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a b s t r a c t 

The generalized lumped-parameter model of the drill-string system is studied in this pa- 

per to provide a fundamental understanding of the torsional stick-slip vibrations in down- 

hole drilling. Our investigation focuses on analysing the cause of three coexisting states: 

bit sticking, stick-slip vibration, and constant rotation. A critical region of multistability 

is identified based on the lumped-parameter model, and the conditions for switching be- 

tween these multiple stable states are discussed. Special attention is given to the bifurca- 

tion structure of the considered drill-string model, which is obtained via path-following 

methods for nonsmooth dynamical systems. The bifurcation scenario is compared to the 

case when a longer drill-string is considered, which amounts to drilling deeper. It is found 

that the main features of the bifurcation picture persist under variation of the drill-string 

length, with certain numerical differences regarding for instance the window of multista- 

bility. 

© 2019 The Authors. Published by Elsevier Inc. 
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1. Introduction 

The oil and gas energy sector provides non-renewable natural resources which have become crucial to everyday life.

The acquisition of these hydrocarbons is predominantly dependent on oil companies utilising the drilling process, and on

average, drilling operations account for approximately 40% of all expenses involved in the exploration and production [1] .

Therefore, it is highly desirable for these companies to keep this figure to a minimum, given the vast amount of investments

currently presiding in the oil and gas sector. To accomplish this, the equipment involved in drilling processes, for instance

oil well drill-strings as shown in Fig. 1 (a), should be optimised to keep operation costs and times low, while achieving high

rates of penetration. Along these lines, harmful vibrations, such as stick-slip, bit bounce and whirling (see Fig. 1 (b)) have

been identified as the main causes for high operation costs and significantly low penetration rates. Since these phenomena

can lead to catastrophic failures of the drilling rig, or at the very least degradation of the expensive components involved

in the drill-string, optimisation methods should be developed with the main motive of suppressing these phenomena, and
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Fig. 1. (Colour online) Schematics of (a) an oilwell drilling rig [7] and (b) lateral, torsional and axial vibrations encountered in drill-strings during operation, 

where ˙ φb is the angular velocity of the drill-bit and t is the time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as a result, keeping drilling expenses low. This problem has attracted much attention in the past years, see e.g. [2–11] . The

present work will study the torsional stick-slip vibrations of drill-strings using a generalized lumped-parameter model [9] ,

focusing on the presence of multistability, with special attention given to the coexistence of stable states related to stick-

slip, constant rotation and bit sticking. These types of responses are typically observed in real applications and one of our

main goals is to propose control strategies to avoid undesirable vibrations, such as stick-slip. For this reason, coupled axial-

torsional motions of the drill-strings associated with state-dependent delay, e.g. [12–15] , which may bring extra dynamics

to the drill-strings, will not be considered in this work. 

In order to develop control and optimisation strategies for drill-strings, a great deal of theoretical and experimen-

tal research surrounding drill-string dynamics have been carried out in the past years [4] . From the results reported in

[16–19] , it has been determined that the main cause for stick-slip phenomena are the frictional forces acting on the drill-bit

at the bit-rock interface. Furthermore, according to [16] , the negative damping in the frictional forces due to the bit-rock

interactions could be one of the causes of these harmful vibrations. Leine et al. [20] proposed a three degrees-of-freedom

drill-string model which can observe stick-slip and whirl vibrations simultaneously. Melakhessou et al. [21] studied the local

contact and the friction between the drill-string and casing, as well as the compressed bottom-hole-assembly in order to

understand the complex behaviour of the drill-string system. In [22] , reduced-order models of a drill-string system, which

allow for radial, bending and torsion motions of a flexible drill-string and stick-slip interactions between the drill-string and

the outer shell, were developed. Qualitative changes in system motion were studied numerically and experimentally with

respect to rotation speed and the friction coefficient between the drill-string and the outer shell. In order to gain a deeper

insight into the root cause of these vibrations, Kapitaniak et al. [7] developed an experimental drilling rig which was used

to mimic all major drill-string vibrations. The nonlinear characteristics of the drill-string were then modelled using finite

element methods and verified through experiments. 

In the work by Dunayevsky and Abbassian [23] , the authors studied the influence of using various drill-strings on the

stability of the drilling operation, in regards to undesired torsional vibrations. Additional parametric studies were carried

out by Kamel and Yigit [24] , who investigated the effects of varying operational drilling parameters. In their work, the main

conclusion was that when the axial feed rate during operation is increased, the rate of penetration and the applied weight-

on-bit (WOB) are also increased, which nevertheless results in axial and torsional stick-slip vibrations. Therefore, this study

suggests that lowering the WOB and the torque on bit could be used as control methods for suppressing stick-slip. Another

relevant observation in this work was that the stick-slip vibrations can be reduced by suitably modifying the speed of the

rotary table. A similar conclusion was obtained by Tang et al. [25] , where the effects of the speed of rotary table on stick-slip

were investigated. It was found that increasing the rotary table speed had effects on the period of the stick phase in stick-

slip vibrations. Navarro-López and coworkers [1,3] confirmed this effect, who in addition investigated the effect of varying

the control torque on the rotary table and the applied WOB on the stick-slip vibrations. 

