320 research outputs found

    Using a Second Order Sigma-Delta Control to Improve the Performance of Metal-Oxide Gas Sensors

    Get PDF
    Controls of surface potential have been proposed to accelerate the time response of MOX gas sensors. These controls use temperature modulations and a feedback loop based on first-order sigma-delta modulators to keep constant the surface potential. Changes in the surrounding gases, therefore, must be compensated by average temperature produced by the control loop, which is the new output signal. The purpose of this paper is to present a second order sigma-delta control of the surface potential for gas sensors. With this new control strategy, it is possible to obtain a second order zero of the quantization noise in the output signal. This provides a less noisy control of the surface potential, while at the same time some undesired effects of first order modulators, such as the presence of plateaus, are avoided. Experiments proving these performance improvements are presented using a gas sensor made of tungsten oxide nanowires. Plateau avoidance and second order noise shaping is shown with ethanol measurements.Postprint (author's final draft

    Digital Compensation for MASH Sigma Delta Modulators using H-infinity Approach

    Get PDF
    [[abstract]]This paper presents a new digital compensation scheme for MASH (cascaded) sigma-delta modulators (SigmaDeltaMs) with 1-bit quantizer. The compensation scheme is designed based on the well-known internal model principle and H-infinity control theory. For numerical illustration, we concentrate on a MASH 2-1 SigmaDeltaM architecture for low and middle frequencies applications. Comparisons between the proposed SigmaDeltaM and the conventional one are made, which reveal that the proposed SigmaDeltaM outperforms the conventional one in several aspects - signal-to-noise ratio (SNR), dynamic range (DR), output swing.[[conferencetype]]åé[[conferencedate]]20081012~20081015[[iscallforpapers]]Y[[conferencelocation]]Singapor

