107 research outputs found

    Analysis and evaluation of adaptive LDPC AL-FEC codes for content download services

    Full text link
    This paper proposes the use of adaptive low density parity check (LDPC) application layer-forward error correction (AL-FEC) codes for content download services over erasure channels. In adaptive LDPC codes, clients inform the content download server of the losses they are experiencing. Using this information, the server makes forward error correction (FEC) parity symbols available to the client at an optimum code rate. This paper presents an analytical model of the proposed adaptive LDPC codes. The model is validated through measurements realized with an application prototype. In addition, results show the performance of these codes in different scenarios, compared to the performance of nonadaptive AL-FEC, optimum LDPC AL-FEC codes, and an almost ideal rateless code. Adaptive LDPC AL-FEC codes achieve download times similar to almost ideal rateless codes with less coding complexity, at the expense of an interaction channel between server and clients.De Fez Lava, I.; Fraile Gil, F.; Belda Ortega, R.; Guerri Cebollada, JC. (2012). Analysis and evaluation of adaptive LDPC AL-FEC codes for content download services. IEEE Transactions on Multimedia. 60(3):641-650. doi:10.1109/TMM.2012.2190392S64165060

    A personalized system for scalable distribution of multimedia content in multicast wireless networks

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-014-2139-3This paper presents a novel architecture for scalable multimedia content delivery over wireless networks. The architecture takes into account both the user preferences and context in order to provide personalized contents to each user. In this way, third-party applications filter the most appropriate contents for each client in each situation. One of the key characteristics of the proposal is the scalability, which is provided, apart from the use of filtering techniques, through the transmission in multicast networks. In this sense, content delivery is carried out by means of the FLUTE (File Delivery over Unidirectional Transport) protocol, which provides reliability in unidirectional environments through different mechanisms such as AL-FEC (Application Layer Forward Error Correction) codes, used in this paper. Another key characteristic is the context-awareness and personalization of content delivery, which is provided by means of context information, user profiles, and adaptation. The system proposed is validated through several empirical studies. Specifically, the paper presents evaluations of two types that collect objective and subjective measures. The first evaluate the efficiency of the transmission protocol, analyzing how the use of appropriate transmission parameters reduces the download time (and thus increasing the Quality of Experience), which can be minimized by using caching techniques. On the other hand, the subjective measures present a study about the user experience after testing the application and analyze the accuracy of the filtering process/strategy. Results show that using AL-FEC mechanisms produces download times until four times lower than when no protection is used. Also, results prove that there is a code rate that minimizes the download time depending on the losses and that, in general, code rates 0.7 and 0.9 provide good download times for a wide range of losses. On the other hand, subjective measures indicate a high user satisfaction (more than 80 %) and a relevant degree of accuracy of the content adaption.This work is supported in part by the Ministerio de Economia y Competitividad of the Government of Spain under project COMINN (IPT-2012-0883-430000) and by the project PAID/2012/313 from the PAID-05-12 program of the Vicerrectorado de Investigacion of the Universitat Politecnica de Valencia.De Fez Lava, I.; Gil Pascual, M.; Fons Cors, JJ.; Guerri Cebollada, JC.; Pelechano Ferragud, V. (2014). A personalized system for scalable distribution of multimedia content in multicast wireless networks. Multimedia Tools and Applications. 