3,032 research outputs found

    Self-Adaptive Autoreclosing Scheme usingI Artificial Neural Network and Taguchi's Methodology in Extra High Voltage Transmission Systems

    Get PDF
    Conventional automatic reclosures blindly operate for permanent, semi-permanent or transient faults on an overhead line without any discrimination after allowing some estimated time delay. Reclosing onto a line with uncleared fault often results in, not only loss of stability and synchronism but also damage to system equipments, as a consequence. The thesis focuses on methods to discriminate a temporary fault from a permanent one, and accurately determine fault extinctiontime in an extra high voltage (EHV) transmission line in a bid to develop a self-adaptive automatic reclosing scheme. The fault identification prior to reclosing is based on optimized artificial neural network associated with three training algorithms, namely, Standard Error Back-Propagation, Levenberg Marquardt and Resilient Back-Propagation algorithms. In addition, Taguchi's methodology is employed in optimizing the parameters of each algorithm used for training, and in deciding the number of hidden neurons of the neural network. To get data for training the neural networks, a range of faults are simulated on two case studies -single machine -infinite bus model (connected via EHVtransmission line) and a benchmark IEEE 9-bus electric system. The spectra of the fault voltage data are analyzed using Fast Fourier Transform, and it has been found out that the DC, the fundamental and the first four harmonic components can sufficiently and uniquely represent the condition of each fault. In each case study, the neural network is fed with the normalized energies of the DC, the fundamental and the first four harmonics of the faulted voltages, effectively trained with a set of training data, and verified with a dedicated testing data obtained from fault voltage signals generated on IEEE 14-bus electric system model. The results show the efficacy of the developed adaptive automatic reclosing scheme. This effectively means it is possible to avoid reclosing before any fault on a transmission line (be it temporary or permanent) is totally cleared

    Asset Management Framework for the United States Army Corps of Engineers Lock and Dam Electrical Equipment

    Get PDF
    The focus of this thesis is to design an efficient and effective preventative maintenance program for the electrical equipment that the United States Army Corps of Engineers (USACE) operates at the locks and dams. This thesis presents the concept of asset management and designs a framework to manage the electrical assets at USACE. The methodology was tested, and the results validated the framework proposed in this thesis. The framework was tested on two separate projects and the results were the same optimized strategies, which shows that the framework is robust and can be implemented into each project and can give an effective preventive maintenance program for the electrical components. The significance of this work is to perform asset management on the electrical equipment on the lock and dams USACE operates and owns, which has not been implemented before. While corrective and preventative maintenance programs have been compared previously for electrical equipment, most analyses have been conducted on production plants. The result of conducting this study is a recommended framework for conducting asset management at USACE locks and dams

    Operating strategies to preserve the adequacy of power systems circuit breakers

    Get PDF
    The objective of the proposed research is to quantify the limits of overstressed and aging circuit breakers in terms of probability of failure and to provide guidelines to determine network reconfigurations, generator commitment, and economic dispatch strategies that account for these limits. The proposed temporary power system operating strategies address circuit breaker adequacy issues and allow overstressed breakers to be operated longer and more reliably until they are replaced with adequate equipment. The expansion of electric networks with new power sources (nuclear plants, distributed generation) results in increased short-circuit or fault currents levels. As fault currents increase, they will eventually exceed circuit breaker ratings. Circuit breakers exposed to fault currents in excess of their ratings are said to be overstressed, underrated, or inadequate. Insufficient ratings expose overstressed breakers to increased failure probabilities. Extensive common-mode outages caused by circuit breaker failures reduce the reliability of power systems. To durably avoid outages and system unreliability, overstressed breakers must eventually be replaced. Large-scale replacements of overstressed breakers cannot be completed in a short time because of budgetary limits, capital improvement schedules, and manufacturer-imposed constraints. Meanwhile, to preserve the ability of old and overstressed breakers to safely interrupt faults, short-circuit currents must be kept within the limits imposed by the ratings and the age of these breakers by using the substation reconfiguration and generator commitment strategies described in this study. The immediate benefit of the above-mentioned operating strategies is a reduction of the failure probability of overstressed breakers obtained by avoiding the interruption of currents in excess of breaker ratings. Other benefits include (i) increased network reliability, (ii) restored operating margins with respect to existing equipment, and (iii) prioritized equipment upgrades that enhance the long-term planning of power systems.Ph.D.Committee Chair: Meliopoulos, A. P. Sakis; Committee Member: Divan, Deepakraj M.; Committee Member: Harley, Ronald G.; Committee Member: Johnson, Ellis L.; Committee Member: Taylor, David G

