110 research outputs found

    EXIT charts for system design and analysis

    No full text
    Near-capacity performance may be achieved with the aid of iterative decoding, where extrinsic soft information is exchanged between the constituent decoders in order to improve the attainable system performance. Extrinsic information Transfer (EXIT) charts constitute a powerful semi-analytical tool used for analysing and designing iteratively decoded systems. In this tutorial, we commence by providing a rudimentary overview of the iterative decoding principle and the concept of soft information exchange. We then elaborate on the concept of EXIT charts using three iteratively decoded prototype systems as design examples. We conclude by illustrating further applications of EXIT charts, including near-capacity designs, the concept of irregular codes and the design of modulation schemes

    Coding theorems for turbo code ensembles

    Get PDF
    This paper is devoted to a Shannon-theoretic study of turbo codes. We prove that ensembles of parallel and serial turbo codes are "good" in the following sense. For a turbo code ensemble defined by a fixed set of component codes (subject only to mild necessary restrictions), there exists a positive number Îł0 such that for any binary-input memoryless channel whose Bhattacharyya noise parameter is less than Îł0, the average maximum-likelihood (ML) decoder block error probability approaches zero, at least as fast as n -ÎČ, where ÎČ is the "interleaver gain" exponent defined by Benedetto et al. in 1996

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Trapping Set Enumerators for Repeat Multiple Accumulate Code Ensembles

    Full text link
    The serial concatenation of a repetition code with two or more accumulators has the advantage of a simple encoder structure. Furthermore, the resulting ensemble is asymptotically good and exhibits minimum distance growing linearly with block length. However, in practice these codes cannot be decoded by a maximum likelihood decoder, and iterative decoding schemes must be employed. For low-density parity-check codes, the notion of trapping sets has been introduced to estimate the performance of these codes under iterative message passing decoding. In this paper, we present a closed form finite length ensemble trapping set enumerator for repeat multiple accumulate codes by creating a trellis representation of trapping sets. We also obtain the asymptotic expressions when the block length tends to infinity and evaluate them numerically.Comment: 5 pages, to appear in proc. IEEE ISIT, June 200

    Good Concatenated Code Ensembles for the Binary Erasure Channel

    Full text link
    In this work, we give good concatenated code ensembles for the binary erasure channel (BEC). In particular, we consider repeat multiple-accumulate (RMA) code ensembles formed by the serial concatenation of a repetition code with multiple accumulators, and the hybrid concatenated code (HCC) ensembles recently introduced by Koller et al. (5th Int. Symp. on Turbo Codes & Rel. Topics, Lausanne, Switzerland) consisting of an outer multiple parallel concatenated code serially concatenated with an inner accumulator. We introduce stopping sets for iterative constituent code oriented decoding using maximum a posteriori erasure correction in the constituent codes. We then analyze the asymptotic stopping set distribution for RMA and HCC ensembles and show that their stopping distance hmin, defined as the size of the smallest nonempty stopping set, asymptotically grows linearly with the block length. Thus, these code ensembles are good for the BEC. It is shown that for RMA code ensembles, contrary to the asymptotic minimum distance dmin, whose growth rate coefficient increases with the number of accumulate codes, the hmin growth rate coefficient diminishes with the number of accumulators. We also consider random puncturing of RMA code ensembles and show that for sufficiently high code rates, the asymptotic hmin does not grow linearly with the block length, contrary to the asymptotic dmin, whose growth rate coefficient approaches the Gilbert-Varshamov bound as the rate increases. Finally, we give iterative decoding thresholds for the different code ensembles to compare the convergence properties.Comment: To appear in IEEE Journal on Selected Areas in Communications, special issue on Capacity Approaching Code

