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Abstract—It has been widely observed that there exists a code in the ensemble of turbo codes cannot grow more
fundamental trade-off between the minimum (Hamming) dis- than logarithmically with block lengti [4]. As a result, their
tance properties and the iterative decoding convergence behavior minimum distance may not be sufficient to yield very low

of turbo-like codes. While capacity achieving code ensembles . . . .
typically are asymptotically bad in the sense that their minimum error rates at moderate-to-high signal to noise ratios (SNRs),

distance does not grow linearly with block length, and they and an error floor can occur.

therefore exhibit an error floor at moderate-to-high signal to On the other hand, multiple serially concatenated code
noise ratios, asymptotically good codes usually converge further (MSCC) ensembles with three or more component encoders
away from channel capacity. In this paper, we introduce the .5 he asymptotically good. This has been shown for repeat
concept of tuned turbo codes, a family of asymptotically good . . . .
hybrid concatenated code ensembles, where asymptotic minimum multlple accumulate codes inl[S]H[7]. There also exist varia- )
distance growth rates, convergence thresholds, and code ratestions of standard repeat accumulate codes that are asymptoti-
can be traded-off using two tuning parameters, A and p. By cally good [8] but are more complex to encode than classical
decreasing A, the asymptotic minimum distance growth rate is repeat accumulate codes.

reduced in exchange for improved iterative decoding convergence MSCCs in general exhibit good error floor performance due

behavior, while increasing A raises the asymptotic minimum dis- ) . .
tance growth rate at the expense of worse convergence behavior,tO their large minimum distance, but they have the drawback

and thus the code performance can be tuned to fit the desired Of converging at an SNR further from capacity than parallel
application. By decreasingyu, a similar tuning behavior can be concatenated codes. While the asymptotic distance growth
achieved for higher rate code ensembles. rate of MSCCs can be made arbitrarily close to the Gilbert-
Index Terms—concatenated codes, distance growth rates, Varshamov Bound (GVB) by adding more concatenation
EXIT-charts, Hamming distance, iterative decoding, turbo codes stages[[7], the iterative decoding convergence behavior of the
resulting code ensembles becomes worse, making codes with
more than three concatenation stages impractical.
I. INTRODUCTION An alternative to the above schemes are hybrid concatenated
codes (HCCs), first introduced in][9]. They combine the
tures of parallel and serially concatenated codes and thus
er more freedom in code design. It has been demonstrated in
that HCCs can be designed that perform closer to capacity
Ln MSCCs while still maintaining a minimum distance that
rows linearly with block length. In particular, small memory-
ne component encoders are sufficient to yield asymptotically
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introduce a second parameter A < p < 1, which denotes Additional parallel encoder (optional)
the fraction of bits that are kept from the combined output™™ X d
of the outer MPCC and the inner accumulator (see [Eig. 13‘{ o
Related code structures have also been investigatedin [13]

An advantage that TTC ensembles typically have over low-
density parity check (LDPC) code ensembles is that tuning
does not change the encoder structure. The iterative decod-
ing convergence threshold of an LDPC code ensemble, as
well as their asymptotic minimum distance growth rates, are
determined by the degree distribution of the ensemble. To
trade off the iterative decoding convergence threshold and
the asymptotic minimum distance growth rate, one must vary
the degree distribution, which in general results in a dfit Fig. 1. General encoder structure for TTCs with feedforwand recursive
encoder. convolutional component encoders.

For LDPC codes, quasi-cyclic code constructions are pre-
ferred in practice since they can be encoded using a low com-
plexity shift register encoder. The quasi-cyclic subersiesy the FFCEs by = ZZZJH h;, whereh; is the output weight
of LDPC codes, however, are not asymptotically good, sineé encoderC; in the outer MPCC. The total output weight of
their minimum distances are upper bounded by a constantthg outer MPCQCh,, is given byh, = h, + he = >_7 | h;.
the circulant sizes increade [14]. The output of the outer MPCC enters the serially concate-

We note that the error floor performance of turbo-like codested inner accumulator, whose output weight is denoted by
with iterative decoding is greatly influenced but not solelfis. Both the output of the outer MPCC and the output of the
determined by the minimum Hamming distance of the codiéner accumulator are punctured, then multiplexed togethe
the subject of this paper, since pseudo-codewords andimgppand passed to the channel. The puncturing rajes- \)
sets also play a role. In Sectibh Il, we present a generaldarcoand A in Fig.[d denote the fraction of bits thatrvive after
structure for TTCs and discuss the relevance of the minimupnncturing the outer MPCC and the inner accumulator, and
Hamming distance to designing codes with good error flodf, andh} are the corresponding weights, respectively. Finally,
performance. We also introduce four specific types of TT@s= h{+hj,+ ho represents the total output codeword weight.
that are the focus of our analysis throughout the remaintler o The parametey: is used to control the rate of the TTC
the paper. In Sectidn Il we introduce ensemble-averagghtei ensemble, i.e., considering the multiplexed output of thieo
enumerators for TTCs and their asymptotic expressions. MPCC and inner accumulator, a total fraction.obits survive
Section[1V, the ensemble average weight enumerators @wencturing. The rate of the overall ensemble is thus given by
used to bound the minimum distance for TTCs, and we K 1
present asymptotic minimum distance growth rates of TTCs R= N 7 1)
for different values of\ and . Also, a finite length minimum Ha + o
distance analysis is performed and the results are showa tohere K is the input length)V is the total output length, and
in agreement with the asymptotic results. Secfion V congputéo = 1 if there is an additional parallel encoder afg = 0
iterative decoding thresholds for TTCs using EXIT-chaats] Otherwise. As additional parallel encoders we considerfs-C
Section[V] combines the results of the previous two sectiof§ Simply a systematic branch.
and addresses the tuning behavior of the code constructionsTuning the asymptotic minimum distance growth rate and
Finally, Section[VIl presents some simulation results, aribe iterative decoding convergence threshold is done by-var