    Mod-2 wind turbine system concept and preliminary design report. Volume 1: Executive summary

    Get PDF
    The configuration development of the MOD-2 wind turbine system is presented. The MOD-2 is design optimized for commercial production rates which, in multi-unit installations, will be integrated into a utility power grid and achieve a cost of electricity at less than 4 cents per kilowatt hour

    Discussion on Electric Power Supply Systems for All Electric Aircraft

    Get PDF
    The electric power supply system is one of the most important research areas within sustainable and energy-efcient aviation for more- and especially all electric aircraft. This paper discusses the history in electrication, current trends with a broad overview of research activities, state of the art of electrication and an initial proposal for a short-range aircraft. It gives an overviewof the mission prole, electrical sources, approaches for the electrical distribution system and the required electrical loads. Current research aspects and questions are discussed, including voltage levels, semiconductor technology, topologies and reliability. Because of the importance for safety possible circuit breakers for the proposed concept are also presented and compared, leading to a initial proposal. Additionally, a very broad review of literature and a state of the art discussion of the wiring harness is given, showing that this topic comes with a high number of aspects and requirements. Finally, the conclusion sums up the most important results and gives an outlook on important future research topics

    Risk Based Maintenance Optimization using Probabilistic Maintenance Quantification Models of Circuit Breaker

    Get PDF
    New maintenance techniques for circuit breakers are studied in this dissertation by proposing a probabilistic maintenance model and a new methodology to assess circuit breaker condition utilizing its control circuit data. A risk-based decision approach is proposed at system level making use of the proposed new methodology, for optimizing the maintenance schedules and allocation of resources. This dissertation is focused on developing optimal maintenance strategies for circuit breakers, both at component and system level. A probabilistic maintenance model is proposed using similar approach recently introduced for power transformers. Probabilistic models give better insight into the interplay among monitoring techniques, failure modes and maintenance techniques of the component. The model is based on the concept of representing the component life time by several deterioration stages. Inspection and maintenance is introduced at each stage and model parameters are defined. A sensitivity analysis is carried to understand the importance of model parameters in obtaining optimal maintenance strategies. The analysis covers the effect of inspection rate calculated for each stage and its impact on failure probability, inspection cost, maintenance cost and failure cost. This maintenance model is best suited for long-term maintenance planning. All simulations are carried in MATLAB and how the analysis results may be used to achieve optimal maintenance schedules is discussed. A new methodology is proposed to convert data from the control circuit of a breaker into condition of the breaker by defining several performance indices for breaker assemblies. Control circuit signal timings are extracted and a probability distribution is fitted to each timing parameter. Performance indices for various assemblies such as, trip coil, close coil, auxiliary contacts etc. are defined based on the probability distributions. These indices are updated using Bayesian approach as the new data arrives. This process can be made practical by approximating the Bayesian approach calculating the indices on-line. The quantification of maintenance is achieved by computing the indices after a maintenance action and comparing with those of previously estimated ones. A risk-based decision approach to maintenance planning is proposed based on the new methodology developed for maintenance quantification. A list of events is identified for the test system under consideration, and event probability, event consequence, and hence the risk associated with each event is computed. Optimal maintenance decisions are taken based on the computed risk levels for each event. Two case studies are presented to evaluate the performance of the proposed new methodology for maintenance quantification. The risk-based decision approach is tested on IEEE Reliability Test System. All simulations are carried in MATLAB and the discussions of results are provided

    Linear electric drives for constructional purposes

    Get PDF
    The paper discusses designing, modeling and application of electric drives with linear induction motors for constructional purposes: high voltage line fault localizing and shunting system of power supply for site, application of thyristors to shunt phase fault, horizontal transport systems with linear electric drives of constructional equipment for transportation of materials, and vertical transport systems with linear electric drives of constructional materials, review of design methods of special linear induction drives, transient responces of linear induction drive
    corecore