novel technique using query-response cycles, our security proof is simpler than those for MDC-2 and Tandem-DM. We also present a wide class of Abreast-DM variants that enjoy a birthday-type security guarantee with a simple proof

    On the Design of Secure and Fast Double Block Length Hash Functions

    Get PDF
    In this work the security of the rate-1 double block length hash functions, which based on a block cipher with a block length of n-bit and a key length of 2n-bit, is reconsidered. Counter-examples and new attacks are presented on this general class of double block length hash functions with rate 1, which disclose uncovered flaws in the necessary conditions given by Satoh et al. and Hirose. Preimage and second preimage attacks are presented on Hirose's two examples which were left as an open problem. Therefore, although all the rate-1 hash functions in this general class are failed to be optimally (second) preimage resistant, the necessary conditions are refined for ensuring this general class of the rate-1 hash functions to be optimally secure against the collision attack. In particular, two typical examples, which designed under the refined conditions, are proven to be indifferentiable from the random oracle in the ideal cipher model. The security results are extended to a new class of double block length hash functions with rate 1, where one block cipher used in the compression function has the key length is equal to the block length, while the other is doubled

    Attacks On a Double Length Blockcipher-based Hash Proposal

    Get PDF
    In this paper we attack a 2n2n-bit double length hash function proposed by Lee et al. This proposal is a blockcipher-based hash function with hash rate 2/32/3. The designers claimed that it could achieve ideal collision resistance and gave a security proof. However, we find a collision attack with complexity of Ω(23n/4)\Omega(2^{3n/4}) and a preimage attack with complexity of Ω(2n)\Omega(2^{n}). Our result shows this construction is much worse than an ideal 2n2n-bit hash function

    MJH: A Faster Alternative to MDC-2

    Full text link
    Abstract. In this paper, we introduce a new class of double-block-length hash functions. Using the ideal cipher model, we prove that these hash functions, dubbed MJH, are asymptotically collision resistant up to O(2n(1−)) query complexity for any > 0 in the iteration, where n is the block size of the underlying blockcipher. When based on n-bit key blockciphers, our construction, being of rate 1/2, provides better provable security than MDC-2, the only known construction of a rate-1/2 double-length hash function based on an n-bit key blockcipher with non-trivial provable security. Moreover, since key scheduling is performed only once per message block for MJH, our proposal significantly outperforms MDC-2 in efficiency. When based on a 2n-bit key blockcipher, we can use the extra n bits of key to increase the amount of payload accordingly. Thus we get a rate-1 hash function that is much faster than existing proposals, such as Tandem-DM with comparable provable security. This is the full version of [19].

    More Insights on Blockcipher-Based Hash Functions

    Get PDF
    In this paper we give more insights on the security of blockcipher-based hash functions. We give a very simple criterion to build a secure large class of Single-Block-Length (SBL) or double call Double-Block-Length (DBL) compression functions based on (kn,n)(kn, n) blockciphers, where knkn is the key length and nn is the block length and kk is an integer. This criterion is simpler than previous works in the literature. Based on the criterion, we can get many results from this criterion, and we can get a conclusion on such class of blockcipher-based hash functions. We solved the open problem left by Hirose. Our results show that to build a secure double call DBL compression function, it is required k>=m+1k >= m+1 where mm is the number of message blocks. Thus, we can only build rate 1/2 secure double DBL blockcipher-based compression functions if k==2k==2. At last, we pointed out flaws in Stam\u27s theorem about supercharged functions and gave a revision of this theorem and added another condition for the security of supercharged compression functions

    Security of Cyclic Double Block Length Hash Functions including Abreast-DM

    Get PDF
    We provide the first proof of security for Abreast-DM, one of the oldest and most well-known constructions for turning a block cipher with nn-bit block length and 2n2n-bit key length into a 2n-bit cryptographic hash function. In particular, we prove that when Abreast-DM is instantiated with AES-256, i.e. a block cipher with 128-bit block length and 256-bit key length, any adversary that asks less than 2^124.42 queries cannot find a collision with success probability greater than 1/2. Surprisingly, this about 15 years old construction is one of the few constructions that have the desirable feature of a near-optimal collision resistance guarantee. We generalize our techniques used in the proof of Abreast-DM to a huge class of double block length (DBL) hash functions that we will call Cyclic-DM. Using this generalized theorem we are able to derive several DBL constructions that lead to compression functions that even have a higher security guarantee and are more efficient than Abreast-DM. Furthermore we give DBL constructions that have the highest security guarantee of all DBL compression functions currently known in literature. We also provide an analysis of preimage resistance for Cyclic-DM compression functions. Note that this work has been already presented at Dagstuhl \u2709