    Analysis and Design of Tuned Turbo Codes

    Get PDF
    It has been widely observed that there exists a fundamental trade-off between the minimum (Hamming) distance properties and the iterative decoding convergence behavior of turbo-like codes. While capacity achieving code ensembles typically are asymptotically bad in the sense that their minimum distance does not grow linearly with block length, and they therefore exhibit an error floor at moderate-to-high signal to noise ratios, asymptotically good codes usually converge further away from channel capacity. In this paper, we introduce the concept of tuned turbo codes, a family of asymptotically good hybrid concatenated code ensembles, where asymptotic minimum distance growth rates, convergence thresholds, and code rates can be traded-off using two tuning parameters, {\lambda} and {\mu}. By decreasing {\lambda}, the asymptotic minimum distance growth rate is reduced in exchange for improved iterative decoding convergence behavior, while increasing {\lambda} raises the asymptotic minimum distance growth rate at the expense of worse convergence behavior, and thus the code performance can be tuned to fit the desired application. By decreasing {\mu}, a similar tuning behavior can be achieved for higher rate code ensembles.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Iteratively Decoded Irregular Variable Length Coding and Sphere-Packing Modulation-Aided Differential Space-Time Spreading

    No full text
    In this paper we consider serially concatenated and iteratively decoded Irregular Variable Length Coding (IrVLC) combined with precoded Differential Space-Time Spreading (DSTS) aided multidimensional Sphere Packing (SP) modulation designed for near-capacity joint source and channel coding. The IrVLC scheme comprises a number of component Variable Length Coding (VLC) codebooks having different coding rates for the sake of encoding particular fractions of the input source symbol stream. The relative length of these source-stream fractions can be chosen with the aid of EXtrinsic Information Transfer (EXIT) charts in order to shape the EXIT curve of the IrVLC codec, so that an open EXIT chart tunnel may be created even at low Eb/N0 values that are close to the capacity bound of the channel. These schemes are shown to be capable of operating within 0.9 dB of the DSTS-SP channel’s capacity bound using an average interleaver length of 113, 100 bits and an effective bandwidth efficiency of 1 bit/s/Hz, assuming ideal Nyquist filtering. By contrast, the equivalent-rate regular VLC-based benchmarker scheme was found to be capable of operating at 1.4 dB from the capacity bound, which is about 1.56 times the corresponding discrepancy of the proposed IrVLC-aided scheme

