4 research outputs found

    A self-learning intersection control system for connected and automated vehicles

    Get PDF
    This study proposes a Decentralized Sparse Coordination Learning System (DSCLS) based on Deep Reinforcement Learning (DRL) to control intersections under the Connected and Automated Vehicles (CAVs) environment. In this approach, roadway sections are divided into small areas; vehicles try to reserve their desired area ahead of time, based on having a common desired area with other CAVs; the vehicles would be in an independent or coordinated state. Individual CAVs are set accountable for decision-making at each step in both coordinated and independent states. In the training process, CAVs learn to minimize the overall delay at the intersection. Due to the chain impact of taking random actions in the training course, the trained model can deal with unprecedented volume circumstances, the main challenge in intersection management. Application of the model to a single-lane intersection with no turning movement as a proof-of-concept test reveals noticeable improvements in traffic measures compared to three other intersection control systems. A Spring Mass Damper (SMD) model is developed to control platooning behavior of CAVs. In the SMD model, each vehicle is assumed as a mass, coupled with its preceding vehicle with a spring and a damper. The spring constant and damper coefficient control the interaction between vehicles. Limitations on communication range and the number of vehicles in each platoon are applied in this model, and the SMD model controls intra-platoon and inter-platoon interactions. The simulation result for a regular highway section reveals that the proposed platooning algorithm increases the maximum throughput by 29% and 63% under 50% and 100% market penetration rate of CAVs. A merging section with different volume combinations on the main section and merging section and different market penetration rates of CAVs is also modeled to test inter-platoon spacing performance in accommodating merging vehicles. Noticeable travel time reduction is observed in both mainline and merging lanes and under all volume combinations in 80% and higher MPR of CAVs. For a more reliable assessment of the DSCLS, the model is applied to a more realistic intersection, including three approaching lanes in each direction and turning movements. The proposed algorithm decreases delay by 58%, 19%, and 13% in moderate, high, and extreme volume regimes, improving travel time accordingly. Comparison of safety measures reveals 28% improvement in Post Encroachment Time (PET) in the extreme volume regime and minor improvements in high and moderate volume regimes. Due to the limited acceleration and deceleration rates, the proposed model does not show a better performance in environmental measures, including fuel consumption and CO2 emission, compared to the conventional control systems. However, the DSCLS noticeably outperforms the other pixel-reservation counterpart control system, with limited acceleration and deceleration rates. The application of the model to a corridor of four interactions shows the same trends in traffic, safety, and environmental measures as the single intersection experiment. An automated intersection control system for platooning CAVs is developed by combining the two proposed models, which remarkably improves traffic and safety measures, specifically in extreme volume regimes compared to the regular DSCLS model

    Transit Priority

    Get PDF
    69A3551947136, #79070-16 #79070-17To establish an efficient way of improving the service quality of the public transportation system, this research seeks the optimal vehicle scheduling at a multi-conflict area considering heterogeneous vehicle headways and weighted by vehicle occupancies to minimize the total travel time delay cost while giving priority to transits with higher occupancy. A mixed-integer programming (MIP) model is proposed to solve the exact optimal solution to this problem and a customized branch-and-bound algorithm is designed to improve computational efficiency. A set of numerical experiments in various scenarios are tested to demonstrate the feasibility and effectiveness of the proposed model and algorithm. The comparison results show that coordination of vehicles with individual-vehicle-based control can significantly increase the capacity of the conflict area and reduce the delay of transits compared to existing well-known control strategies (e.g., stop signs and signals)

    Development and evaluation of cooperative intersection management algorithm under connected vehicles environment

