3 research outputs found

    Torsional stick-slip vibrations and multistability in drill-strings

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData accessibility: The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.The generalized lumped-parameter model of the drill-string system is studied in this paper to provide a fundamental understanding of the torsional stick-slip vibrations in downhole drilling. Our investigation focuses on analysing the cause of three coexisting states: bit sticking, stick-slip vibration, and constant rotation. A critical region of multistability is identified based on the lumped-parameter model, and the conditions for switching between these multiple stable states are discussed. Special attention is given to the bifurcation structure of the considered drill-string model, which is obtained via path-following methods for nonsmooth dynamical systems. The bifurcation scenario is compared to the case when a longer drill-string is considered, which amounts to drilling deeper. It is found that the main features of the bifurcation picture persist under variation of the drill-string length, with certain numerical differences regarding for instance the window of multistability.Engineering and Physical Sciences Research Council (EPSRC)National Natural Science Foundation of ChinaChina Scholarship Counci

    Analysis and control of stick-slip oscillations in drilling systems

    Get PDF
    This paper proposes feedback control strategies for the mitigation of torsional stick-slip oscillations in drilling systems using drag bits. Herein, we employ a model for the coupled axial-torsional drill-string dynamics in combination with a rate-independent bit-rock interaction law including both cutting and frictional effects. Using a singular perturbation and averaging approach, we show that the dynamics of this model generate an apparent velocity-weakening effect in the torque-on-bit, explaining the onset of torsional stick-slip vibrations. Based on this dynamic analysis, the (decoupled) torsional dynamics can be described by a delay-differential equation with a state-dependent delay. Using this model, we propose both state-and output-feedback control strategies for the mitigation of torsional stick-slip oscillations, where the latter strategy uses surface measurements only. The effectiveness of the proposed approaches is shown in a simulation study

    Analysis and control of stick-slip oscillations in drilling systems

    No full text
    \u3cp\u3eThis paper proposes feedback control strategies for the mitigation of torsional stick-slip oscillations in drilling systems using drag bits. Herein, we employ a model for the coupled axial-torsional drill-string dynamics in combination with a rate-independent bit-rock interaction law including both cutting and frictional effects. Using a singular perturbation and averaging approach, we show that the dynamics of this model generate an apparent velocity-weakening effect in the torque-on-bit, explaining the onset of torsional stick-slip vibrations. Based on this dynamic analysis, the (decoupled) torsional dynamics can be described by a delay-differential equation with a state-dependent delay. Using this model, we propose both state-and output-feedback control strategies for the mitigation of torsional stick-slip oscillations, where the latter strategy uses surface measurements only. The effectiveness of the proposed approaches is shown in a simulation study.\u3c/p\u3
    corecore