Another issue that has been analysed in the past concerns parameter uncertainty in drilling applications. In [26] , Liu et al.

proposed the utilisation of a Kalman estimator to deal with unmeasured downhole parameters. The numerical simulations

showed that the proposed estimator was capable of identifying stick-slip vibrations and estimating downhole friction torque,

thus leading to a decrease in the occurrence of stick-slip. Liu [27] proposed a sliding-mode control method to suppress stick-

slip vibrations, assuming that the physical parameters of the drill-string were unknown. A robust output-feedback control

to eliminate stick-slip in a drill-string system was presented in [28] . The control system proved to have major advantages
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a b

Fig. 2. (a) Schematics of a drill-string and (b) the lumped-parameter model of the drill-string system [27] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

as it only requires surface measurements for operation. It can also effectively deal with unknown parameters regarding the

bit-rock interactions and deal with multiple torsional flexibility modes. 

The present work considers the lumped-parameter model of a drill-string that is capable of accounting for a variable

length, by taking or adding rotating disks, which mimics the action of changing the number of drill pipes during operation.

Our investigation concentrates on the torsional vibrations of the drill-string, and special attention is given to the multistabil-

ity of the model, where coexisting attractors are found. For this study, specialized numerical techniques based on numerical

continuation methods for nonsmooth dynamical systems, implemented via the computational platform COCO [29] , are used.

The drill-string model considered in the present work has followed closely the physical setting proposed and analyzed by

Navarro-López [1,3,30,31] . Her analysis has primarily focused on the study of friction-induced stick-slip vibrations, based

on a simplified torsional lumped-parameter model of an oilwell drill-string with multiple degrees of freedom. The start-

ing point is a system response with constant bit rotation, corresponding to an equilibrium solution of the system after a

suitable coordinate transformation. As, for example, the WOB increases, such equilibrium solution can be destabilized via a

Hopf bifurcation, after which torsional vibrations in the drill-string take place. These vibrations can increase in amplitude,

in such a way that at some point the drill-bit velocity can become zero. At this point, a grazing-sliding bifurcation takes

place, after which stick-slip phenomena can be observed. Up to this point Navarro-López’s work has provided great insight,

both via analytical methods and numerical techniques based on path-following methods for smooth dynamical systems. A

deeper understanding of the observed stick-slip vibrations can be achieved via the application of path-following techniques

for nonsmooth dynamical systems, as this allows us to carry out the numerical continuation of stick-slip solutions, a task

that cannot be performed via standard continuation methods. In this way, we are able to classify the system dynamics in de-

tail, when varying two main control parameters, that is, the control torque and the WOB. This classification is based on the

detection of discontinuity-induced bifurcations, such as grazing-sliding and boundary-equilibrium bifurcation, in connection

to classical bifurcations (Hopf bifurcation of equilibria and fold bifurcation of limit cycles). 

The rest of the paper is organized as follows. In Section 2 , the lumped-parameter model of the drill-string system is

introduced and discussed. The mathematical formulation of the drill-string system in COCO is studied in Section 3 . A detailed

bifurcation analysis of the system is carried out in Section 4 by considering the conditions for multistability, the variations

of WOB, drill-string length, and control torque. Finally, the paper finishes with some concluding remarks, given in Section 5 .
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2. Mathematical modelling of torsional motion of the drill-strings 

2.1. Mathematical modelling 

The generalized lumped-parameter model shown in Fig. 2 can be written in a single-input and multi-output form as

follows 

J �̈ + C ˙ � + K� + T = U, (1) 

where �(t) = [ φo , φ1 , φ2 , . . . , φn , φr , φb ] 
T ∈ R 

n +3 is a vector containing the angular positions of the discs, t is the time,

J = diag (J o , J p , J p , . . . , J p ︸ ︷︷ ︸ 
n 

, J r , J b ) ∈ R 

(n +3) ×(n +3) is the inertia matrix, C ∈ R 

(n +3) ×(n +3) is the torsional damping matrix given

by 

C = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

c p + c rt −c p 0 0 ... 0 0 0 0 

−c p 2 c p −c p 0 ... 0 0 0 0 

0 −c p 2 c p −c p ... 0 0 0 0 

... ... ... ... ... ... ... ... ... 

