27,171 research outputs found

    Expression of LDL receptor-related proteins (LRPs) in common solid malignancies correlates with patient survival

    Get PDF
    LDL receptor-related proteins (LRPs) are transmembrane receptors involved in endocytosis, cell-signaling, and trafficking of other cellular proteins. Considerable work has focused on LRPs in the fields of vascular biology and neurobiology. How these receptors affect cancer progression in humans remains largely unknown. Herein, we mined provisional data-bases in The Cancer Genome Atlas (TCGA) to compare expression of thirteen LRPs in ten common solid malignancies in patients. Our first goal was to determine the abundance of LRP mRNAs in each type of cancer. Our second goal was to determine whether expression of LRPs is associated with improved or worsened patient survival. In total, data from 4,629 patients were mined. In nine of ten cancers studied, the most abundantly expressed LRP was LRP1; however, a correlation between LRP1 mRNA expression and patient survival was observed only in bladder urothelial carcinoma. In this malignancy, high levels of LRP1 mRNA were associated with worsened patient survival. High levels of LDL receptor (LDLR) mRNA were associated with decreased patient survival in pancreatic adenocarcinoma. High levels of LRP10 mRNA were associated with decreased patient survival in hepatocellular carcinoma, lung adenocarcinoma, and pancreatic adenocarcinoma. LRP2 was the only LRP for which high levels of mRNA expression correlated with improved patient survival. This correlation was observed in renal clear cell carcinoma. Insights into LRP gene expression in human cancers and their effects on patient survival should guide future research

    Engaging the Immune Response to Normalize the Tumor Microenvironment

    Get PDF
    Solid tumors exist as heterogeneous populations comprised not only of malignant cells, but various other cell types, including cells that make up the vasculature, that can strongly influence tumorgenicity. Many forms of solid cancers are highly vascularized due to dysregulated angiogenesis. The tumor vasculature is classified by leaky, chaotic blood vessels consisting of several components including vascular endothelial cells and pericytes, as well vascular progenitors, resulting in vascular permeability and high interstitial pressure. As a result, the tumor vasculature limits the access of immune effector cells to the tumor, and may in part be responsible for the modest success observed in many current anti-cancer immunotherapies. Current first-line therapeutics in the advanced stage disease setting include anti-angiogenic small molecule drugs that have yielded high objective clinical response rates, however these responses tend to be transient in nature, with most patients becoming drug-refractory. Anti-tumor vasculature vaccines may promote the reconditioning of the tumor microenvironment by coordinately promoting a pro-inflammatory environment and the specific immune targeting of tumor-associated stromal cell populations that contribute to vasculature destabilization. Implementing a vaccine with these therapeutic effects is a promising treatment option that may extend disease-free intervals and overall patient survival. I show that vaccines specifically targeting tumor vasculature populations can “normalize” the tumor microenvironment, as shown by upregulation of proinflammatory molecules within the tumor as well as vascular remodeling promoting enhanced recruitment of CD8+ T cells, resulting in superior anti-tumor efficacy

    Limited utility of qPCR-based detection of tumor-specific circulating mRNAs in whole blood from clear cell renal cell carcinoma patients

    Get PDF
    BACKGROUND: RNA sequencing data is providing abundant information about the levels of dysregulation of genes in various tumors. These data, as well as data based on older microarray technologies have enabled the identification of many genes which are upregulated in clear cell renal cell carcinoma (ccRCC) compared to matched normal tissue. Here we use RNA sequencing data in order to construct a panel of highly overexpressed genes in ccRCC so as to evaluate their RNA levels in whole blood and determine any diagnostic potential of these levels for renal cell carcinoma patients. METHODS: A bioinformatics analysis with Python was performed using TCGA, GEO and other databases to identify genes which are upregulated in ccRCC while being absent in the blood of healthy individuals. Quantitative Real Time PCR (RT-qPCR) was subsequently used to measure the levels of candidate genes in whole blood (PAX gene) of 16 ccRCC patients versus 11 healthy individuals. PCR results were processed in qBase and GraphPadPrism and statistics was done with Mann-Whitney U test. RESULTS: While most analyzed genes were either undetectable or did not show any dysregulated expression, two genes, CDK18 and CCND1, were paradoxically downregulated in the blood of ccRCC patients compared to healthy controls. Furthermore, LOX showed a tendency towards upregulation in metastatic ccRCC samples compared to non-metastatic. CONCLUSIONS: This analysis illustrates the difficulty of detecting tumor regulated genes in blood and the possible influence of interference from expression in blood cells even for genes conditionally absent in normal blood. Testing in plasma samples indicated that tumor specific mRNAs were not detectable. While CDK18, CCND1 and LOX mRNAs might carry biomarker potential, this would require validation in an independent, larger patient cohort

    Widespread parainflammation in human cancer.