    Sigma-Delta control of charge trapping in heterogeneous devices

    Get PDF
    Dielectric charging represents a major reliability issue in a variety of semiconductor devices. The accumulation of charge in dielectric layers of a device often alters its performance, affecting its circuital features and even reducing its effective lifetime. Although several contributions have been made in order to mitigate the undesired effects of charge trapping on circuit performance, dielectric charge trapping still remains an open reliability issue in several applications. The research work underlying this Thesis mainly focuses on the design, analysis and experimental validation of control strategies to compensate dielectric charging in heterogeneous devices. These control methods are based on the application of specifically designed voltage waveforms that produce complementary effects on the charge dynamics. Using sigma-delta loops, these controls allow to set and maintain, within some limits, the net trapped charge in the dielectric to desired levels that can be changed with time. This allows mitigating long-term reliability issues such as capacitance-voltage (C-V) shifts in MOS and MIM capacitors. Additionally, the bit streams generated by the control loops provide real-time information on the evolution of the trapped charge. The proposed controls also allow compensating the effects of the charge trapping due to external disturbances such as radiation. This has been demonstrated experimentally with MOS capacitors subjected to various types of ionizing radiation (X-rays and gamma rays) while a charge control is being applied. This approach opens up the possibility of establishing techniques for active compensation of radiation-induced charge in MOS structures as well as a new strategy for radiation sensing. A modeling strategy to characterize the dynamics of the dielectric charge in MOS capacitors is also presented. The diffusive nature of the charge trapping phenomena allows their behavioral characterization using Diffusive Representation tools. The experiments carried out demonstrate a very good matching between the predictions of the model and the experimental results obtained. The time variations in the charge dynamics due to changes in the volatges applied and/or due to external disturbances have been also investigated and modeled. Moreover, the charge dynamics of MOS capacitors under sigma-delta control is analyzed using the tools of Sliding Mode Controllers for an infinite sampling frequency approximation. A phenomenological analytical model is obtained which allows to predict and analyze the sequence of control signals. This model has been successfully validated with experimental data. Finally, the above control strategies are extended to other devices such as eMIM capacitors and perovskite solar cells. Preliminary results including open loop and closed loop control experiments are presented. These results demonstrate that the application of the controls allows to set and stabilize both the C-V characteristic of an eMIM capacitor and the current-voltage characteristic (J-V) of a perovskite solar cell.La carga atrapada en dieléctricos suele implicar un problema importante de fiabilidad en muchos dispositivos semiconductores. La acumulación de dicha carga, normalmente provocada por las tensiones aplicadas durante el uso del dispositivo, suele alterar el rendimiento de éste con el tiempo, afectar sus prestaciones a nivel de circuital e, incluso, reducir su vida útil. Aunque durante años se han realizado muchos trabajos para mitigar sus efectos no deseados, sobre todo a nivel circuital, la carga atrapada en dieléctricos sigue siendo un problema abierto que frena la aplicabilidad práctica de algunos dispositivos. El trabajo de investigación realizado en esta Tesis se centra principalmente en el diseño, análisis y validación experimental de estrategias de control para compensar la carga atrapada en dieléctricos de diversos tipos de dispositivos, incluyendo condensadores MOS, condensadores MIM fabricados con nanotecnología y dispositivos basados en perovskitas. Los controles propuestos se basan en utilizar formas de onda de tensión, específicamente diseñadas, que producen efectos complementarios en la dinámica de la carga. Mediante el uso de lazos sigma-delta, estos controles permiten establecer y mantener, dentro de unos límites, la carga neta atrapada en el dieléctrico a valores prefijados, que pueden cambiarse con el tiempo. Esto permite mitigar problemas de fiabilidad a largo plazo como por ejemplo las derivas de la curva capacidad-tensión (C-V) en condensadores MOS y MIM. Adicionalmente, las tramas de bits generadas por los lazos de control proporcionan información en tiempo real sobre la evolución de la carga. Los controles propuestos permiten también compensar los efectos de la carga atrapada en dieléctricos debida a perturbaciones externas como la radiación. Esto se ha demostrado experimentalmente con condesadores MOS sometidos a diversos tipos de radiación ionizante (rayos X y gamma) mientras se les aplicaba un control de carga. Este resultado abre la posibilidad tanto de establecer técnicas de compensación activa de carga inducida por radiación en estructuras MOS, como una nueva estrategia de sensado de radiación. Se presenta también una estrategia de modelado para caracterizar la dinámica de la carga dieléctrica en condensadores MOS. La naturaleza difusiva de los fenómenos de captura y eliminación de carga en dieléctricos permite caracterizar dichos fenómenos empleando herramientas de Representación Difusiva. Los experimentos realizados demuestran una muy buena correspondencia entre las predicciones del modelo y los resultados experimentales obtenidos. Se muestra también como las variaciones temporales de los modelos son debidas a cambios en las formas de onda de actuación del dispositivo y/o a perturbaciones externas. Además, la dinámica de carga en condensadores MOS bajo control sigma-delta se analiza utilizando herramientas de control en modo deslizante (SMC), considerando la aproximación de frecuencia de muestreo infinita. Con ello se obtiene un modelo analítico simplificado que permite predecir y analizar con éxito la secuencia de señales de control. Este modelo se ha validado satisfactoriamente con datos experimentales. Finalmente, las estrategias de control anteriores se han extendido a otros dispositivos susceptibles de sufrir efectos de carga atrapada que pueden afectar su fiabilidad. Así, se han llevado a cabo experimentos preliminares cuyos resultados demuestran que la aplicación de controles de carga permite controlar y estabilizar la característica C-V de un condensador eMIM y la característica corriente-tensión (J-V) de una célula solar basada en perovskitas.Postprint (published version