1-27. https://doi.org/10.1007/s11042-014-2139-3S127AdAdge (2013) A majority of U.S. mobile users are now smartphone users. Available at: http://adage.com/article/digital/a-majority-u-s-mobile-users-smartphone-users/241717 . Accessed November 2013Adomavicius G, Tuzhilin E (2005) Toward the next generation of recommender Systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering 17:734–749Adomavicius G, Tuzhilin A (2010) Context-aware recommender systems. Recommender Systems Handbook (Chapter 7): 217–253Androjena, Jena Android Porting (2013). Available at: https://code.google.com/p/androjena . Accessed December 2013Anind KD (2001) Understanding and Using Context. Personal Ubiquitous Comput 5:4–7Assad M, Carmichael DJ, Kay J, Kummerfeld B (2007) PersonisAD: distributed, active, scrutable model framework for context-aware services. Proc. of Pervasive Computing, Toronto, Canada:55–72Bai H, Atiquzzaman M (2003) Error modeling schemes for fading channels in wireless communications: a survey. IEEE Communications Surveys and Tutorials 5(2):2–9Baldauf M, Dustdar S, Rosenberg F (2007) A survey on context-aware systems. Int. J. AdHoc and Ubiquitous Computing, Springer-Verlag 2:263–277Barquero D, Bria A (2007) Forward Error Correction file delivery in DVB-H. Proc. of IEEE Vehicular Technology Conference (VTC), Dublin, Ireland:2951–2955Bright A, Kay J, Ler D, Ngo K, Niu W, Nuguid A (2005) Adaptively recommending museum tours. Proc. of the UbiComp Workshop on Smart Environments and their Applications to Cultural Heritage, Tokyo, Japan:29–32Chatfield C, Carmichael D, Hexel R, Kay J, Kummerfeld B (2005) Personalisation in intelligent environments: managing the information flow. Proc. of the OZCHI Computer-human interaction, Canberra, Australia:1–10Chen YFR, Jana R, Stern D, Wei B, Yang M, Sun H, Dyaberi J (2010) Zebroid: using IPTV data to support STB-assisted VoD content delivery. Multimedia System Journal 16(3):199–214Chen G, Kotz D (2000) A survey on context-aware mobile computing research. Technical Report TR2000-381, Dartmouth Computer ScienceCommunity Research and Development Information Service (CORDIS) – Seventh Framework Programme (FP7). Available at: http://cordis.europa.eu/fp7/home_en.html . Accesed October 2013de Fez I, Fraile F, Belda R, Guerri JC (2011) Performance evaluation of AL-FEC LDPC codes for push content applications in wireless unidirectional environments. Multimedia Tools and Applications 60(3):669–688de Fez I, Fraile F, Belda R, Guerri JC (2012) Analysis and evaluation of adaptive LDPC AL-FEC codes for content download services. IEEE Transactions on Multimedia 14(3):641–650de Fez I, Fraile F, Guerri JC (2013) Effect of the FDT transmission frequency for an optimum content delivery using the FLUTE protocol. Computer Communications 36(12):1298–1309de Fez I, Guerri JC (2014) An adaptive mechanism for optimal content download in wireless networks. IEEE Transactions on Multimedia 16(4):1140–1155Du R, Safavi-Naini R, Susilo W (2003) Web filtering using text classification (2003). Proc. of the Int Conf on Networks (ICON), Sydney, Australia:325–330ETSI TS 102 034 (2008), Transport of MPEG-2 TS Based DVB Services over IP based Networks (and associated XML), v1.4.1, available online: www.etsi.org/deliver/etsi_ts/102000_102099/102034/01.04.01_60/ts_102034v010401p.pdfETSI TS 102 472 (2009), Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content Delivery Protocols, v1.3.1, available online: www.etsi.org/deliver/etsi_ts/102400_102499/102472/01.03.01_60/ts_102472v010301p.pdfETSI TS 126 346 (2013), Universal Mobile Telecommunications System (UMTS); LTE; Multimedia Broadcast/Multicast Service (MBMS); Protocols and codecs (release 10), v11.3.0, available online: www.etsi.org/deliver/etsi_ts/126300_126399/126346/11.03.00_60/ts_126346v110300p.pdfFelfernig A, Jeran M, Ninaus G, Reinfrank F, Reiterer S (2013) Toward the next generation of recommender systems: applications and research challenges. Multimedia Services in Intelligent Environments 24 (Chapter 5): 81–98Fraile F, de Fez I, Guerri JC (2009) Modela-TV: service personalization and business model management for mobile TV. Proc. of 7th European Interactive TV Conference (EuroITV), Leuven, Belgium:1–6Fraile F, de Fez I, Guerri JC (2014) Evaluation of background push content download services to mobile devices over DVB networks. IEEE Transactions on Broadcasting 60(1):1–15Gallager RG (1962) Low density parity check codes. IRE Transactions on Information Theory 8(1):21–28Gil M, Giner P, Pelechano V (2012) Personalization for unobtrusive service interaction. Personal Ubiquitous Comput 16(5):543–561Guillen J, Miranda J, Berrocal J, Garcia-Alonso J, Murillo J, Canal C (2014) People as a service: a mobile-centric model for providing collective sociological profiles. IEEE Software 31(2):48–53Hrvoje J, Stockhammer T, Xu W, Abdel Samad W (2006) Efficient video-on-demand services over mobile datacast channels. Journal of Zhejiang University 7(5):873–884Hsieh