    Get PDF
    Recent technological advancements in the automotive and transportation industry established a firm foundation for development and implementation of various automated and connected vehicle (C/AV) solutions around the globe. Wireless communication technologies such as the dedicated short-range communication (DSRC) protocol are enabling instantaneous information exchange between vehicles and infrastructure. Such information exchange produces tremendous benefits with the possibility to automate conventional traffic streams and enhance existing signal control strategies. While many promising studies in the area of signal control under connected vehicle (CV) environment have been introduced, they mainly offer solutions designed to operate a single isolated intersection or they require high technology penetration rates to operate in a safe and efficient manner. Applications designed to operate on a signalized corridor with imperfect market penetration rates of connected vehicle technology represent a bridge between conventional traffic control paradigm and fully automated corridors of the future. Assuming utilization of the connected vehicle environment and vehicle to infrastructure (V2I) technology, all vehicular and signal-related parameters are known and can be shared with the control agent to control automated vehicles while improving the mobility of the signalized corridor. This dissertation research introduces an intersection management strategy for a corridor with automated vehicles utilizing vehicular trajectory-driven optimization method. The Trajectory-driven Optimization for Automated Driving (TOAD) provides an optimal trajectory for automated vehicles while maintaining safe and uninterrupted movement of general traffic, consisting of regular unequipped vehicles. Signal status parameters such as cycle length and splits are continuously captured. At the same time, vehicles share their position information with the control agent. Both inputs are then used by the control algorithm to provide optimal trajectories for automated vehicles, resulting in the reduction of vehicle delay along the signalized corridor with fixed-time signal control. To determine the most efficient trajectory for automated vehicles, an evolutionary-based optimization is utilized. Influence of the prevailing traffic conditions is incorporated into a control algorithm using conventional data collection methods such as loop detectors, Bluetooth or Wi-Fi sensors to collect vehicle counts, travel time on corridor segments, and spot speed. Moreover, a short-term, artificial intelligence prediction model is developed to achieve reasonable deployment of data collection devices and provide accurate vehicle delay predictions producing realistic and highly-efficient longitudinal vehicle trajectories. The concept evaluation through microsimulation reveals significant mobility improvements compared to contemporary corridor management approach. The results for selected test-bed locations on signalized arterials in New Jersey reveals up to 19.5 % reduction in overall corridor travel time depending on different market penetration and lane configuration scenario. It is also discovered that operational scenarios with a possibility of utilizing reserved lanes for movement of automated vehicles further increases the effectiveness of the proposed algorithm. In addition, the proposed control algorithm is feasible under imperfect C/AV market penetrations showing mobility improvements even with low market penetration rates

    An Optimization Approach for Energy Efficient Coordination Control of Vehicles in Merging Highways

    Get PDF
    Environmental concerns along with stronger governmental regulations regarding automotive fuel-economy and greenhouse-gas emissions are contributing to the push for development of more sustainable transportation technologies. Furthermore, the widespread use of the automobile gives rise to other issues such as traffic congestion and increasing traffic accidents. Consequently, two main goals of new technologies are the reduction of vehicle fuel consumption and emissions and the reduction of traffic congestion. While an extensive list of published work addresses the problem of fuel consumption reduction by optimizing the vehicle powertrain operations, particularly in the case of hybrid electric vehicles (HEV), approaches like eco-driving and traffic coordination have been studied more recently as alternative methods that can, in addition, address the problem of traffic congestion and traffic accidents reduction. This dissertation builds on some of those approaches, with particular emphasis on autonomous vehicle coordination control. In this direction, the objective is to derive an optimization approach for energy efficient and safe coordination control of vehicles in merging highways. Most of the current optimization-based centralized approaches to this problem are solved numerically, at the expense of a high computational load which limits their potential for real-time implementation. In addition, closed-form solutions, which are desired to facilitate traffic analysis and the development of approaches to address interconnected merging/intersection points and achieve further traffic improvements at the road-network level, are very limited in the literature. In this dissertation, through the application of the Pontryagin’s minimum principle, a closed-form solution is obtained which allows the implementation of a real-time centralized optimal control for fleets of vehicles. The results of applying the proposed framework show that the system can reduce the fuel consumption by up to 50% and the travel time by an average of 6.9% with respect to a scenario with not coordination strategy. By integrating the traffic coordination scheme with in-vehicle energy management, a two level optimization system is achieved which allows assessing the benefits of integrating hybrid electric vehicles into the road network. Regarding in-vehicle energy optimization, four methods are developed to improve the tuning process of the equivalent consumption optimization strategy (ECMS). First, two model predictive control (MPC)-based strategies are implemented and the results show improvements in the efficiency obtained with the standard ECMS implementation. On the other hand, the research efforts focus in performing analysis of the engine and electric motor operating points which can lead to the optimal tuning of the ECMS with reduced iterations. Two approaches are evaluated and even though the results in fuel economy are slightly worse than those for the standard ECMS, they show potential to significantly reduce the tuning time of the ECMS. Additionally, the benefits of having less aggressive driving profiles on different powertrain technologies such as conventional, plug-in hybrid and electric vehicles are studied
    corecore