    Sigma-Delta control of charge trapping in heterogeneous devices

    Get PDF
    Dielectric charging represents a major reliability issue in a variety of semiconductor devices. The accumulation of charge in dielectric layers of a device often alters its performance, affecting its circuital features and even reducing its effective lifetime. Although several contributions have been made in order to mitigate the undesired effects of charge trapping on circuit performance, dielectric charge trapping still remains an open reliability issue in several applications. The research work underlying this Thesis mainly focuses on the design, analysis and experimental validation of control strategies to compensate dielectric charging in heterogeneous devices. These control methods are based on the application of specifically designed voltage waveforms that produce complementary effects on the charge dynamics. Using sigma-delta loops, these controls allow to set and maintain, within some limits, the net trapped charge in the dielectric to desired levels that can be changed with time. This allows mitigating long-term reliability issues such as capacitance-voltage (C-V) shifts in MOS and MIM capacitors. Additionally, the bit streams generated by the control loops provide real-time information on the evolution of the trapped charge. The proposed controls also allow compensating the effects of the charge trapping due to external disturbances such as radiation. This has been demonstrated experimentally with MOS capacitors subjected to various types of ionizing radiation (X-rays and gamma rays) while a charge control is being applied. This approach opens up the possibility of establishing techniques for active compensation of radiation-induced charge in MOS structures as well as a new strategy for radiation sensing. A modeling strategy to characterize the dynamics of the dielectric charge in MOS capacitors is also presented. The diffusive nature of the charge trapping phenomena allows their behavioral characterization using Diffusive Representation tools. The experiments carried out demonstrate a very good matching between the predictions of the model and the experimental results obtained. The time variations in the charge dynamics due to changes in the volatges applied and/or due to external disturbances have been also investigated and modeled. Moreover, the charge dynamics of MOS capacitors under sigma-delta control is analyzed using the tools of Sliding Mode Controllers for an infinite sampling frequency approximation. A phenomenological analytical model is obtained which allows to predict and analyze the sequence of control signals. This model has been successfully validated with experimental data. Finally, the above control strategies are extended to other devices such as eMIM capacitors and perovskite solar cells. Preliminary results including open loop and closed loop control experiments are presented. These results demonstrate that the application of the controls allows to set and stabilize both the C-V characteristic of an eMIM capacitor and the current-voltage characteristic (J-V) of a perovskite solar cell.La carga atrapada en dieléctricos suele implicar un problema importante de fiabilidad en muchos dispositivos semiconductores. La acumulación de dicha carga, normalmente provocada por las tensiones aplicadas durante el uso del dispositivo, suele alterar el rendimiento de éste con el tiempo, afectar sus prestaciones a nivel de circuital e, incluso, reducir su vida útil. Aunque durante años se han realizado muchos trabajos para mitigar sus efectos no deseados, sobre todo a nivel circuital, la carga atrapada en dieléctricos sigue siendo un problema abierto que frena la aplicabilidad práctica de algunos dispositivos. El trabajo de investigación realizado en esta Tesis se centra principalmente en el diseño, análisis y validación experimental de estrategias de control para compensar la carga atrapada en dieléctricos de diversos tipos de dispositivos, incluyendo condensadores MOS, condensadores MIM fabricados con nanotecnología y dispositivos basados en perovskitas. Los controles propuestos se basan en utilizar formas de onda de tensión, específicamente diseñadas, que producen efectos complementarios en la dinámica de la carga. Mediante el uso de lazos sigma-delta, estos controles permiten establecer y mantener, dentro de unos límites, la carga neta atrapada en el dieléctrico a valores prefijados, que pueden cambiarse con el tiempo. Esto permite mitigar problemas de fiabilidad a largo plazo como por ejemplo las derivas de la curva capacidad-tensión (C-V) en condensadores MOS y MIM. Adicionalmente, las tramas de bits generadas por los lazos de control proporcionan información en tiempo real sobre la evolución de la carga. Los controles propuestos permiten también compensar los efectos de la carga atrapada en dieléctricos debida a perturbaciones externas como la radiación. Esto se ha demostrado experimentalmente con condesadores MOS sometidos a diversos tipos de radiación ionizante (rayos X y gamma) mientras se les aplicaba un control de carga. Este resultado abre la posibilidad tanto de establecer técnicas de compensación activa de carga inducida por radiación en estructuras MOS, como una nueva estrategia de sensado de radiación. Se presenta también una estrategia de modelado para caracterizar la dinámica de la carga dieléctrica en condensadores MOS. La naturaleza difusiva de los fenómenos de captura y eliminación de carga en dieléctricos permite caracterizar dichos fenómenos empleando herramientas de Representación Difusiva. Los experimentos realizados demuestran una muy buena correspondencia entre las predicciones del modelo y los resultados experimentales obtenidos. Se muestra también como las variaciones temporales de los modelos son debidas a cambios en las formas de onda de actuación del dispositivo y/o a perturbaciones externas. Además, la dinámica de carga en condensadores MOS bajo control sigma-delta se analiza utilizando herramientas de control en modo deslizante (SMC), considerando la aproximación de frecuencia de muestreo infinita. Con ello se obtiene un modelo analítico simplificado que permite predecir y analizar con éxito la secuencia de señales de control. Este modelo se ha validado satisfactoriamente con datos experimentales. Finalmente, las estrategias de control anteriores se han extendido a otros dispositivos susceptibles de sufrir efectos de carga atrapada que pueden afectar su fiabilidad. Así, se han llevado a cabo experimentos preliminares cuyos resultados demuestran que la aplicación de controles de carga permite controlar y estabilizar la característica C-V de un condensador eMIM y la característica corriente-tensión (J-V) de una célula solar basada en perovskitas