Sectior[VIIl concludes the paper. ing the puncturing rate\, i.e., changing the fraction of bits
that come from the output of the inner serially concatenated

accumulator. Fonn = 0, all the bits of the inner accumulator

are punctured and the output is the (possibly puncturegjubut
The general structure of the proposed tuned turbo codasthe MPCC. For\ = o on the other hand, all output bits of

is shown in Fig[dl. They consist of an outer MPCC seriallthe tuning section stem from the inner accumulator and none

concatenated with an inner rate-1 accumulator and optionadf the bits of the outer MPCC survive puncturing.

an additional rate-1 parallel encod®&y. The outer MPCC con- In the sections of the paper that feature numerical results,

sists of a total of; rate-1 component encodet,, Cs, ...,Cq, from Subsectio IV-B onwards, we consider four different

of which the first.J encoders,3 < J < ¢, are recursive types of TTCs, which are depicted in F[g. 2. For each type,

convolutional encoders (RCEs). The remaining.J encoders we consider a version with only 2-state component encoders

in the outer MPCC are feedforward convolutional encodeasd a version with 4-state RCEs in the outer MPCC. All types

(FFCEs). (We note that, while in practice it is not necessaaye based on the rate = 1/4 HCCs introduced in[[10] and,

to precede all component encoders by an interleaver, doingfer A = . = 1, are identical to the HCC i [10], while for

simplifies the analysis and does not change the propertieshof= 0, we obtain the (possibly punctured) outer MPCC plus

the code ensemble.) We denote the combined output weightloé optional parallel encoder.

the RCEs byi, = Z;’Zl h; and the combined output weight of The type 1 and 2 TTC ensembles have a rate 1/4 outer
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hy Puncturing rate p-A w
(p X)3K

MPCC with no additional parallel encod€y (see Fig[R). properties of TTCs are similar to those of LDPC codes_Ir [19]
While the outer MPCC of the type 1 ensemble consists @fwas shown that the minimum AWGN channel pseudo-weight
four identical rate-1 RCEs, the last encodgrof the MPCC of regular LDPC codes grows at best sub-linearly with block
in the type 2 ensemble is the 2-state FFCE having generdemgth, even though the minimum Hamming distance grows
[3]s (in octal notation). The type 3 and 4 TTC ensembles haliaearly with block length. There exist, however, spegiaibn-
arateR = 1/3 outer MPCC consisting of three identical ratestructed code ensembles where the minimum binary symmetric
1 RCEs plus an additional parallel encodkgr In the type 3 channel pseudo-weight can grow linearly with block length
ensemble(y is the[3]s FFCE, while in the type 4 ensemble[20].

it is simply a systematic branch. Thus, for=1andA =0,  Since the minimum Hamming distance is an upper bound on
when the output of the outer MPCC is not punctured and ale minimum pseudo-weight, we expect that designing TTC
bits from the inner encoder are punctured, the type 2 andeAsembles whose minimum distance grows linearly with block
code ensembles are identical, while they differ for all Oth%ngth will lead to code ensembles that also possess good
values ofp and A. The outer MPCC of the type 2 ensemblgyseudo-weight properties. This expectation is supported b
(with 2-state encoders) was introduced [inl[15] and exhibiffe finite length (Hamming) distance analysis in Secfioh IV
excellent iterative decoding behavior due to the presericegnd the simulation results in SectibnVIl, both of which show

the FFCE (se€ [16]). In all the cases considered in this pap@fat code ensembles with large minimum Hamming distance
the 2-state rate-1 RCEs are accumulators with genefiat®s  exhibit low error floors.

and the 4-state RCEs are chosen to have the gengsafs.