    Design and Analysis of Cryptographic Algorithms for Authentication

    Get PDF
    During the previous decades, the upcoming demand for security in the digital world, e.g., the Internet, lead to numerous groundbreaking research topics in the field of cryptography. This thesis focuses on the design and analysis of cryptographic primitives and schemes to be used for authentication of data and communication endpoints, i.e., users. It is structured into three parts, where we present the first freely scalable multi-block-length block-cipher-based compression function (Counter-bDM) in the first part. The presented design is accompanied by a thorough security analysis regarding its preimage and collision security. The second and major part is devoted to password hashing. It is motivated by the large amount of leaked password during the last years and our discovery of side-channel attacks on scrypt – the first modern password scrambler that allowed to parameterize the amount of memory required to compute a password hash. After summarizing which properties we expect from a modern password scrambler, we (1) describe a cache-timing attack on scrypt based on its password-dependent memory-access pattern and (2) outline an additional attack vector – garbage-collector attacks – that exploits optimization which may disregard to overwrite the internally used memory. Based on our observations, we introduce Catena – the first memory-demanding password-scrambling framework that allows a password-independent memory-access pattern for resistance to the aforementioned attacks. Catena was submitted to the Password Hashing Competition (PHC) and, after two years of rigorous analysis, ended up as a finalist gaining special recognition for its agile framework approach and side-channel resistance. We provide six instances of Catena suitable for a variety of applications. We close the second part of this thesis with an overview of modern password scramblers regarding their functional, security, and general properties; supported by a brief analysis of their resistance to garbage-collector attacks. The third part of this thesis is dedicated to the integrity (authenticity of data) of nonce-based authenticated encryption schemes (NAE). We introduce the so-called j-IV-Collision Attack, allowing to obtain an upper bound for an adversary that is provided with a first successful forgery and tries to efficiently compute j additional forgeries for a particular NAE scheme (in short: reforgeability). Additionally, we introduce the corresponding security notion j-INT-CTXT and provide a comparative analysis (regarding j-INT-CTXT security) of the third-round submission to the CAESAR competition and the four classical and widely used NAE schemes CWC, CCM, EAX, and GCM.Die fortschreitende Digitalisierung in den letzten Jahrzehnten hat dazu geführt, dass sich das Forschungsfeld der Kryptographie bedeutsam weiterentwickelt hat. Diese, im Wesentlichen aus drei Teilen bestehende Dissertation, widmet sich dem Design und der Analyse von kryptographischen Primitiven und Modi zur Authentifizierung von Daten und Kommunikationspartnern. Der erste Teil beschäftigt sich dabei mit blockchiffrenbasierten Kompressionsfunktionen, die in ressourcenbeschränkten Anwendungsbereichen eine wichtige Rolle spielen. Im Rahmen dieser Arbeit präsentieren wir die erste frei skalierbare und sichere blockchiffrenbasierte Kompressionsfunktion Counter-bDM und erweitern somit flexibel die erreichbare Sicherheit solcher Konstruktionen. Der zweite Teil und wichtigste Teil dieser Dissertation widmet sich Passwort-Hashing-Verfahren. Zum einen ist dieser motiviert durch die große Anzahl von Angriffen auf Passwortdatenbanken großer Internet-Unternehmen. Zum anderen bot die Password Hashing Competition (PHC) die Möglichkeit, unter Aufmerksamkeit der Expertengemeinschaft die Sicherheit bestehender Verfahren zu hinterfragen, sowie neue sichere Verfahren zu entwerfen. Im Rahmen des zweiten Teils entwarfen wir Anforderungen an moderne Passwort-Hashing-Verfahren und beschreiben drei Arten von Seitenkanal-Angriffen (Cache-Timing-, Weak Garbage-Collector- und Garbage-Collector-Angriffe) auf scrypt – das erste moderne Password-Hashing-Verfahren welches erlaubte, den benötigten Speicheraufwand zur Berechnung eines Passworthashes frei zu wählen. Basierend auf unseren Beobachtungen und Angriffen, stellen wir das erste moderne PasswordHashing-Framework Catena vor, welches für gewählte Instanzen passwortunabhängige Speicherzugriffe und somit Sicherheit gegen oben genannte Angriffe garantiert. Catena erlangte im Rahmen des PHC-Wettbewerbs besondere Anerkennung für seine Agilität und Resistenz gegen SeitenkanalAngriffe. Wir präsentieren sechs Instanzen des Frameworks, welche für eine Vielzahl von Anwendungen geeignet sind. Abgerundet wird der zweite Teil dieser Arbeit mit einem vergleichenden Überblick von modernen Passwort-Hashing-Verfahren hinsichtlich ihrer funktionalen, sicherheitstechnischen und allgemeinen Eigenschaften. Dieser Vergleich wird unterstützt durch eine kurze Analyse bezüglich ihrer Resistenz gegen (Weak) Garbage-Collector-Angriffe. Der dritte teil dieser Arbeit widmet sich der Integrität von Daten, genauer, der Sicherheit sogenannter Nonce-basierten authentisierten Verschlüsselungsverfahren (NAE-Verfahren), welche ebenso wie Passwort-Hashing-Verfahren in der heutigen Sicherheitsinfrastruktur des Internets eine wichtige Rolle spielen. Während Standard-Definitionen keine Sicherheit nach dem Fund einer ersten erfolgreich gefälschten Nachricht betrachten, erweitern wir die Sicherheitsanforderungen dahingehend wie schwer es ist, weitere Fälschungen zu ermitteln. Wir abstrahieren die Funktionsweise von NAEVerfahren in Klassen, analysieren diese systematisch und klassifizieren die Dritt-Runden-Kandidaten des CAESAR-Wettbewerbs, sowie vier weit verbreitete NAE-Verfahren CWC, CCM, EAX und GCM