0 0 0 0 ... −c p c p + c r −c r 0 

0 0 0 0 ... 0 −c r c r + c b −c b 
0 0 0 0 ... 0 0 −c b c b + c rb 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

K ∈ R 

(n +3) ×(n +3) is the torsional stiffness matrix given by 

K = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

k p −k p 0 0 ... 0 0 0 0 

−k p 2 k p −k p 0 ... 0 0 0 0 

0 −k p 2 k p −k p ... 0 0 0 0 

... ... ... ... ... ... ... ... ... 

0 0 0 0 ... −k p k p + k r −k r 0 

0 0 0 0 ... 0 −k r k r + k b −k b 
0 0 0 0 ... 0 0 −k b k b 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

T = [0 , 0 , . . . , T b ] 
T ∈ R 

n +3 , and U = [ u, 0 , . . . , 0] T ∈ R 

n +3 , where u is the control torque input. Furthermore, T b is the torque

of friction when the drill-bit contacts with the rock given by 

T b = 

⎧ ⎨ ⎩ 

τr if | ˙ φb | < ξ and | τr | ≤ τs , 

τs sgn (τr ) if | ˙ φb | < ξ and | τr | > τs , 

μb R b W b sgn ( ˙ φb ) if | ˙ φb | ≥ ξ , 

(2) 

where τ r is the reaction torque written as 

τr = c b ( ˙ φr − ˙ φb ) + k b (φr − φb ) − c rb 
˙ φb , 

τs = μsb R b W b is the static friction torque, μsb is the static friction coefficient, R b is the bit radius, W b is the WOB, ξ > 0 is a

small constant, and 

μb = μcb + (μsb − μcb ) e 
−δb | ̇ φb | / v f , 

is a velocity-dependent friction coefficient following an exponentially decaying law. Here, μcb is the Coulomb friction coef-

ficient, 0 < δb < 1 is a constant defining the velocity decreasing rate of T b , v f is a velocity constant. 

2.2. Non-dimensional equations 

Before carrying out the numerical study, we introduce the following non-dimensional variables: 

τ = 

c p 

J o 
t, θi = φi , θ

′ 
i = 

J o 

c p 
˙ φi , θ

′′ 
i = 

J 2 o 

c 2 p 

φ̈i , υ = 

J o 

c 2 p 

u, 

and parameters 

γ j = 

J j 

J o 
, β j = 

J o 

c 2 p 

k j , ζh = 

c h 
c p 

, η = 

J o 

c p 
ξ , ε = 

J o R b W b 

c 2 p 

, λ = 

J o 

c p 
v f , 

where τ is the nondimensionalized time, i = o, 1 , 2 , . . . , n, r, b, j = p, r, b, and h = rt, r, b, rb. In the expressions above, θ ′ 
i 

=
dθi 
dτ

, ˙ φi = 

dφi 
dt 

and so on. Hence, the generalized non-dimensional lumped-parameter model can be rewritten as 

J̄ �′′ + C̄ �′ + K̄ � + T̄ = Ū , (3) 
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where � = [ θo , θ1 , θ2 , . . . , θn , θr , θb ] 
T ∈ R 

n +3 is a vector containing the angular positions of the discs, J̄ =
diag (1 , γp , γp , . . . , γp ︸ ︷︷ ︸ 

n 

, γr , γb ) ∈ R 

(n +3) ×(n +3) is the inertia matrix, C̄ ∈ R 

(n +3) ×(n +3) is the torsional damping matrix given by 

C̄ = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 + ζrt −1 0 0 ... 0 0 0 0 

−1 2 −1 0 ... 0 0 0 0 

0 −1 2 −1 ... 0 0 0 0 

... ... ... ... ... ... ... ... ... 

0 0 0 0 ... −1 1 + ζr −ζr 0 

0 0 0 0 ... 0 −ζr ζr + ζb −ζb 

0 0 0 0 ... 0 0 −ζb ζb + ζrb 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

K̄ ∈ R 

(n +3) ×(n +3) is the torsional stiffness matrix given by 

K̄ = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

βp −βp 0 0 ... 0 0 0 0 

−βp 2 βp −βp 0 ... 0 0 0 0 

0 −βp 2 βp −βp ... 0 0 0 0 

... ... ... ... ... ... ... ... ... 

0 0 0 0 ... −βp βp + βr −βr 0 

0 0 0 0 ... 0 −βr βr + βb −βb 

0 0 0 0 ... 0 0 −βb βb 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

T̄ = [0 , 0 , . . . , T̄ b ] 
T ∈ R 

n +3 , and Ū = [ υ, 0 , . . . , 0] T ∈ R 

n +3 . Here, T̄ b can be rewritten as 

T̄ b = 

{ 

τ̄r = ζb (θ
′ 
r − θ ′ 

b 
) + βb (θr − θb ) − ζrb θ

′ 
b 

if | θ ′ 
b 
| < η and | τ̄r | ≤ μsb ε, 

μsb ε · sgn ( ̄τr ) if | θ ′ 
b 
| < η and | τ̄r | > μsb ε, [

μcb + (μsb − μcb ) e 
−δb | θ ′ 

b 
| /λ]ε · sgn (θ ′ 

b 
) if | θ ′ 

b 
| ≥ η. 