    Identification and control of diffusive systems applied to charge trapping and thermal space sensors

    Get PDF
    The work underlying this Thesis, has contributed to the main study and characterization of diffusive systems. The research work has been focused on the analysis of two kind of systems. On the one hand, the dynamics of thermal anemometers has been deeply studied. These sensors detect the wind velocity by measuring the power dissipated of a heated element due to forced convection. The thermal dynamics of different sensor structures have been analyzed and modeled during the Thesis work. On the other hand, we have dealed with microelectromechanical systems (MEMS). The dynamics of charge trapped in the dielectric layer of these systems has also been studied. It is know, that this undesired effect has been associated to diffusion phenomena. In this Thesis a characterization method based on the technique of Diffusive Representation (DR), for linear and nonlinear time-varying diffusive systems, is presented. This technique allows to describe a system with an arbitrary order state-space model in the frequency domain. The changes in the dynamics of a system over time may come as a result of the own actuation over the device or as a result of an external disturbance. In the wind sensor case, the time variation of the model comes from the wind, which is an external disturbance, whereas in the MEMS case, changes in the actuation voltage generate time-variation in the model. The state-space models obtained from DR characterization have proven to be able to reproduce and predict the behaviour of the devices under arbitrary excitations. Specifically, in the case of wind sensors, the thermal dynamics of these sensors, under constant temperature operation, has been predicted for different wind velocities using Sliding Mode Controllers. As it has been observed, these controllers also help to understand how the time response of a system, under closed loop, can be accelerated beyond the natural limit imposed by its own thermal circuit if the thermal filter associated to the sensor structure has only one significative time constant. The experimental corroboration of the thermal analysis is presented with various prototypes of wind sensors for Mars atmosphere. On one side, the time-varying thermal dynamics models of two different prototypes of a spherical 3-dimensional wind sensor, developed by the Micro and Nano Technologies group of the UPC, have been obtained. On the other side, the engineering model prototype of the wind sensor of the REMS (Rover Environmental Monitoring Station) instrument that it is currently on board the Curiosity rover in Mars has been characterized. For the characterization of the dynamics of the parasitic charge trapped in the dielectric layer of a MEMS device, the experimental validation is obtained through quasi-differential capacitance measurements of a two-parallel plate structure contactless capacitive MEMS.El trabajo que subyace a esta Tesis, ha contribuido principalmente al estudio y la caracterización de los sistemas difusivos. El trabajo de investigación se ha centrado en el análisis de dos tipos de sistemas. Por un lado, la dinámica de los anemómetros térmicos ha sido estudiada en profundidad. Estos sensores detectan la velocidad del viento a través de la medida de la potencia disipada en un elemento caliente debido a la convección forzada. Durante el trabajo de esta Tesis, se ha analizado y modelado la dinámica térmica de diferentes sensores . Por otro lado, se han tratado también los sistemas microelectromecánicos (MEMS). Se ha estudiado la dinámica de la carga atrapada en la capa dieléctrica de estos sistemas. Este fenómeno lento e indeseado está asociado a fenómenos de difusión. En esta Tesis se presenta un método de caracterización basado en la técnica de Representación Difusa (DR), para sistemas difusivos lineales y no lineales que varían en el tiempo. Esta técnica permite describir un sistema con un modelo de variables de estado de orden arbitrario en el dominio frecuencial. Los cambios en la dinámica de un sistema a lo largo del tiempo pueden ser debidos a la propia actuación sobre el dispositivo o como resultado de una perturbación externa. En el caso del sensor de viento, la variación de tiempo del modelo proviene de la propia variación del viento, la cual es una perturbación externa, mientras que en el caso de los dispositivos MEMS, los cambios en la tensión de actuación generan variaciones en el tiempo en el modelo. Los modelos de variables de estado obtenidos a partir de la caracterización con Representación Difusiva tienen la capacidad de reproducir y predecir el comportamiento de dichos dispositivos ante excitaciones arbitrarias. En concreto, en el caso de los sensores de viento, la dinámica térmica de estos sensores, operando a temperatura constante, se ha predicho para diferentes velocidades de viento, usando la teoría de los Sliding Mode Controllers (Controladores de Modo Deslizante). Tal y como se ha observado, estos controladores ayudan también a comprender cómo la respuesta temporal de un sistema, en lazo cerrado, puede acelerarse más allá del límite natural impuesto por su propio circuito térmico si el filtro térmico asociado a la estructura del sensor tiene solo una constante de tiempo significativa. La corroboración experimental del análisis térmico se presenta con varios prototipos de sensores de viento para la atmósfera de Marte. Por un lado, se han obtenido los modelos de la dinámica térmica variable en el tiempo de dos prototipos diferentes de un sensor de viento 3D esférico, desarrollado por el grupo de Micro y Nano Tecnologías de la UPC. Por otro lado, se ha caracterizado el prototipo de modelo de ingeniería del sensor de viento del instrumento REMS (Rover Environmental Monitoring Station) que está actualmente abordo del rover Curiosity en Marte. Para la caracterización de la dinámica de la carga atrapada en la capa dieléctrica de un dispositivo MEMS, la validación experimental se ha obtenido a través de medidas cuasi-diferenciales de la capacidad de un dispositivo MEMS con estructura de dos placas paralelas