CC, Lin CH, Chang WT (2009) Design and implementation of the interactive multimedia broadcasting services in DVB-H. IEEE Transactions on Consumer Electronics 55(4):1779–1787Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. SpringerKorpipaa P, Malm EJ, Rantakokko T, Kyllonen V, Kela J, Mantyjarvi J, Hakkila J, Kansala I (2006) Customizing user interaction in smart phones. IEEE Pervasive Computing 5:82–90Kuppusamy KS, Aghila G (2012) A personalized web page content filtering model based on segmentation. Int Journal of Information Sciences and Techniques (IJIST) 2(1):41–51Kutscher D, Greifenberg J, Loos K (2007) Scalable DTN distribution over uni-directional links. Proc. of the SIGCOMM workshop on networked systems in developing regions (NSDR), Kyoto, Japan: article no. 6Lewis JR (1995) Ibm computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int J Hum Comput Interact 7(1):57–78Liang L, Cruichkshank H, Sun Z, Kulatunga C, Fairhurst G (2010) The integration of TESLA and FLUTE over satellite networks. Proc. of the IEEE Global Telecommunications Conference (Globecom), Miami, FL, USA:1–6Lohmar T, Huschke J (2009) Radio resource optimization for MBMS file transmissions. Proc. of the IEEE Int Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Bilbao, Spain:1–7Neumann C, Roca V, Walsh R (2005) Large scale content distribution protocols. ACM Computer Communication Review 35(5):85–92Paila T, Walsh R, Luby M, Roca V, Lehtonen R (2012) FLUTE – File Delivery Over Unidirectional Transport. IETF RFC 6726Paolini E, Varrella M, Chiani M, Matuz B, Liva G (2008) Low-complexity LDPC codes with near-optimum performance over the BEC. Proc. Adv Satellite Mobile Systems (ASMS), Bologna, Italy:274–282Papastergiou G, Psaras I, Tsaoussidis V (2009) Deep-space transport protocol: a novel transport scheme for space DTNs. Computer Communications 32(16):1757–1767Peltotalo J, Harju J, Saukko M, Väätämöinen L, Bouazizi I, Curcio I (2008) Personal mobile broadcasting based on the 3GPP MBMS System. Proc. of MoMM, Linz, Austria:156–162Peltotalo J, Peltotalo S, Harju J, Walsh R (2007) Performance analysis of a file delivery system based on the FLUTE protocol. Int Journal of Communication Systems 20(6):633–659Podlipnig S, Böszörmenyi L (2003) A survey of web cache replacement strategies. ACM Computing Surveys 35(4):374–398Roca V, Neumann C, Furodet D (2008) Low density parity check (LDPC) staircase and triangle forward error correction (FEC) schemes. IETF RFC 5170Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software engineering. Empir Softw Eng 14(2):131–164Schiller JH, Voisard A (2004) Location-based services. Kaufmann, MorganSerral E, Gil M, Valderas P, Pelechano V (2013) Automating unobtrusive personalized services in ambient media environments. Multimedia Tools and Applications, Springer US, available online, doi: 10.1007/s11042-013-1634-2Serral E, Valderas P, Pelechano V (2010) Towards the model driven development of context-aware pervasive systems. Pervasive and Mobile Computing 6(2):254–280Streefkerk JW, van Esch-Bussemakers MP, Neerincx MA (2006) Designing personal attentive user interfaces in the mobile public safety domain. Comput Hum Behav 22:749–770Valtonen M, Vainio AM, Vanhala J (2009) Proactive and adaptive fuzzy profile control for mobile phones. Proc. of the IEEE Int Conf on Pervasive Computing and Communications (PerCom), Galveston, Texas, USA:1–3van Woensel W, Gil M, Casteleyn S, Serral E, Pelechano V (2012) Adapting the obtrusiveness of service interactions in dynamically discovered environments. Proc. of MobiQuitous, Beijing, China:250–262W3C (2012), OWL 2Web Ontology Language Document Overview, Recommendation 11. Available at: http://www.w3.org/TR/owl2-overview. Accesed: November 2013Weld DS, Anderson C, Domingos P, Etzioni O, Gajos K, Lau T, Wolf S (2003) Automatically personalizing user interfaces. Proc. of the Int Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico:1613–1619Xu J, Hu Q, Lee W, Lee DL (2004) Performance evaluation of an optimal cache replacement policy for wireless data dissemination. IEEE Transactions on Knowledge and Data Engineering 16(1):125–139Yetgin Z, Çelik T (2012) Efficient progressive downloading over multimedia broadcast multicast service. Computer Networks 56(2):533–547Zheng Q, Zhu P, Wang Y, Xu M (2010) EPSP: Enhancing network protocol with social-aware plane. Proc. of IEEE/ACM Int Conference on Green Computing and Communications (GreenCom) and Int Conference on Cyber, Ohysical and Social Computing (CPSCom), Hangzhou, China:578–58