(4)

3. Mathematical formulation of the drill-string system in COCO 

In order to carry out a detailed investigation of the torsional stick-slip vibration and the multistability in the drill-string

system shown in Fig. 2 (b), we will apply numerical continuation methods for non-smooth dynamical systems, implemented

via the continuation platform COCO [29] . The stick-slip vibrations that are studied in the present work can be characterized

by two modes of operation, as specified below. 

Slip (SL) . In this mode, the drill-bit rotates with positive angular velocity, and the drill-string motion is governed by the

equations ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

θ ′′ 
o + ζrt θ ′ 

o + (θ ′ 
o − θ ′ 

1 ) + βp (θo − θ1 ) = υ, 

γp θ ′′ 
1 + (θ ′ 

1 − θ ′ 
o ) + (θ ′ 

1 − θ ′ 
2 ) + βp (θ1 − θo ) + βp (θ1 − θ2 ) = 0 , 

... 

γr θ ′′ 
r + ζr (θ ′ 

r − θ ′ 
n ) + ζb (θ

′ 
r − θ ′ 

b 
) + βr (θr − θn ) + βb (θr − θb ) = 0 , 

γb θ
′′ 
b 

+ ζrb θ
′ 
b 
+ ζb (θ

′ 
b 
− θ ′ 

r ) + βb (θb − θr ) + T SL 
b 

= 0 . 

(5)

Here, the reaction torque is computed through the formula 

T SL 
b = 

{
T 0 , θ ′ 

b 
= 0 , [

μcb + (μsb − μcb ) e 
−δb θ

′ 
b 
/λ

]
ε, θ ′ 

b 
> 0 , 

(6)

which is a simplified version of the torque function shown in Eq. (4) . In the expression above, T 0 = μsb ε is the break-away

torque, and this operation mode terminates at some t = t stick ≥ 0 when the angular speed of the drill-bit becomes zero, i.e.

θ ′ 
b 
(t stick ) = 0 . At this time, the system switches to the stick mode of operation defined below. 

Stick (ST) . During this regime the drill-bit is in stationary position, and the system motion is described by the equations⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

θ ′′ 
o + ζrt θ ′ 

o + (θ ′ 
o − θ ′ 

1 ) + βp (θo − θ1 ) = υ, 

γp θ ′′ 
1 + (θ ′ 

1 − θ ′ 
o ) + (θ ′ 

1 − θ ′ 
2 ) + βp (θ1 − θo ) + βp (θ1 − θ2 ) = 0 , 

... 

γr θ ′′ 
r + ζr (θ ′ 

r − θ ′ 
n ) + ζb θ

′ 
r + βr (θr − θn ) + βb (θr − θb ) = 0 , 

θ ′′ 
b 

= 0 , θ ′ 
b 

= 0 . 

(7)

During this mode, the reaction torque is computed via Newton’s third law as follows 

T ST 
b = ζb θ

′ 
r + βb (θr − θb ) , (8)

which means that the reaction torque adjusts itself to enforce the equilibrium with the external torque acting on the drill-

bit. This mode terminates at some t = t slip ≥ 0 when T ST 
b 

∣∣
t= t slip 

= T 0 . At this point, the reaction torque has reached the break-

away torque value T 0 , where the drill-bit begins to rotate, hence switching the system to the slip phase introduced previ-

ously. 
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Table 1 

Nondimensional parameters of the drill-string system adopted from a 

real drill-string design [32] . 

Parameter value Parameter value Parameter value 

γ p 3.08 ζ rb 0.53 μcb 0.45 

γ r 0.82 βp 28.31 μsb 0.8 

γ b 0.49 β r 43.68 η 6 × 10 −6 

ζ r 1.27 βb 36.80 v f 1 

ζ b 1.20 δb 0.85 υ various 

ζ rt 2.73 λ 0.14 ε various 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the following section, we will carry out numerical analysis using the drill-string model (5) –(8) . The nondimensional

parameters of the system, which were obtained from a real drill-string design [32] , are given in Table 1 . 

4. Numerical analysis 

Drill-string model can exhibit parameter regions for which multiple stable states coexist, for instance, bit-sticking equilib-

ria, stick-slip vibrations, and the equilibria with constant rotation. These states are very sensitive to their initial conditions,

and their coexistence under varying WOB have been preliminarily studied in [9] . We will study this multistability in this

section further with consideration of the control torque and the length of drill-strings by using the path-following methods.

