63,907 research outputs found

    Analysis and design of a distributed k-winners-take-all model

    Get PDF
    The -winners-take-all (WTA) problem is to find the largest inputs from inputs. In this paper, we design and propose a novel distributed WTA model, for which no central unit is needed to realize the computation of the winners. As a result, the proposed model has the general advantages of distributed models over centralized ones, such as better robustness to faults of agents. The global asymptotic convergence of the proposed distributed model is proven. Besides, two numerical examples on networks of agents with static inputs and time-varying inputs are presented to validate the performance of the proposed model

    Social Welfare Maximization Auction in Edge Computing Resource Allocation for Mobile Blockchain

    Full text link
    Blockchain, an emerging decentralized security system, has been applied in many applications, such as bitcoin, smart grid, and Internet-of-Things. However, running the mining process may cost too much energy consumption and computing resource usage on handheld devices, which restricts the use of blockchain in mobile environments. In this paper, we consider deploying edge computing service to support the mobile blockchain. We propose an auction-based edge computing resource market of the edge computing service provider. Since there is competition among miners, the allocative externalities (positive and negative) are taken into account in the model. In our auction mechanism, we maximize the social welfare while guaranteeing the truthfulness, individual rationality and computational efficiency. Based on blockchain mining experiment results, we define a hash power function that characterizes the probability of successfully mining a block. Through extensive simulations, we evaluate the performance of our auction mechanism which shows that our edge computing resources market model can efficiently solve the social welfare maximization problem for the edge computing service provider

    Competition through selective inhibitory synchrony

    Full text link
    Models of cortical neuronal circuits commonly depend on inhibitory feedback to control gain, provide signal normalization, and to selectively amplify signals using winner-take-all (WTA) dynamics. Such models generally assume that excitatory and inhibitory neurons are able to interact easily, because their axons and dendrites are co-localized in the same small volume. However, quantitative neuroanatomical studies of the dimensions of axonal and dendritic trees of neurons in the neocortex show that this co-localization assumption is not valid. In this paper we describe a simple modification to the WTA circuit design that permits the effects of distributed inhibitory neurons to be coupled through synchronization, and so allows a single WTA to be distributed widely in cortical space, well beyond the arborization of any single inhibitory neuron, and even across different cortical areas. We prove by non-linear contraction analysis, and demonstrate by simulation that distributed WTA sub-systems combined by such inhibitory synchrony are inherently stable. We show analytically that synchronization is substantially faster than winner selection. This circuit mechanism allows networks of independent WTAs to fully or partially compete with each other.Comment: in press at Neural computation; 4 figure

    Heuristics in Multi-Winner Approval Voting

    Full text link
    In many real world situations, collective decisions are made using voting. Moreover, scenarios such as committee or board elections require voting rules that return multiple winners. In multi-winner approval voting (AV), an agent may vote for as many candidates as they wish. Winners are chosen by tallying up the votes and choosing the top-kk candidates receiving the most votes. An agent may manipulate the vote to achieve a better outcome by voting in a way that does not reflect their true preferences. In complex and uncertain situations, agents may use heuristics to strategize, instead of incurring the additional effort required to compute the manipulation which most favors them. In this paper, we examine voting behavior in multi-winner approval voting scenarios with complete information. We show that people generally manipulate their vote to obtain a better outcome, but often do not identify the optimal manipulation. Instead, voters tend to prioritize the candidates with the highest utilities. Using simulations, we demonstrate the effectiveness of these heuristics in situations where agents only have access to partial information
    • …
    corecore