589 research outputs found

    Singing voice correction using canonical time warping

    Full text link
    Expressive singing voice correction is an appealing but challenging problem. A robust time-warping algorithm which synchronizes two singing recordings can provide a promising solution. We thereby propose to address the problem by canonical time warping (CTW) which aligns amateur singing recordings to professional ones. A new pitch contour is generated given the alignment information, and a pitch-corrected singing is synthesized back through the vocoder. The objective evaluation shows that CTW is robust against pitch-shifting and time-stretching effects, and the subjective test demonstrates that CTW prevails the other methods including DTW and the commercial auto-tuning software. Finally, we demonstrate the applicability of the proposed method in a practical, real-world scenario

    Mandarin Singing Voice Synthesis Based on Harmonic Plus Noise Model and Singing Expression Analysis

    Full text link
    The purpose of this study is to investigate how humans interpret musical scores expressively, and then design machines that sing like humans. We consider six factors that have a strong influence on the expression of human singing. The factors are related to the acoustic, phonetic, and musical features of a real singing signal. Given real singing voices recorded following the MIDI scores and lyrics, our analysis module can extract the expression parameters from the real singing signals semi-automatically. The expression parameters are used to control the singing voice synthesis (SVS) system for Mandarin Chinese, which is based on the harmonic plus noise model (HNM). The results of perceptual experiments show that integrating the expression factors into the SVS system yields a notable improvement in perceptual naturalness, clearness, and expressiveness. By one-to-one mapping of the real singing signal and expression controls to the synthesizer, our SVS system can simulate the interpretation of a real singer with the timbre of a speaker.Comment: 8 pages, technical repor

    Taking Jazz Singers Seriously: Gender, Race, and Vocal Improvisation

    Get PDF
    Senior Project submitted to The Division of Arts of Bard College

    Effect of the glottal source and the vocal tract on the partials amplitude of vibrato in male voices

    Get PDF
    In this paper the production of vocal vibrato is investigated. The most relevant features of the acoustical vibrato signal, frequency and amplitude variations of the partials, will be related to the voice production features, glottal source GS and vocal tract response VTR . Unlike previous related works, in this approach, the effect on the amplitude variations of the partials of each one of the above-mentioned voice production features will be identified in recordings of natural singing voice. Moreover, we will take special care of the reliability of the measurements, and, to this aim, a noninteractive vibrato production model will be also proposed in order to describe the vibrato production process and, more importantly, validate the measurements carried out in natural vibrato. Based on this study, it will be shown that during a few vibrato cycles, the glottal pulse characteristics, as well as the VTR, do not significantly change, and only the fundamental frequency of the GS varies. As a result, the pitch variations can be attributed to the GS, and these variations, along with the vocal tract filtering effect, will result in frequency and amplitude variations of the acoustic signal partials.This work was supported in part by the Ministerio de Educación y Ciencia under Grant FPU, AP2000-4674. The Gobierno de Navarra and the Universidad Pública de Navarra are gratefully acknowledged for financial support
    corecore