    Control of chaos in nonlinear circuits and systems

    Get PDF
    Nonlinear circuits and systems, such as electronic circuits (Chapter 5), power converters (Chapter 6), human brains (Chapter 7), phase lock loops (Chapter 8), sigma delta modulators (Chapter 9), etc, are found almost everywhere. Understanding nonlinear behaviours as well as control of these circuits and systems are important for real practical engineering applications. Control theories for linear circuits and systems are well developed and almost complete. However, different nonlinear circuits and systems could exhibit very different behaviours. Hence, it is difficult to unify a general control theory for general nonlinear circuits and systems. Up to now, control theories for nonlinear circuits and systems are still very limited. The objective of this book is to review the state of the art chaos control methods for some common nonlinear circuits and systems, such as those listed in the above, and stimulate further research and development in chaos control for nonlinear circuits and systems. This book consists of three parts. The first part of the book consists of reviews on general chaos control methods. In particular, a time-delayed approach written by H. Huang and G. Feng is reviewed in Chapter 1. A master slave synchronization problem for chaotic Lur’e systems is considered. A delay independent and delay dependent synchronization criteria are derived based on the H performance. The design of the time delayed feedback controller can be accomplished by means of the feasibility of linear matrix inequalities. In Chapter 2, a fuzzy model based approach written by H.K. Lam and F.H.F. Leung is reviewed. The synchronization of chaotic systems subject to parameter uncertainties is considered. A chaotic system is first represented by the fuzzy model. A switching controller is then employed to synchronize the systems. The stability conditions in terms of linear matrix inequalities are derived based on the Lyapunov stability theory. The tracking performance and parameter design of the controller are formulated as a generalized eigenvalue minimization problem which is solved numerically via some convex programming techniques. In Chapter 3, a sliding mode control approach written by Y. Feng and X. Yu is reviewed. Three kinds of sliding mode control methods, traditional sliding mode control, terminal sliding mode control and non-singular terminal sliding mode control, are employed for the control of a chaotic system to realize two different control objectives, namely to force the system states to converge to zero or to track desired trajectories. Observer based chaos synchronizations for chaotic systems with single nonlinearity and multi-nonlinearities are also presented. In Chapter 4, an optimal control approach written by C.Z. Wu, C.M. Liu, K.L. Teo and Q.X. Shao is reviewed. Systems with nonparametric regression with jump points are considered. The rough locations of all the possible jump points are identified using existing kernel methods. A smooth spline function is used to approximate each segment of the regression function. A time scaling transformation is derived so as to map the undecided jump points to fixed points. The approximation problem is formulated as an optimization problem and solved via existing optimization tools. The second part of the book consists of reviews on general chaos controls for continuous-time systems. In particular, chaos controls for Chua’s circuits written by L.A.B. Tôrres, L.A. Aguirre, R.M. Palhares and E.M.A.M. Mendes are discussed in Chapter 5. An inductorless Chua’s circuit realization is presented, as well as some practical issues, such as data analysis, mathematical modelling and dynamical characterization, are discussed. The tradeoff among the control objective, the control energy and the model complexity is derived. In Chapter 6, chaos controls for pulse width modulation current mode single phase H-bridge inverters written by B. Robert, M. Feki and H.H.C. Iu are discussed. A time delayed feedback controller is used in conjunction with the proportional controller in its simple form as well as in its extended form to stabilize the desired periodic orbit for larger values of the proportional controller gain. This method is very robust and easy to implement. In Chapter 7, chaos controls for epileptiform bursting in the brain written by M.W. Slutzky, P. Cvitanovic and D.J. Mogul are discussed. Chaos analysis and chaos control algorithms for manipulating the seizure like behaviour in a brain slice model are discussed. The techniques provide a nonlinear control pathway for terminating or potentially preventing epileptic seizures in the whole brain. The third part of the book consists of reviews on general chaos controls for discrete-time systems. In particular, chaos controls for phase lock loops written by A.M. Harb and B.A. Harb are discussed in Chapter 8. A nonlinear controller based on the theory of backstepping is designed so that the phase lock loops will not be out of lock. Also, the phase lock loops will not exhibit Hopf bifurcation and chaotic behaviours. In Chapter 9, chaos controls for sigma delta modulators written by B.W.K. Ling, C.Y.F. Ho and J.D. Reiss are discussed. A fuzzy impulsive control approach is employed for the control of the sigma delta modulators. The local stability criterion and the condition for the occurrence of limit cycle behaviours are derived. Based on the derived conditions, a fuzzy impulsive control law is formulated so that the occurrence of the limit cycle behaviours, the effect of the audio clicks and the distance between the state vectors and an invariant set are minimized supposing that the invariant set is nonempty. The state vectors can be bounded within any arbitrary nonempty region no matter what the input step size, the initial condition and the filter parameters are. The editors are much indebted to the editor of the World Scientific Series on Nonlinear Science, Prof. Leon Chua, and to Senior Editor Miss Lakshmi Narayan for their help and congenial processing of the edition

