1,033 research outputs found

    DEMO: Simulation of Realistic Mobility Model and Implementation of 802.11p (DSRC) for Vehicular Networks (VANET)

    Full text link
    An ad hoc network of vehicles (VANET) consists of vehicles that exchange information via radio in order to improve road safety, traffic management and do better distribution of traffic load in time and space. Along with this it allows Internet access for passengers and users of vehicles. A significant characteristic while studying VANETs is the requirement of having a mobility model that gives aspects of real vehicular traffic. These scenarios play an important role in performance of VANETs. In our paper we have demonstration and description of generating realistic mobility model using various tools such as eWorld, OpenStreetMap, SUMO and TraNS. Generated mobility scenario is added to NS-2.34 (Network Simulator) for analysis of DSR and AODV routing protocol under 802.11p (DSRC/WAVE) and 802.11a. Results after analysis shows 802.11p is more suitable than 802.11a for VANET.Comment: 4 pages, 6 figures, International Journal of Computer Applicatio

    A Taxonomy for Congestion Control Algorithms in Vehicular Ad Hoc Networks

    Full text link
    One of the main criteria in Vehicular Ad hoc Networks (VANETs) that has attracted the researchers' consideration is congestion control. Accordingly, many algorithms have been proposed to alleviate the congestion problem, although it is hard to find an appropriate algorithm for applications and safety messages among them. Safety messages encompass beacons and event-driven messages. Delay and reliability are essential requirements for event-driven messages. In crowded networks where beacon messages are broadcasted at a high number of frequencies by many vehicles, the Control Channel (CCH), which used for beacons sending, will be easily congested. On the other hand, to guarantee the reliability and timely delivery of event-driven messages, having a congestion free control channel is a necessity. Thus, consideration of this study is given to find a solution for the congestion problem in VANETs by taking a comprehensive look at the existent congestion control algorithms. In addition, the taxonomy for congestion control algorithms in VANETs is presented based on three classes, namely, proactive, reactive and hybrid. Finally, we have found the criteria in which fulfill prerequisite of a good congestion control algorithm

    Node Density Estimation in VANETs Using Received Signal Power

    Get PDF
    Accurately estimating node density in Vehicular Ad hoc Networks, VANETs, is a challenging and crucial task. Various approaches exist, yet none takes advantage of physical layer parameters in a distributed fashion. This paper describes a framework that allows individual nodes to estimate the node density of their surrounding network independent of beacon messages and other infrastructure-based information. The proposal relies on three factors: 1) a discrete event simulator to estimate the average number of nodes transmitting simultaneously; 2) a realistic channel model for VANETs environment; and 3) a node density estimation technique. This work provides every vehicle on the road with two equations indicating the relation between 1) received signal strength versus simultaneously transmitting nodes, and 2) simultaneously transmitting nodes versus node density. Access to these equations enables individual nodes to estimate their real-time surrounding node density. The system is designed to work for the most complicated scenarios where nodes have no information about the topology of the network and, accordingly, the results indicate that the system is reasonably reliable and accurate. The outcome of this work has various applications and can be used for any protocol that is affected by node density

    Evaluating the Impact of Transmission Range on the Performance of VANET

    Get PDF
    Recently, interest in the field of Vehicular Ad-hoc Networks (VANETs) has grown among research community to improve traffic safety and efficiency on the roads. Despite the many advantages, the transmission range in vehicular network remains one of the major challenges due to the unique characteristics of VANETs such as various communication environments, highly dynamic topology, high node mobility and traffic density. The network would suffer from a broadcast-storm in high vehicular density when a fixed transmission range in VANET is used, while in sparse vehicular density the network could be disconnected frequently. In this paper, we evaluated the impact of different transmission ranges and number of flows formed between vehicles in a highway scenario using AODV as routing protocol. In order to validate the simulation of VANET, traffic and network simulators (SUMO & NS-2) have been used. The performance was evaluated in terms of packet delivery ratio and end-to-end delay. The simulation results have shown that better performance was achieved in term of higher PDR and lower end-to-end delay for less than 500 meters transmission range. On the contrary, the PDR started to decrease and end-to-end delay increased when the transmission range exceeded 500 meters. The performance degraded as the number of flows increased

    Efficient medium access control protocol for vehicular ad-hoc networks

    Get PDF
    Intelligent transportation systems (ITS) have enjoyed a tremendous growth in the last decade and the advancement in communication technologies has played a big role behind the success of ITS. Inter-vehicle communication (IVC) is a critical requirement for ITS and due to the nature of communication, vehicular ad-hoc network technology (VANET) is the most suitable communication technology for inter-vehicle communications. In Practice, however, VANET poses some extreme challenges including dropping out of connections as the moving vehicle moves out of the coverage range, joining of new nodes moving at high speeds, dynamic change in topology and connectivity, time variability of signal strength, throughput and time delay. One of the most challenging issues facing vehicular networks lies in the design of efficient resource management schemes, due to the mobile nature of nodes, delay constraints for safety applications and interference. The main application of VANET in ITS lies in the exchange of safety messages between nodes. Moreover, as the wireless access in vehicular environment (WAVE) moves closer to reality, management of these networks is of increasing concern for ITS designers and other stakeholder groups. As such, management of resources plays a significant role in VANET and ITS. For resource management in VANET, a medium access control protocol is used, which makes sure that limited resources are distributed efficiently. In this thesis, an efficient Multichannel Cognitive MAC (MCM) is developed, which assesses the quality of channel prior to transmission. MCM employs dynamic channel allocation and negotiation algorithms to achieve a significant improvement in channel utilisation, system reliability, and delay constraints while simultaneously addressing Quality of Service. Moreover, modified access priority parameters and safety message acknowledgments will be used to improve the reliability of safety messages. The proposed protocols are implemented using network simulation tools. Extensive experiments demonstrated a faster and more efficient reception of safety messages compared to existing VANET technologies. Finally, improvements in delay and packet delivery ratios are presented
    corecore