25,761 research outputs found

    Australian commercial-critical infrastructure management protection

    Full text link
    Secure management of Australia\u27s commercial critical infrastructure presents ongoing challenges to owners and the government. Although managed via a high-level information sharing collaboration of government and business, critical infrastructure protection is further complicated by the lack of a lower-level scalable model exhibiting its various levels, sectors and sub-sectors. This research builds on the work of Marasea (2003) to establish a descriptive critical infrastructure model and also considers the influence and proposed modelling of critical infrastructure dependency inter-relationships.<br /

    Characterizing the Role of Power Grids in Internet Resilience

    Full text link
    Among critical infrastructures, power grids and communication infrastructure are identified as uniquely critical since they enable the operation of all other sectors. Due to their vital role, the research community has undertaken extensive efforts to understand the complex dynamics and resilience characteristics of these infrastructures, albeit independently. However, power and communication infrastructures are also interconnected, and the nature of the Internet's dependence on power grids is poorly understood. In this paper, we take the first step toward characterizing the role of power grids in Internet resilience by analyzing the overlap of global power and Internet infrastructures. We investigate the impact of power grid failures on Internet availability and find that nearly 65%65\% of the public Internet infrastructure components are concentrated in a few (<10< 10) power grid failure zones. More importantly, power grid dependencies severely limit the number of disjoint availability zones of cloud providers. When dependency on grids serving data center locations is taken into account, the number of isolated AWS Availability Zones reduces from 87 to 19. Building upon our findings, we develop NetWattZap, an Internet resilience analysis tool that generates power grid dependency-aware deployment suggestions for Internet infrastructure and application components, which can also take into account a wide variety of user requirements

    Model Based Development of Quality-Aware Software Services

    Get PDF
    Modelling languages and development frameworks give support for functional and structural description of software architectures. But quality-aware applications require languages which allow expressing QoS as a first-class concept during architecture design and service composition, and to extend existing tools and infrastructures adding support for modelling, evaluating, managing and monitoring QoS aspects. In addition to its functional behaviour and internal structure, the developer of each service must consider the fulfilment of its quality requirements. If the service is flexible, the output quality depends both on input quality and available resources (e.g., amounts of CPU execution time and memory). From the software engineering point of view, modelling of quality-aware requirements and architectures require modelling support for the description of quality concepts, support for the analysis of quality properties (e.g. model checking and consistencies of quality constraints, assembly of quality), tool support for the transition from quality requirements to quality-aware architectures, and from quality-aware architecture to service run-time infrastructures. Quality management in run-time service infrastructures must give support for handling quality concepts dynamically. QoS-aware modeling frameworks and QoS-aware runtime management infrastructures require a common evolution to get their integration

    Enhancing Infrastructure Resilience Under Conditions of Incomplete Knowledge of Interdependencies

    Get PDF
    Today’s infrastructures — such as road, rail, gas, electricity and ICT — are highly interdependent, and may best be viewed as multi-infrastructure systems. A key challenge in seeking to enhance the resilience of multi-infrastructure systems in practice relates to the fact that many interdependencies may be unknown to the operators of these infrastructures. How can we foster infrastructure resilience lacking complete knowledge of interdependencies? In addressing this question, we conceptualize the situation of a hypothetical infrastructure operator faced with incomplete knowledge of the interdependencies to which his infrastructure is exposed. Using a computer model which explicitly represents failure propagations and cascades within a multi-infrastructure system, we seek to identify robust investment strategies on the part of the operator to enhance infrastructure resilience. Our results show that a strategy of constructing redundant interdependencies may be the most robust option for a financially constrained infrastructure operator. These results are specific to the infrastructure configuration tested. However, the developed model may be tailored to the conditions of real-world infrastructure operators faced with a similar dilemma, ultimately helping to foster resilient infrastructures in an uncertain world
    • 

    corecore