    Design and Analysis of Multi-Block-Length Hash Functions

    Get PDF
    Cryptographic hash functions are used in many cryptographic applications, and the design of provably secure hash functions (relative to various security notions) is an active area of research. Most of the currently existing hash functions use the Merkle-Damgård paradigm, where by appropriate iteration the hash function inherits its collision and preimage resistance from the underlying compression function. Compression functions can either be constructed from scratch or be built using well-known cryptographic primitives such as a blockcipher. One classic type of primitive-based compression functions is single-block-length : It contains designs that have an output size matching the output length n of the underlying primitive. The single-block-length setting is well-understood. Yet even for the optimally secure constructions, the (time) complexity of collision- and preimage-finding attacks is at most 2n/2, respectively 2n ; when n = 128 (e.g., Advanced Encryption Standard) the resulting bounds have been deemed unacceptable for current practice. As a remedy, multi-block-length primitive-based compression functions, which output more than n bits, have been proposed. This output expansion is typically achieved by calling the primitive multiple times and then combining the resulting primitive outputs in some clever way. In this thesis, we study the collision and preimage resistance of certain types of multi-call multi-block-length primitive-based compression (and the corresponding Merkle-Damgård iterated hash) functions : Our contribution is three-fold. First, we provide a novel framework for blockcipher-based compression functions that compress 3n bits to 2n bits and that use two calls to a 2n-bit key blockcipher with block-length n. We restrict ourselves to two parallel calls and analyze the sufficient conditions to obtain close-to-optimal collision resistance, either in the compression function or in the Merkle-Damgård iteration. Second, we present a new compression function h: {0,1}3n → {0,1}2n ; it uses two parallel calls to an ideal primitive (public random function) from 2n to n bits. This is similar to MDC-2 or the recently proposed MJH by Lee and Stam (CT-RSA'11). However, unlike these constructions, already in the compression function we achieve that an adversary limited (asymptotically in n) to O (22n(1-δ)/3) queries (for any δ > 0) has a disappearing advantage to find collisions. This is the first construction of this type offering collision resistance beyond 2n/2 queries. Our final contribution is the (re)analysis of the preimage and collision resistance of the Knudsen-Preneel compression functions in the setting of public random functions. Knudsen-Preneel compression functions utilize an [r,k,d] linear error-correcting code over 𝔽2e (for e > 1) to build a compression function from underlying blockciphers operating in the Davies-Meyer mode. Knudsen and Preneel show, in the complexity-theoretic setting, that finding collisions takes time at least 2(d-1)n2. Preimage resistance, however, is conjectured to be the square of the collision resistance. Our results show that both the collision resistance proof and the preimage resistance conjecture of Knudsen and Preneel are incorrect : With the exception of two of the proposed parameters, the Knudsen-Preneel compression functions do not achieve the security level they were designed for
    corecore