    An Adaptive Mechanism for Optimal Content Download in Wireless Networks

    Full text link
    This paper presents an adaptive mechanism for improving the content download in wireless environments. The solution is based on the use of the file delivery over unidirectional transport (FLUTE) protocol in multicast networks, which reduce considerably the bandwidth when there are many users interested in the same contents. Specifically, the system proposed reduces the average download time of clients within the coverage area, thus improving the Quality of Experience. To that extent, clients send periodically feedback messages to the server reporting the losses they are experiencing. With this information, the server decides which is the optimum application layer forward error correction (AL-FEC) code rate that minimizes the average download time, taking into account the channel bandwidth, and starts sending data with that code rate. The system proposed is evaluated in various scenarios, considering different distributions of losses in the coverage area. Results show that the adaptive solution proposed is very suitable in wireless networks with limited bandwidth.This work is supported in part by the Ministerio de Economia y Competitividad of the Government of Spain under project COMINN (IPT-2012-0883-430000). The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Wenwu Zhu.De Fez Lava, I.; Guerri Cebollada, JC. (2014). An Adaptive Mechanism for Optimal Content Download in Wireless Networks. IEEE Transactions on Multimedia. 16(4):1140-1155. https://doi.org/10.1109/TMM.2014.2307155S1140115516

    Effect of the FDT transmission frequency for an optimum content delivery using the FLUTE protocol

    Full text link
    File Delivery over Unidirectional Transport (FLUTE) is the standard protocol used in unidirectional environments to provide reliability in the transmission of multimedia files. The key element of this protocol is the use of the File Delivery Table (FDT), which is the in-band mechanism used by FLUTE to inform clients about the files (and their characteristics) transmitted within a FLUTE session. Clients need to receive the FDT in order to start downloading files. Thus, the delivery of FDT packets and the proper configuration of their parameters have a great impact on the Quality of Experience perceived by the users of FLUTE content download services. This paper presents a complete analysis about how the FDT transmission frequency affects the download time of files. Moreover, results show which are the optimum values that minimize this download time. An appropriate configuration of the FDT transmission frequency as well as the use of AL-FEC mechanisms provides an optimum content delivery using the FLUTE protocol.This work is supported in part by the Ministerio de Economia y Competitividad of the Government of Spain under project COMINN (IPT-2012-0883-430000) and by the PAID-05-12 program of the Universitat Politecnica de Valencia.De Fez Lava, I.; Fraile Gil, F.; Guerri Cebollada, JC. (2013). Effect of the FDT transmission frequency for an optimum content delivery using the FLUTE protocol. Computer Communications. 36(12):1298-1309. https://doi.org/10.1016/j.comcom.2013.04.008S12981309361

    Evaluation of background push content download services to mobile devices over DVB networks

    Full text link
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes a multicast content download service based on the use of residual network capacity to push multimedia content to available local storage in personal multimedia devices. The service under study is based on the FLUTE protocol. Specifically, FLUTE packets fill the spare capacity in the IP tunnels reserved for the primary streaming service (opportunistic insertion). The paper also evaluates the use of AL-FEC parity to overcome transmission errors,object multiplexing to send the most popular multimedia contents more frequently and cache management policies that consider user preferences in order to keep in storage the most useful items. The service has been evaluated through simulations and measurements performed with an application prototype based on the DVB-H standards. The results show that AL-FEC enables the use of residual capacity for background content download services. In turn, AL-FEC, as well as object multiplexing, improves the relation between the number of content items and the overall access time. Moreover, results show that high percentages of requests can be served from the local cache of the service, provided that it is possible to estimate the popularity of content items and the user preferences.This work was supported by the PAID-05-12 program of the UniversitatPolitecnica de Valencia.Fraile Gil, F.; De Fez Lava, I.; Guerri Cebollada, JC. (2014). Evaluation of background push content download services to mobile devices over DVB networks. IEEE Transactions on Broadcasting. 60(1):1-15. https://doi.org/10.1109/TBC.2013.2289639S11560