    Identification and control of diffusive systems applied to charge trapping and thermal space sensors

    Get PDF
    The work underlying this Thesis, has contributed to the main study and characterization of diffusive systems. The research work has been focused on the analysis of two kind of systems. On the one hand, the dynamics of thermal anemometers has been deeply studied. These sensors detect the wind velocity by measuring the power dissipated of a heated element due to forced convection. The thermal dynamics of different sensor structures have been analyzed and modeled during the Thesis work. On the other hand, we have dealed with microelectromechanical systems (MEMS). The dynamics of charge trapped in the dielectric layer of these systems has also been studied. It is know, that this undesired effect has been associated to diffusion phenomena. In this Thesis a characterization method based on the technique of Diffusive Representation (DR), for linear and nonlinear time-varying diffusive systems, is presented. This technique allows to describe a system with an arbitrary order state-space model in the frequency domain. The changes in the dynamics of a system over time may come as a result of the own actuation over the device or as a result of an external disturbance. In the wind sensor case, the time variation of the model comes from the wind, which is an external disturbance, whereas in the MEMS case, changes in the actuation voltage generate time-variation in the model. The state-space models obtained from DR characterization have proven to be able to reproduce and predict the behaviour of the devices under arbitrary excitations. Specifically, in the case of wind sensors, the thermal dynamics of these sensors, under constant temperature operation, has been predicted for different wind velocities using Sliding Mode Controllers. As it has been observed, these controllers also help to understand how the time response of a system, under closed loop, can be accelerated beyond the natural limit imposed by its own thermal circuit if the thermal filter associated to the sensor structure has only one significative time constant. The experimental corroboration of the thermal analysis is presented with various prototypes of wind sensors for Mars atmosphere. On one side, the time-varying thermal dynamics models of two different prototypes of a spherical 3-dimensional wind sensor, developed by the Micro and Nano Technologies group of the UPC, have been obtained. On the other side, the engineering model prototype of the wind sensor of the REMS (Rover Environmental Monitoring Station) instrument that it is currently on board the Curiosity rover in Mars has been characterized. For the characterization of the dynamics of the parasitic charge trapped in the dielectric layer of a MEMS device, the experimental validation is obtained through quasi-differential capacitance measurements of a two-parallel plate structure contactless capacitive MEMS.El trabajo que subyace a esta Tesis, ha contribuido principalmente al estudio y la caracterización de los sistemas difusivos. El trabajo de investigación se ha centrado en el análisis de dos tipos de sistemas. Por un lado, la dinámica de los anemómetros térmicos ha sido estudiada en profundidad. Estos sensores detectan la velocidad del viento a través de la medida de la potencia disipada en un elemento caliente debido a la convección forzada. Durante el trabajo de esta Tesis, se ha analizado y modelado la dinámica térmica de diferentes sensores . Por otro lado, se han tratado también los sistemas microelectromecánicos (MEMS). Se ha estudiado la dinámica de la carga atrapada en la capa dieléctrica de estos sistemas. Este fenómeno lento e indeseado está asociado a fenómenos de difusión. En esta Tesis se presenta un método de caracterización basado en la técnica de Representación Difusa (DR), para sistemas difusivos lineales y no lineales que varían en el tiempo. Esta técnica permite describir un sistema con un modelo de variables de estado de orden arbitrario en el dominio frecuencial. Los cambios en la dinámica de un sistema a lo largo del tiempo pueden ser debidos a la propia actuación sobre el dispositivo o como resultado de una perturbación externa. En el caso del sensor de viento, la variación de tiempo del modelo proviene de la propia variación del viento, la cual es una perturbación externa, mientras que en el caso de los dispositivos MEMS, los cambios en la tensión de actuación generan variaciones en el tiempo en el modelo. Los modelos de variables de estado obtenidos a partir de la caracterización con Representación Difusiva tienen la capacidad de reproducir y predecir el comportamiento de dichos dispositivos ante excitaciones arbitrarias. En concreto, en el caso de los sensores de viento, la dinámica térmica de estos sensores, operando a temperatura constante, se ha predicho para diferentes velocidades de viento, usando la teoría de los Sliding Mode Controllers (Controladores de Modo Deslizante). Tal y como se ha observado, estos controladores ayudan también a comprender cómo la respuesta temporal de un sistema, en lazo cerrado, puede acelerarse más allá del límite natural impuesto por su propio circuito térmico si el filtro térmico asociado a la estructura del sensor tiene solo una constante de tiempo significativa. La corroboración experimental del análisis térmico se presenta con varios prototipos de sensores de viento para la atmósfera de Marte. Por un lado, se han obtenido los modelos de la dinámica térmica variable en el tiempo de dos prototipos diferentes de un sensor de viento 3D esférico, desarrollado por el grupo de Micro y Nano Tecnologías de la UPC. Por otro lado, se ha caracterizado el prototipo de modelo de ingeniería del sensor de viento del instrumento REMS (Rover Environmental Monitoring Station) que está actualmente abordo del rover Curiosity en Marte. Para la caracterización de la dinámica de la carga atrapada en la capa dieléctrica de un dispositivo MEMS, la validación experimental se ha obtenido a través de medidas cuasi-diferenciales de la capacidad de un dispositivo MEMS con estructura de dos placas paralelas.Postprint (published version