    Get PDF
    BackgroundChronic inflammation has been recognized as one of the hallmarks of cancer. We recently showed that parainflammation, a unique variant of inflammation between homeostasis and chronic inflammation, strongly promotes mouse gut tumorigenesis upon p53 loss. Here we explore the prevalence of parainflammation in human cancer and determine its relationship to certain molecular and clinical parameters affecting treatment and prognosis.ResultsWe generated a transcriptome signature to identify parainflammation in many primary human tumors and carcinoma cell lines as distinct from their normal tissue counterparts and the tumor microenvironment and show that parainflammation-positive tumors are enriched for p53 mutations and associated with poor prognosis. Non-steroidal anti-inflammatory drug (NSAID) treatment suppresses parainflammation in both murine and human cancers, possibly explaining a protective effect of NSAIDs against cancer.ConclusionsWe conclude that parainflammation, a low-grade form of inflammation, is widely prevalent in human cancer, particularly in cancer types commonly harboring p53 mutations. Our data suggest that parainflammation may be a driver for p53 mutagenesis and a guide for cancer prevention by NSAID treatment

    Fast and scalable inference of multi-sample cancer lineages.

    Get PDF
    Somatic variants can be used as lineage markers for the phylogenetic reconstruction of cancer evolution. Since somatic phylogenetics is complicated by sample heterogeneity, novel specialized tree-building methods are required for cancer phylogeny reconstruction. We present LICHeE (Lineage Inference for Cancer Heterogeneity and Evolution), a novel method that automates the phylogenetic inference of cancer progression from multiple somatic samples. LICHeE uses variant allele frequencies of somatic single nucleotide variants obtained by deep sequencing to reconstruct multi-sample cell lineage trees and infer the subclonal composition of the samples. LICHeE is open source and available at http://viq854.github.io/lichee

    Adaptive immunity in cancer immunology and therapeutics.

    Get PDF
    Copyright: © the authors; licensee ecancermedicalscience. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.The vast genetic alterations characteristic of tumours produce a number of tumour antigens that enable the immune system to differentiate tumour cells from normal cells. Counter to this, tumour cells have developed mechanisms by which to evade host immunity in their constant quest for growth and survival. Tumour-associated antigens (TAAs) are one of the fundamental triggers of the immune response. They are important because they activate, via major histocompatibility complex (MHC), the T cell response, an important line of defense against tumourigenesis. However, the persistence of tumours despite host immunity implies that tumour cells develop immune avoidance. An example of this is the up-regulation of inhibitory immune checkpoint proteins, by tumours, which induces a form of self-tolerance. The majority of monoclonal antibodies in clinical practice have been developed to target tumour-specific antigens. More recently there has been research in the down-regulation of immune checkpoint proteins as a way of increasing anti-tumour immunity

    Circular RNAs in Clear Cell Renal Cell Carcinoma: Their Microarray-Based Identification, Analytical Validation, and Potential Use in a Clinico-Genomic Model to Improve Prognostic Accuracy

    Get PDF
    Circular RNAs (circRNAs) may act as novel cancer biomarkers. However, a genome-wide evaluation of circRNAs in clear cell renal cell carcinoma (ccRCC) has yet to be conducted. Therefore, the objective of this study was to identify and validate circRNAs in ccRCC tissue with a focus to evaluate their potential as prognostic biomarkers. A genome-wide identification of circRNAs in total RNA extracted from ccRCC tissue samples was performed using microarray analysis. Three relevant differentially expressed circRNAs were selected (circEGLN3, circNOX4, and circRHOBTB3), their circular nature was experimentally confirmed, and their expression-along with that of their linear counterparts-was measured in 99 malignant and 85 adjacent normal tissue samples using specifically established RT-qPCR assays. The capacity of circRNAs to discriminate between malignant and adjacent normal tissue samples and their prognostic potential (with the endpoints cancer-specific, recurrence-free, and overall survival) after surgery were estimated by C-statistics, Kaplan-Meier method, univariate and multivariate Cox regression analysis, decision curve analysis, and Akaike and Bayesian information criteria. CircEGLN3 discriminated malignant from normal tissue with 97% accuracy. We generated a prognostic for the three endpoints by multivariate Cox regression analysis that included circEGLN3, circRHOBT3 and linRHOBTB3. The predictive outcome accuracy of the clinical models based on clinicopathological factors was improved in combination with this circRNA-based signature. Bootstrapping as well as Akaike and Bayesian information criteria confirmed the statistical significance and robustness of the combined models. Limitations of this study include its retrospective nature and the lack of external validation. The study demonstrated the promising potential of circRNAs as diagnostic and particularly prognostic biomarkers in ccRCC patients
    • …
    corecore