Here, the results of the numerical investigation will be presented using the following solution measure 

M ω b = 

1 

T 0 

T 0 ∫ 
0 

θ ′ 
b (τ ) d τ, (9) 

which gives the average angular velocity of the drill-bit in the time window [0, T 0 ], where T 0 is a suitably chosen positive

number. In the case of studying periodic orbits, T 0 will correspond to the period of the solution. 

4.1. Conditions for coexistence 

Define a switching manifold 

� := { � ∈ � 

n +3 : θ ′ 
b = 0 } 

and an attractive region ˜ � := { � ∈ � : | ζb θ
′ 
r + βb (θr − θb ) | < μsb ε} 

which is a subset of �. According to the presence of friction at the bit-rock interface, if the control torque υ is a constant

value, three stable states may coexist for the drill-string system which are studied as below. 

Bit sticking : For any τ > τ bs , � ∈ ̃

 �, where τ bs is the time that drill-string trajectory reaches ˜ � and stays in the region

thereafter. If a new state of the drill-string system is defined as 

x = [ θ ′ 
o , θo − θ1 , θ

′ 
1 , θ1 − θ2 , ... , θ

′ 
n , θn − θr , θ

′ 
r , θr − θb , θ

′ 
b ] 

T , 

the region of bit sticking has an asymptotically stable equilibrium given by 

x bs = 

[ 
0 , υ

βp 
, 0 , υ

βp 
, ... , 0 , υ

βp 
, 0 , υ

βr 
, 0 , υ

βb 
, 0 

] T 
. 

Fig. 3 (a) presents a bit sticking motion of the drill-string showing the system has a stable equilibrium at x bs =
[0 , 4 . 57 , 0 , 2 . 96 , 0 , 3 . 52 , 0] T . As can be seen from the lower plot of Fig. 3 (a), the torque on bit increases initially when

the drill-bit rotates. When τ = 0 . 28 , the drill-bit stops rotating and the torque on bit suddenly reduces due to the change

of the frictional law (4) . Then the torque on bit is built up again, however, its maximum cannot achieve the level of the

break-away torque defined by the static friction torque μsb ε. Hence, the trajectory of the drill-string reaches ˜ � and stays in

this attractive region thereafter. Finally, the constant control torque υ equals to the torque on bit and all the other torques

on the drill-string are balanced. 

Stick-slip vibration : If the trajectory of the drill-string enters and leaves ̃  �, the drill-bit is experiencing stick-slip vibrations.

Fig. 3 (b) shows an example of the stick-slip motion of the drill-string system using the same parameters in Table 1 but with

a different set of initial conditions. It can be seen that at the beginning of the upper plot of Fig. 3 (b), high quantities of

friction are seen to cause the drill-bit (green line) to stall. Then, at about τ = 0 . 79 , the drill-bit becomes loose and rotate

vigorously, up to a speed greater than that of the rotary table (black line). This is due to the fact that at τ = 0 . 79 , the

torque on bit achieves the static friction torque μsb ε (dash line) as shown in the lower plot of Fig. 3 (b). However, at about

τ = 1 . 21 , the angular speed of the drill-bit decreases to the point at which is stalled again at τ = 1 . 54 . This motion repeats
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a b c

Fig. 3. (Colour online) Time responses of the angular speeds (upper) of the rotary table (black), drill pipe (blue), drill collar (red), and drill-bit (green), 

and torque on bit (lower) at where (a) bit sticking, (b) stick-slip vibrations, and (c) constant rotation coexist for n = 1 , ε = 174 . 72 , and υ = 129 . 42 . (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

( =181.39)
Hopf

Fold
( =183.21)

Fold
( =183.82)

Grazing-sliding
( =165.62)

Boundary-equilibrium
( =161.98)

Constant rotation

Stick-slip

Bit sticking

16.38

10.92

5.46

0.0

154.70 165.62 176.54 187.46
WOB

M
b

0 5 10 15

0

10

20

30

R
ot

ar
y

sp
ee

d

Time,
0 5 10 15

0

5

10

15

20

R
ot

ar
y

sp
ee

d

Time,

P1

P3

P2

P1 P2

0 5 10 15
-1

0

1

2

R
ot

ar
y

sp
ee

d

Time,

P3
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The black and blue curves represent the continuation of equilibrium points corresponding to constant rotation and bit sticking, respectively. Green curve 

stands for the continuation of stick-slip solutions, while the red branch corresponds to periodic solutions with no sticking phases. Solid and dashed lines 

denote stable and unstable solutions, respectively. Additional windows show the time responses of the angular velocities of the drill-bit (green), collar 

(red), pipe (blue), and rotary table (black) at ε = 174 . 72 for constant rotation (P1), stick-slip vibration (P2), and bit sticking (P3). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. (Colour online) Basins of attraction of the drill-string system calculated for n = 1 , ε = 182 , and υ = 129 . 42 showing bistability where bit sticking 

(green dots) and stick-slip vibrations (red and blue dots) coexist. The original basin of constant rotation (blue dots) loses stability after the Hopf bifurcation 

at ε = 181 . 39 shown in Fig. 4 . The right panels present the time responses of the angular velocity of the drill-bit. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

throughout the graph highlighting the cyclic nature of stick-slip vibrations. It is also important to note that during this

phenomenon, torsional waves can be generated at the drill-bit and then travel back up along the drill-string to the surface.