    Dielectric charge control in contactless capacitive MEMS

    Get PDF
    Micro-Electro-Mechanical Systems, or MEMS, has been a continuously growing technology during the last decades. Since 1959, when the theoretical physicist Richard Feynman introduced the concept of nanotechnology in his famous talk "There is plenty of room at the bottom", several companies and researchers have been involved in the permanent improving of these devices. MEMS is the technology of microscopic devices, particularly those with moving parts and it is widely used in both sensing and actuating applications. In this regard, a large number of microsensors for almost every possible sensing modality have been de- veloped, including pressure, inertial forces, chemical species, magnetic fields, etc. Accordingly to this, MEMS can be found today in many real applications across multiple markets, such as automotive, consumer, defense, industrial, medical, telecommunications, etc. The main advantages for the use of MEMS in front of other classical technologies are small size, low cost, high isolation and low power consumption. However, there are still some reliability issues hindering the use of MEMS devices in some applications. Mechanical and electrical phenomena involving such micro-scale structures have been matter of study during the last years, being dielectric charging the most important in the case of electrostatically actuated MEMS. The charge accumulated in dielectric layers has a significant impact on the behavior of such devices by altering the electric field distribution in the structure and causing some undesirable effects such as shifts of the Capacitance-Voltage (C-V) characteristic and even permanent stiction of movable mechanical parts, so that the device becomes permanently damaged. Thus, detection and control of dielectric charge are of capital importance due to their strong influence on device performance and reliability. In order to face this challenge, in this Thesis dielectric charge phenomena have been studied under bipolar voltage actuation and several different control strategies have been proposed. These control schemes have demonstrated to be useful to set the dielectric charge to a desired level for contactless MEMS such as varactors, electrostatic positioners or microphone MEMS. Furthermore, these methods have provided the first active compensation of charge trapping generated by ionizing radiation in any device. The first approach to control trapped charge proposed consisted in alternating voltage polarity, depending on the sampled value of the device capacitance. This method demonstrated the feasibility of compensating horizontal shifts of the C-V by charge injection while paving the way for the second control proposed. For the implementation of this second method, which was later patented worldwide, two voltage waveforms were introduced for both monitoring and controlling the net trapping charge. This method resulted in a true sigma-delta modulator capable of providing control for both signs of net trapped charge. Finally, two further methods were proposed which improved the performance of the second control. The first one implemented a second-order sigma-delta control and the last one introduced some modifications in the feedback loop to allow continuous capacitance control while dielectric charge is being also controlled.Los sistemas micro-electromecánicos, conocidos como MEMS, constituyen una alternativa tecnologíca que ha experimentado un gran crecimiento en las últimas décadas. Desde que en 1959, cuando el físico teórico Richard Feynman introdujo el concepto