    802.11 Payload Iterative decoding between multiple transmission attempts

    Get PDF
    Abstract. The institute of electrical and electronics engineers (IEEE) 802.11 standard specifies widely used technology for wireless local area networks (WLAN). Standard specifies high-performance physical and media access control (MAC) layers for a distributed network but lacks an effective hybrid automatic repeat request (HARQ). Currently, the standard specifies forward error correction (FEC), error detection (ED), and automatic repeat request (ARQ), but in case of decoding errors, the previously transmitted information is not used when decoding the retransmitted packet. This is called Type 1 HARQ. Type 1 HARQ uses received energy inefficiently, but the simple implementation makes it an attractive solution. Unfortunately, research applying more sophisticated HARQ schemes on top of IEEE 802.11 is limited. In this Master’s Thesis, a novel HARQ technology based on packet retransmissions that can be decoded in a turbo-like manner, keeping as much as possible compatibility with vanilla 802.11, is proposed. The proposed technology is simulated with both the IEEE 802.11 code and with the robust, efficient and smart communication in unpredictable environments (RESCUE) code. An additional interleaver is added before the convolutional encoder in the proposed technology, interleaving either the whole frame or only the payload to enable effective iterative decoding. For received frames, turbo-like iterations are done between initially transmitted packet copy and retransmissions. Results are compared against the non-iterative combining method maximizing signal-to-noise ratio (SNR), maximum ratio combining (MRC). The main design goal for this technology is to maintain compatibility with the 802.11 standard while allowing efficient HARQ. Other design goals are range extension, higher throughput, and better performance in terms of bit error rate (BER) and frame error rate (FER). This technology can be used for range extension at low SNR range and may provide up to 4 dB gain at medium SNR range compared to MRC. At high SNR, technology can reduce the penalty from retransmission allowing higher average modulation and coding scheme (MCS). However, these gains come with the cost of computational complexity from the iterative decoding. The main limiting factors of the proposed technology are decoding errors in the header and the scrambler area, and resource-hungry-processing. In simulations, perfect synchronization and packet detection is assumed, but in reality, especially at low SNR, packet detection and synchronization would be challenging. 802.11 pakettien iteratiivinen dekoodaus lĂ€hetysten vĂ€lillĂ€. TiivistelmĂ€. IEEE 802.11-standardi mÀÀrittelee yleisesti kĂ€ytetyn teknologian langattomille lĂ€hiverkoille. Standardissa mÀÀritellÀÀn tehokas fyysinen- ja verkkoliityntĂ€kerros hajautetuille verkoille, mutta siitĂ€ puuttuu tehokas yhdistetty automaattinen uudelleenlĂ€hetys. NykyisellÀÀn standardi mÀÀrittelee virheenkorjaavan koodin, virheellisen paketin tunnistuksen sekĂ€ automaattisen uudelleenlĂ€hetyksen, mutta aikaisemmin lĂ€hetetyn paketin informaatiota ei kĂ€ytetĂ€ hyvĂ€ksi uudelleenlĂ€hetystilanteessa. TĂ€mĂ€ menetelmĂ€ tunnetaan tyypin yksi yhdistettynĂ€ automaattisena uudelleenlĂ€hetyksenĂ€. Tyypin yksi yhdistetty automaattinen uudelleenlĂ€hetys kĂ€yttÀÀ vastaanotettua signaalia tehottomasti, mutta yksinkertaisuus tekee siitĂ€ houkuttelevan vaihtoehdon. Valitettavasti edistyneempien uudelleenlĂ€hetysvaihtoehtojen tutkimusta 802.11-standardiin on rajoitetusti. TĂ€ssĂ€ diplomityössĂ€ esitellÀÀn uusi yhdistetty uudelleenlĂ€hetysteknologia, joka pohjautuu pakettien uudelleenlĂ€hetykseen, sallien turbo-tyylisen dekoodaamisen sĂ€ilyttĂ€en mahdollisimman hyvĂ€n taaksepĂ€in yhteensopivuutta alkuperĂ€isen 802.11-standardin kanssa. TĂ€mĂ€ teknologia on simuloitu kĂ€yttĂ€en sekĂ€ 802.11- ettĂ€ nk. RESCUE-virheenkorjauskoodia. Teknologiassa uusi lomittaja on lisĂ€tty konvoluutio-enkoodaajan eteen, sallien tehokkaan iteratiivisen dekoodaamisen, lomittaen joko koko paketin tai ainoastaan hyötykuorman. Vastaanotetuille paketeille tehdÀÀn turbo-tyyppinen iteraatio alkuperĂ€isen vastaanotetun kopion ja uudelleenlĂ€hetyksien vĂ€lillĂ€. Tuloksia vertaillaan eiiteratiiviseen yhdistĂ€mismenetelmÀÀn, maksimisuhdeyhdistelyyn, joka maksimoi yhdistetyn signaali-kohinasuhteen. TĂ€rkeimpĂ€nĂ€ suunnittelutavoitteena tĂ€ssĂ€ työssĂ€ on tehokas uudelleenlĂ€hetysmenetelmĂ€, joka yllĂ€pitÀÀ taaksepĂ€in yhteensopivuutta IEEE 802.11-standardin kanssa. Muita tavoitteita ovat kantaman lisĂ€ys, nopeampi yhteys ja matalampi bitti- ja pakettivirhesuhde. KehitettyĂ€ teknologiaa voidaan kĂ€yttÀÀ kantaman lisĂ€ykseen matalan signaalikohinasuhteen vallitessa ja se on jopa 4 dB parempi kohtuullisella signaalikohinasuhteella kuin maksimisuhdeyhdistely. Korkealla signaali-kohinasuhteella teknologiaa voidaan kĂ€yttÀÀ pienentĂ€mÀÀn hĂ€viötĂ€ epĂ€onnistuneesta paketinlĂ€hetyksestĂ€ ja tĂ€ten sallien korkeamman modulaatio-koodiasteen kĂ€yttĂ€misen. Valitettavasti nĂ€mĂ€ parannukset tulevat kasvaneen laskennallisen monimutkaisuuden kustannuksella, johtuen iteratiivisesta dekoodaamisesta. Isoimmat rajoittavat tekijĂ€t teknologian kĂ€ytössĂ€ ovat dekoodausvirheet otsikossa ja datamuokkaimen siemenessĂ€. TĂ€mĂ€n lisĂ€ksi kĂ€yttöÀ rajoittaa resurssisyöppö prosessointi. Simulaatioissa oletetaan tĂ€ydellinen synkronisointi, mutta todellisuudessa, erityisesti matalalla signaali-kohinasuhteella, paketin tunnistus ja synkronointi voivat olla haasteellisia
    • 

    corecore