    Error and Congestion Resilient Video Streaming over Broadband Wireless

    Get PDF
    In this paper, error resilience is achieved by adaptive, application-layer rateless channel coding, which is used to protect H.264/Advanced Video Coding (AVC) codec data-partitioned videos. A packetization strategy is an effective tool to control error rates and, in the paper, source-coded data partitioning serves to allocate smaller packets to more important compressed video data. The scheme for doing this is applied to real-time streaming across a broadband wireless link. The advantages of rateless code rate adaptivity are then demonstrated in the paper. Because the data partitions of a video slice are each assigned to different network packets, in congestion-prone wireless networks the increased number of packets per slice and their size disparity may increase the packet loss rate from buffer overflows. As a form of congestion resilience, this paper recommends packet-size dependent scheduling as a relatively simple way of alleviating the buffer-overflow problem arising from data-partitioned packets. The paper also contributes an analysis of data partitioning and packet sizes as a prelude to considering scheduling regimes. The combination of adaptive channel coding and prioritized packetization for error resilience with packet-size dependent packet scheduling results in a robust streaming scheme specialized for broadband wireless and real-time streaming applications such as video conferencing, video telephony, and telemedicine

    A two-level Markov model for packet loss in UDP/IP-based real-time video applications targeting residential users

    Get PDF
    The packet loss characteristics of Internet paths that include residential broadband links are not well understood, and there are no good models for their behaviour. This compli- cates the design of real-time video applications targeting home users, since it is difficult to choose appropriate error correction and concealment algorithms without a good model for the types of loss observed. Using measurements of residential broadband networks in the UK and Finland, we show that existing models for packet loss, such as the Gilbert model and simple hidden Markov models, do not effectively model the loss patterns seen in this environment. We present a new two-level Markov model for packet loss that can more accurately describe the characteristics of these links, and quantify the effectiveness of this model. We demonstrate that our new packet loss model allows for improved application design, by using it to model the performance of forward error correction on such links

    DVB-NGH: the Next Generation of Digital Broadcast Services to Handheld Devices

    Full text link
    This paper reviews the main technical solutions adopted by the next-generation mobile broadcasting standard DVB-NGH, the handheld evolution of the second-generation digital terrestrial TV standard DVB-T2. The main new technical elements introduced with respect to DVB-T2 are: layered video coding with multiple physical layer pipes, time-frequency slicing, full support of an IP transport layer with a dedicated protocol stack, header compression mechanisms for both IP and MPEG-2 TS packets, new low-density parity check coding rates for the data path (down to 1/5), nonuniform constellations for 64 Quadrature Amplitude Modulation (QAM) and 256QAM, 4-D rotated constellations for Quadrature Phase Shift Keying (QPSK), improved time interleaving in terms of zapping time, end-to-end latency and memory consumption, improved physical layer signaling in terms of robustness, capacity and overhead, a novel distributed multiple input single output transmit diversity scheme for single-frequency networks (SFNs), and efficient provisioning of local content in SFNs. All these technological solutions, together with the high performance of DVB-T2, make DVB-NGH a real next-generation mobile multimedia broadcasting technology. In fact, DVB-NGH can be regarded the first third-generation broadcasting system because it allows for the possibility of using multiple input multiple output antenna schemes to overcome the Shannon limit of single antenna wireless communications. Furthermore, DVB-NGH also allows the deployment of an optional satellite component forming a hybrid terrestrial-satellite network topology to improve the coverage in rural areas where the installation of terrestrial networks could be uneconomical.Gómez Barquero, D.; Douillard, C.; Moss, P.; Mignone, V. (2014). DVB-NGH: the Next Generation of Digital Broadcast Services to Handheld Devices. IEEE Transactions on Broadcasting. 60(2):246-257. doi:10.1109/TBC.2014.2313073S24625760

    Forward Error Correcting Codes for 100 Gbit/s Optical Communication Systems

    Get PDF

    Towards Terabit Carrier Ethernet and Energy Efficient Optical Transport Networks

    Get PDF
    • …
    corecore