de nanotecnología en su famosa conferencia "There is plenty of room at the bottom", multitud de investigadores y empresas se han dedicado al desarrollo y la mejora permanente de este tipo de dispositivos. Las principales ventajas del uso de MEMS frente otras tecnologías más clásicas radican en su menor tamaño, su reducido coste y su bajo consumo. En tanto MEMS se refiere habitualmente a tecnologías micrométricaa de dispositivos que presentan partes móbiles, éstos son extensamente utilizados en aplicaciones tanto de detección como de actuación. Así, se ha desarrollado un gran número de microsensores MEMS, cubriendo prácticamente todas las modalidades de detección, incluyendo presión, fuerzas inerciales, sustancias químicas, campos magnéticos, etc. Hoy en día, se utilizan dispositivos MEMS en aplicaciones de mercados como automoción, industria, medicina, telecomunicaciones, defensa, etc. Sin embargo, existen aún problemas de fiabilidad que limitan el uso de los MEMS en determinadas aplicaciones. Los fenómenos mecánicos y eléctricos que se producen en estas estructuras micrométricas han sido objeto de estudio durante los últimos años, siendo el más destacado el producido por la carga eléctrica acumulada en las capas dieléctricas que forman parte de los MEMS actuados electrostáticamente. Esta acumulación de carga altera la distribución de campo eléctrico en el dispositivo, afectando el comportamiento y las prestaciones de éste y causando efectos no deseados, como desplazamientos de la característica Capacidad-Tensión (C-V) e incluso colapsos indeseados de las partes móviles, que pueden conllevar daños permanentes. En consecuencia, la detección y el control de la carga acumulada en dieléctricos de MEMS son temas de vital importancia, debido a su enorme impacto en el rendimiento y la fiabilidad de los dispositivos. Esta Tesis aborda este desafío, primero estudiando y modelizando la dinámica de la acumulación de carga dieléctrica cuando el dispositivo se actúa con tensiones bipolares, y, a continuación, proponiendo y evaluando estrategias de control de dicha carga. Se han demostrado estrategias que, por primera vez, permiten mantener un nivel de carga prefijado en dispositivos MEMS que operan en estado abierto, como varactores, posicionadores electrostáticos o micrófonos MEMS. Además, estos controles han permitido realizar la primera demostración de compensación activa de carga generada por radiaciones ionizantes en dispositivos MEMS. El primer control propuesto consistía en alternar la polaridad de la tensión de actuación, dependiendo del valor de capacidad del dispositivo medido periódicamente. Con el uso de este método se demostró la factibilidad de compensar desplazamientos horizontales de la C-V mediante la inyección de carga debida a la actuación y se abrió el camino para la concepción de un segundo método mejorado. Para la implementación de este segundo método, que fue patentado más tarde, se propusieron dos formas de onda para actuar el dispositivo, que permiten tanto la monitorización como el control de la carga atrapada. Este método se basa en la modulación sigma-delta de primer orden y permite, por primera vez, controlar la carga neta atrapada en el dieléctrico. Finalmente, se han propuesto dos métodos de control más, con el objetivo de introducir mejoras sobre los ya comentados. El primero de ellos implementa una modulación sigma-delta de segundo orden, mientras que en el segundo se introducen algunas modificaciones en el lazo de ralimentación que permiten el control de la capacidad del dispositivo al mismo tiempo que el control de la carga neta atrapada
    corecore