This can cause changes in the rotary table oscillations, which is detrimental to not only the part of the drilling rig but also

can produce the bit bouncing and whirling phenomena. 

Constant rotation : The bit can move at a positive constant rotary speed and its standard equilibrium is 

x c = 

[ 
ω c , 

h 
βp 

, ω c , 
h 
βp 

, ... , ω c , 
h 
βp 

, ω c , 
h 
βr 

, ω c , 
h 
βb 

, ω c 

] T 
, 

where ω c is a constant value, 

h = 

ζrt 

[
μcb + (μsb − μcb ) e 

−δb | θ ′ 
b 
| /λ]ε · sgn (ω c ) + ζrb υ

ζrt + ζrb 

, 

and 

(ζrt + ζrb ) ω c + 

[
μcb + (μsb − μcb ) e 

−δb | ω c | /λ]ε · sgn (ω b ) = υ. 

A coexisting constant rotation equilibrium of the drill-string system is shown in Fig. 3 (c), where the drill-bit (green line

in the upper plot) breaks away the static friction torque μsb ε (dash line in the lower plot) at the start of the simulation.

Then the rotary speeds settle down to a constant value ω c quickly and the drill-string system is stabilized at the equilib-

rium x c = [12 . 12 , 3 . 4 , 12 . 12 , 2 . 2 , 12 . 12 , 2 . 62 , 12 . 12] T . It is worth noting that this equilibrium is the desired state of drilling

control, and many control methods (e.g. [8,27,30] ) have been developed to suppress stick-slip vibration and bit sticking phe-

nomena. However, due to the non-smooth nature of the friction at the bit-rock interface, complete suppression of these two

phenomena are not possible. Therefore, a viable way of controlling drill-strings for constant rotation is to avoid such mul-

tistable area and operate the system at a monostable region, where only equilibria with constant rotation exist. Realization

of this would need determination of the basins of attraction of the drill-string system, which is addressed later in the work.

4.2. Variation of WOB 

The result of the numerical continuation of the dynamical response of the drill-string model ( 5–8 ) for n = 1 under vari-

ation of the WOB, ε, showing the average angular speed of the drill-bit, M ω b , on the vertical axis, is presented in Fig. 4 ,

where stable and unstable solutions are represented by solid and dashed lines, respectively. The continuation was carried

out starting from ε = 154 . 70 , and in this case, all four disks rotate with a constant angular speed, which is represented

by the system as a stable equilibrium denoted by a black curve in the figure. This equilibrium persists until ε = 181 . 39

when a subcritical Hopf bifurcation, which corresponds to the so-called catastrophic loss of stability, is encountered. An
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ε = 190 . Panel (c) presents three solutions labeled S4, S5 and S6 computed around the grazing-sliding bifurcation GR-SL, for P4 ( ε = 184 ), P5 ( ε = 180 ) and 
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ω 0 (purple). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unstable branch of equilibria shown by dashed black curve can be traced after the Hopf bifurcation until a fold bifurca-

tion is detected at ε = 183 . 21 . Then the unstable branch is traced toward the decreasing direction of the WOB and collides

with a branch of stable equilibria marked by a solid blue curve through a boundary-equilibrium bifurcation at ε = 161 . 98 .

This blue curve, which persists for increasing WOB, represents the continuation of stable equilibrium for which the drill-bit

permanently sticks at the borehole. At the boundary-equilibrium point ε = 161 . 98 , a branch of unstable periodic orbits

marked by dashed green line is detected. As the value of WOB increases, this branch collides with the branch of stable

periodic orbits (solid green line) through a fold bifurcation of limit cycles at ε = 183 . 82 . Both of the unstable and stable

periodic orbits correspond to the stick-slip vibrations of the drill-strings. By tracing this stable stick-slip orbit, the collision

with another branch of unstable periodic orbits (dashed red line) representing pure oscillations of the drill-strings, which is

created by the subcritical Hopf bifurcation (at ε = 181 . 39 ), is found at ε = 165 . 62 via a grazing-sliding bifurcation. 

