69 research outputs found

    Parareal in time intermediate targets methods for optimal control problem

    Full text link
    In this paper, we present a method that enables solving in parallel the Euler-Lagrange system associated with the optimal control of a parabolic equation. Our approach is based on an iterative update of a sequence of intermediate targets that gives rise to independent sub-problems that can be solved in parallel. This method can be coupled with the parareal in time algorithm. Numerical experiments show the efficiency of our method.Comment: 14 page

    Diagonalization-based preconditioners and generalized convergence bounds for ParaOpt

    Full text link
    The ParaOpt algorithm was recently introduced as a time-parallel solver for optimal-control problems with a terminal-cost objective, and convergence results have been presented for the linear diffusive case with implicit-Euler time integrators. We reformulate ParaOpt for tracking problems and provide generalized convergence analyses for both objectives. We focus on linear diffusive equations and prove convergence bounds that are generic in the time integrators used. For large problem dimensions, ParaOpt's performance depends crucially on having a good preconditioner to solve the arising linear systems. For the case where ParaOpt's cheap, coarse-grained propagator is linear, we introduce diagonalization-based preconditioners, inspired by recent advances in the ParaDiag family of methods. These preconditioners not only lead to a weakly-scalable ParaOpt version, but are themselves invertible in parallel, making maximal use of available concurrency. They have proven convergence properties in the linear diffusive case that are generic in the time discretization used, similarly to our ParaOpt results. Numerical results confirm that the iteration count of the iterative solvers used for ParaOpt's linear systems becomes constant in the limit of an increasing processor count. The paper is accompanied by a sequential MATLAB implementation

    Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    Get PDF
    We present a parareal in time algorithm for the simulation of neutron diffusion transient model. The method is made efficient by means of a coarse solver defined with large time steps and steady control rods model. Using finite element for the space discretization, our implementation provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch-Maurer-Werner (LMW) benchmark [1]

    Space-time block preconditioning for incompressible flow

    Full text link
    Parallel-in-time methods have become increasingly popular in the simulation of time-dependent numerical PDEs, allowing for the efficient use of additional MPI processes when spatial parallelism saturates. Most methods treat the solution and parallelism in space and time separately. In contrast, all-at-once methods solve the full space-time system directly, largely treating time as simply another spatial dimension. All-at-once methods offer a number of benefits over separate treatment of space and time, most notably significantly increased parallelism and faster time-to-solution (when applicable). However, the development of fast, scalable all-at-once methods has largely been limited to time-dependent (advection-)diffusion problems. This paper introduces the concept of space-time block preconditioning for the all-at-once solution of incompressible flow. By extending well-known concepts of spatial block preconditioning to the space-time setting, we develop a block preconditioner whose application requires the solution of a space-time (advection-)diffusion equation in the velocity block, coupled with a pressure Schur complement approximation consisting of independent spatial solves at each time-step, and a space-time matrix-vector multiplication. The new method is tested on four classical models in incompressible flow. Results indicate perfect scalability in refinement of spatial and temporal mesh spacing, perfect scalability in nonlinear Picard iterations count when applied to a nonlinear Navier-Stokes problem, and minimal overhead in terms of number of preconditioner applications compared with sequential time-stepping.Comment: 28 pages, 7 figures, 4 table
    corecore