2,372 research outputs found

    Distributed Approximation of Maximum Independent Set and Maximum Matching

    Full text link
    We present a simple distributed Δ\Delta-approximation algorithm for maximum weight independent set (MaxIS) in the CONGEST\mathsf{CONGEST} model which completes in O(MIS(G)logW)O(\texttt{MIS}(G)\cdot \log W) rounds, where Δ\Delta is the maximum degree, MIS(G)\texttt{MIS}(G) is the number of rounds needed to compute a maximal independent set (MIS) on GG, and WW is the maximum weight of a node. %Whether our algorithm is randomized or deterministic depends on the \texttt{MIS} algorithm used as a black-box. Plugging in the best known algorithm for MIS gives a randomized solution in O(lognlogW)O(\log n \log W) rounds, where nn is the number of nodes. We also present a deterministic O(Δ+logn)O(\Delta +\log^* n)-round algorithm based on coloring. We then show how to use our MaxIS approximation algorithms to compute a 22-approximation for maximum weight matching without incurring any additional round penalty in the CONGEST\mathsf{CONGEST} model. We use a known reduction for simulating algorithms on the line graph while incurring congestion, but we show our algorithm is part of a broad family of \emph{local aggregation algorithms} for which we describe a mechanism that allows the simulation to run in the CONGEST\mathsf{CONGEST} model without an additional overhead. Next, we show that for maximum weight matching, relaxing the approximation factor to (2+ε2+\varepsilon) allows us to devise a distributed algorithm requiring O(logΔloglogΔ)O(\frac{\log \Delta}{\log\log\Delta}) rounds for any constant ε>0\varepsilon>0. For the unweighted case, we can even obtain a (1+ε)(1+\varepsilon)-approximation in this number of rounds. These algorithms are the first to achieve the provably optimal round complexity with respect to dependency on Δ\Delta

    Approximation Algorithms for Partially Colorable Graphs

    Get PDF
    Graph coloring problems are a central topic of study in the theory of algorithms. We study the problem of partially coloring partially colorable graphs. For alpha = alpha |V| such that the graph induced on S is k-colorable. Partial k-colorability is a more robust structural property of a graph than k-colorability. For graphs that arise in practice, partial k-colorability might be a better notion to use than k-colorability, since data arising in practice often contains various forms of noise. We give a polynomial time algorithm that takes as input a (1 - epsilon)-partially 3-colorable graph G and a constant gamma in [epsilon, 1/10], and colors a (1 - epsilon/gamma) fraction of the vertices using O~(n^{0.25 + O(gamma^{1/2})}) colors. We also study natural semi-random families of instances of partially 3-colorable graphs and partially 2-colorable graphs, and give stronger bi-criteria approximation guarantees for these family of instances

    Approximating the Regular Graphic TSP in near linear time

    Get PDF
    We present a randomized approximation algorithm for computing traveling salesperson tours in undirected regular graphs. Given an nn-vertex, kk-regular graph, the algorithm computes a tour of length at most (1+7lnkO(1))n\left(1+\frac{7}{\ln k-O(1)}\right)n, with high probability, in O(nklogk)O(nk \log k) time. This improves upon a recent result by Vishnoi (\cite{Vishnoi12}, FOCS 2012) for the same problem, in terms of both approximation factor, and running time. The key ingredient of our algorithm is a technique that uses edge-coloring algorithms to sample a cycle cover with O(n/logk)O(n/\log k) cycles with high probability, in near linear time. Additionally, we also give a deterministic 32+O(1k)\frac{3}{2}+O\left(\frac{1}{\sqrt{k}}\right) factor approximation algorithm running in time O(nk)O(nk).Comment: 12 page

    The Edge Group Coloring Problem with Applications to Multicast Switching

    Get PDF
    This paper introduces a natural generalization of the classical edge coloring problem in graphs that provides a useful abstraction for two well-known problems in multicast switching. We show that the problem is NP-hard and evaluate the performance of several approximation algorithms, both analytically and experimentally. We find that for random χ\chi-colorable graphs, the number of colors used by the best algorithms falls within a small constant factor of χ\chi, where the constant factor is mainly a function of the ratio of the number of outputs to inputs. When this ratio is less than 10, the best algorithms produces solutions that use fewer than 2χ2\chi colors. In addition, one of the algorithms studied finds high quality approximate solutions for any graph with high probability, where the probability of a low quality solution is a function only of the random choices made by the algorithm

    Fast Distributed Approximation for Max-Cut

    Full text link
    Finding a maximum cut is a fundamental task in many computational settings. Surprisingly, it has been insufficiently studied in the classic distributed settings, where vertices communicate by synchronously sending messages to their neighbors according to the underlying graph, known as the LOCAL\mathcal{LOCAL} or CONGEST\mathcal{CONGEST} models. We amend this by obtaining almost optimal algorithms for Max-Cut on a wide class of graphs in these models. In particular, for any ϵ>0\epsilon > 0, we develop randomized approximation algorithms achieving a ratio of (1ϵ)(1-\epsilon) to the optimum for Max-Cut on bipartite graphs in the CONGEST\mathcal{CONGEST} model, and on general graphs in the LOCAL\mathcal{LOCAL} model. We further present efficient deterministic algorithms, including a 1/31/3-approximation for Max-Dicut in our models, thus improving the best known (randomized) ratio of 1/41/4. Our algorithms make non-trivial use of the greedy approach of Buchbinder et al. (SIAM Journal on Computing, 2015) for maximizing an unconstrained (non-monotone) submodular function, which may be of independent interest
    corecore