An important observation from Fig. 4 is that the drill-string system exhibits three coexisting states for ε ∈ [165.62, 181.39],

and two for ε ∈ [161.98, 165.62] and ε ∈ [181.39, 183.82]. For ε < 161.98 and ε > 183.82, the system is monostable, i.e. either

rotating at a constant speed or permanently sticking at the borehole. Additional windows in Fig. 4 show the time responses

of the angular velocity of the drill-string system in three coexisting states, constant rotation (P1), stick-slip vibration (P2),

and bit sticking (P3). Fig. 5 demonstrates the change of these three coexisting states from losing the stability of constant

rotation by presenting the basins of attraction of the system at ε = 182 . It can be seen from the figure that bit sticking (green

dots), stick-slip (red dots), and constant rotation (blue dots) coexist originally, but constant rotation becomes unstable (see

the right panel) after the Hopf bifurcation. It also should be noted that most of the initial conditions in the figure converge
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to stick-slip vibrations. So, in the bistable region ε ∈ [181.39, 183.82], stick-slip vibrations still dominate the system. However,

after the fold bifurcation at ε = 183 . 82 , such vibrations disappear, and the drill-string system becomes monostable exhibiting

permanently sticking only. 

4.3. Variation of drill-string length 

Another question that we tackle in our numerical study is whether the bifurcation picture changes significantly when a

higher number of disks is considered. Practically speaking, this situation amounts to drilling deeper, which is a scenario that

should be considered as well. This case is analyzed in Fig. 6 , which is obtained by choosing n = 10 , i.e., considering 13 disks

in the physical model depicted in Fig. 2 (b). In general terms, the resulting bifurcation picture is very close to the one shown

in Fig. 4 , which was computed for n = 1 . One of the main differences is the appearance of torus bifurcation of limit cycles,

which are detected at ε ≈ 198.87 (TR1), ε ≈ 196.07 (TR2), ε ≈ 180.83 (TR3) and ε ≈ 178.94 (TR4). These bifurcations, however,

occur for unstable periodic orbits, due to which they do not affect the system behaviour because the emerging quasiperiodic

solutions are unstable. The remaining bifurcation points are of the same type as before, detected at ε ≈ 199.32 (H, Hopf),

ε ≈ 202.34 (F1, fold) and ε = 175 (BEB, boundary-equilibrium bifurcation), which are all bifurcation of equilibria. Bifurcations

of limit cycles occur for ε ≈ 178.85 (GR-SL, grazing-sliding), ε ≈ 199.25 (F2, fold) and ε ≈ 177.78 (F3, fold). Similarly as before,

the bifurcation picture reveals the presence of a parameter window in which multistability is observed. This window is

limited by the fold (F2) and the grazing-sliding bifurcation detected during the analysis. 

4.4. Variation of control torque 

Numerical continuation of the dynamical response of the drill-string model with n = 10 (i.e. 13 disks) under variation

of control torque, υ is presented in Fig. 7 , where solid and dashed lines denote stable and unstable solutions, respectively.

Generally speaking, the resulting bifurcation picture is very close to the ones obtained by varying the value of WOB, which

were computed for n = 1 and n = 10 . In this figure, black and blue curves represent the continuation of equilibrium points

corresponding to constant rotation ( ω b > 0) and bit sticking ( ω b = 0 ), respectively. The stable equilibria for constant rotation

exist for υ > 128 . 95 , and the angular velocity of the drill-bit increases as the control torque υ increases. At υ = 128 . 95 ,

a Hopf bifurcation is detected, and a branch of unstable equilibria marked by dashed black line can be traced toward the
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decreasing direction of the control torque. Then, this unstable branch makes a “u-turn” through a fold bifurcation (F1)

at υ = 127 . 25 and collides with the stable equilibria of bit sticking (blue curve) via a boundary-equilibrium bifurcation

at υ = 144 . The branch of stable periodic solutions denoted by solid green curve representing the stick-slip vibrations is

found to exist between a fold bifurcation (F2) and a grazing-sliding bifurcation for υ ∈ (128 . 15 , 140 . 78) . The branch of

unstable periodic orbits denoted by dashed red curve representing pure oscillations of the drill-strings is recorded between

the subcritical Hopf bifurcation and the grazing-sliding bifurcation. The remaining bifurcation points of limit cycles are

υ ≈ 139 . 48 (TR1), υ ≈ 140 . 56 (TR2), υ ≈ 134 . 01 (TR3), υ ≈ 141 . 17 (F3), υ ≈ 133 . 15 (F4), υ ≈ 133 . 78 (F5), and υ ≈ 134 . 26

(F6). However, these bifurcations occur for unstable periodic orbits, so they do not affect the behaviour of the drill-string

system. 

4.5. Region of multistability 

In order to obtain an insight into the multistability of the drill-string system, a two-parameter continuation of the Hopf

(blue line), grazing-sliding (red line), fold (black line), and boundary-equilibrium (green line) bifurcations found in Fig. 6 was

performed in Fig. 8 under the variations of the WOB and the control torque. It can be seen from Fig. 8 (a) that, these curves

define two regions of multistability, where solutions with constant rotation and permanent sticking coexist in the yellow

area, and constant rotation, permanent sticking, and stick-slip coexist in the grey area. The areas above and below these

multistable regions showing monostability of the system yield solutions with constant rotation and permanent sticking,

respectively. Fig. 8 (b) demonstrates three coexisting solutions computed for each of the test points P1 ( ε = 235 , v = 168 ),

P2 ( ε = 300 , v = 215 ), and P3 ( ε = 368 , v = 246 ). In practice, the drill-string system should be operated in the monostable

region where only constant rotation exists. The location of the boundary-equilibrium bifurcation curve (green line) shown

in Fig. 8 (a) will change when drilling becomes deeper leading the drill-string system to enter the bistable region marked by

yellow. In this region, the system may exhibit either constant rotation or bit sticking which needs to be avoided. Therefore,

a control strategy that can prevent the occurrence of this boundary-equilibrium bifurcation would be desirable. 

5. Conclusions 

This paper studied the torsional stick-slip vibrations of drill-strings using a generalized lumped-parameter model focus-

ing on its multistable characteristics, i.e., the coexistence of bit sticking, stick-slip vibrations, and constant rotation. Our

mathematical model was based on the lumped-parameter model [30] , which includes a rotary table, a drill pipe, a drill

collar, and a drill-bit. The main concern in our study was the undesired torsional vibrations and the coexistence of multiple

stable states, whose analysis was carried out via path-following methods implemented through the continuation platform

COCO [29] . 

Numerical analysis of coexisting states of the drill-string system under a constant control torque was carried out. The

conditions of bit sticking, stick-slip, and constant rotation were given, and the existence of their multistable states was dis-

cussed. It was found that the attractive region 

˜ � defined in Section 4.1 plays a significant role for the existence of multiple

stable states in the drill-string model. If the trajectory of the drill-string system reaches ˜ � and stays in the region there-

after, the drill-bit will be stuck in borehole. If the trajectory enters and leaves ˜ � repetitively, the drill-bit exhibits stick-slip

vibrations. If the trajectory enters and leaves ˜ � thereafter, the drill-bit will move at a constant rotary speed. 

In order to investigate the influence of drilling depth on stick-slip vibrations, we compared the numerical continuations of

coexisting states for the drill-strings with one pipe ( n = 1 ) and ten pipes ( n = 10 ). In general terms, the resulting bifurcation

diagram for n = 10 is very close to the one computed for n = 1 . One of the main differences is the appearance of torus

bifurcation of limit cycles. However, these bifurcations occur for unstable periodic orbits which do not affect the behaviour of

the drill-string system from a practical point of view. It is also worth noting that both stick-slip vibrations and multistability

exist for a larger window of WOB when drilling becomes deeper. 

Numerical continuation of the dynamical response of the drill-string model with n = 10 under the variation of the control

torque was carried out. It was found that similar bifurcation structure as the ones for n = 1 and n = 10 under the variation

of the WOB was recorded. The drill-string system with constant rotation may lose stability via a subcritical Hopf bifurcation,

and the equilibrium of bit sticking will exist until a boundary-equilibrium bifurcation is encountered. Again, stick-slip vibra-

tions exist between a fold bifurcation and a grazing-sliding bifurcation. In order to gain an insight into the multistability of

the system, a two-parameter continuation of these bifurcations, i.e. the Hopf, grazing-sliding, fold, and boundary-equilibrium

bifurcations, was performed under the variations of the WOB and the control torque. Two regions of multistability were

identified, where solutions with constant rotation and bit sticking coexist, and constant rotation, bit sticking, and stick-slip

coexist. In practice, the drill-string system should be operated in the monostable region where only constant rotation ex-

ists. As drilling becomes deeper, the boundary-equilibrium bifurcation curve which defines the boundary of monostability

and bistability will change. Thus, a control strategy for the drill-string system preventing the occurrence of such bifurcation

would be desirable. 
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Fig. 8. (a) Two-parameter continuation of the Hopf (blue curve), grazing-sliding (red curve), fold (of limit cycles, black curve) and boundary-equilibrium 

(green curve) bifurcations found in Fig. 6 (a), with respect to the WOB ε and the control torque v . These curves define two regions of multistability, where 

solutions with constant rotation and permanent sticking coexist (yellow area), and constant rotation, permanent sticking and stick-slip coexist (grey area). 

The areas above and below these regions yield solutions with constant rotation and permanent sticking, respectively. Panel (b) shows three coexisting 

solutions computed for each of the test points P1 ( ε = 235 , v = 168 ), P2 ( ε = 300 , v = 215 ) and P3 ( ε = 368 , v = 246 ). The time responses show the 

angular speeds ω b (black), ω r (blue), ω 9 (red), ω 7 (green) and ω 0 (purple). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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