We decode TTCs iteratively, in a component code oriented
fashion, which is a generalization of the turbo-decodirig-pr
ciple applied in[[1]. Component decoders employ maximum
a posteriori probability (MAP) decoding strategies and the
extrinsic information of one component decoder becomesAa Weight Enumerators
priori information for the other decoders. In our simulaso
we assume a straightforward iteration schedule, where eact Ne weight spectrum of aWV, K) linear encodeC( ) is
component decoder is activated once per iteration. described by its weight enumerator (WEJ ", which speci-

Since we use iterative decoding and not a MAP decod{sS th(]av)number of codewords with output Wel@hﬂ_lkemse
for the overall code, the performance of the decoder in t denote the input-output weight enumerator (IOWE),

moderate-to-high SNR region of the additive white Gaussié(}‘h'Ch specmes the number of codewords with input weight
noise (AWGN) channel is greatly influenced but not solel nd output weight.. To investigate the distance properties of
determined by the minimum Hamming distance of the cod Ined turbo code ensembles, we consider the ensemble averag
Pseudo-codewords and trapping sets also play a role in fHeth® above quantities. For an encoder ensen@i(é/) of
error floor performance of the decoder (see, é.gl. [LT], [17])€N9thV, we write the average IOWE as

TTC ensembles with 2-state component encoders are closely 1
related to LDPC codes and can also be decoded using the sum- AS%V) Z Ai(jhv), (2
product algorithm[[18], so it is likely that the pseudo-wig [C(V)] cN)ecwN)

IIl. PRELIMINARIES




where|C(N)| denotes the size d(N). When the members IOWDs of the components times the number of permutations
of C(N) are equally likely, we obtain the average WE as of the input sequence, i.e.,

ACTTC(N)

K _
o) —C(N) w,hohi,. b hs kR
A = E Agn - 3)

q
w=1 QK) < PQ(K)) . ]P)Acc(qK) . PP(qK(;L—k)) . ]P)P(qK)\)
w w,h; hp7hs hp,h;,u—)\ hSahév)\ ’
The average WE represents the expected number of codeword i=0

of weight i if a code is randomly chosen from the ensemble ()

C(N). In the rest of the paper, whenever the context is cledfhere we denote the total output weight of the outer MPCC

we will omit the parametenN. ashp, = y.._, h;. If there is no additional parallel encoder,

To obtain the average WE_STTC(N) of TTC ensembles, We defineﬁl’i"}f) to be one forhy = 0 and zero otherwise.

we use the uniform interleaver analysis introduced[in [21]. The ensemble average IOWE of a TT@S}TC(N), is
The uniform interleaver is a probabilistic device that maps then the summation over all CIOWESs such that the codeword
input block of weightw and lengthK¢ into all its possible has weighth. To include the total output weighi in the
(Ifuc) permutations with equal probability, thus decoupling th€IOWE, we represent the punctured weight of the inner serial
component encoders in a concatenated code and creatingceumulator as; = h — h, — ho, thus obtaining the IOWE
code ensemble with equally likely memb(_ars. /{\_NC,KC) ACTre(N) _

component encodeél( N¢), preceded by a uniform interleaver, w,h =

results in the input-output weight distribution (IOWD) K K K gk b Grro(N) (8)

TTC
AC(Ne) Z Z Z Z Z Aw,ho,hl,...,hq,hs,h;,h-
Pi(jjd _ (UI;(JCI) ’ (4) ho=Zo h1=1 hqe=1hs=1 hp:()

Note that, with random puncturing, it is possible that all

C(Ne) . the weight is punctured and therefore the enumeration of
whereP, ;" is the probability that encod€f( V) transforms punctured weights starts at zero.

an input of weightw into an output of weight. For (N¢, Ne)

2-state component encoders, the IOWE can be given in closed
form as [22] B The Spectral Shape

To investigate the asymptotic minimum distance properties
AUAJCZ(NC) — A?;(Nd — (NC - h) ( h—1 )7 (5) of tuned turbo codes as the block lengthtends to infinity,
" : lw/2] ) \[w/2] -1 we will make use of the asymptotic spectral shape function

wherew/2 < h < Ne — w/2, “Acc” represents the accu- Ofiginally introduced by Gallagef [24],

mulator, and “FF” represents the 2-state FFCE with generato In A
3ls. r(p) = limsup &, 9
p N
In the case of TTCs, component codes may be punctured. N—oo

The IOWE of punctured accumulators was analyzed in [28]lherep = % is the normalized codeword weight. The spectral
by considering the serial concatenation of an accumulakitape is the exponential part of the average WE normalized
and a single-parity-check. Using this approach, only ragulby the block lengthV. Whenr(p) < 0, the average number
puncturing patterns and puncturing rates Jof= 1/i with of codewords with normalized weightgoes exponentially to

i € N can be realized. To be able to vakycontinuously, we zero asN tends to infinity. Whem(p) > 0, on the other hand,
therefore consider random puncturing, and the code enssmbthe average number of codewords with normalized weight
we analyze are formed over all interleaver realizations, asgrows exponentially inN. When r(p) = 0, the average
well as over all possible puncturing patterns. Using randonumber of codewords with normalized weigpt does not
puncturing, the probability that a codeword of lengthand exhibit exponential growth — it might increase or decrease
weight h before puncturing is punctured to a codeword gfolynomially, for example.

lengthN' = AN and weight:’ is given by the hypergeometric ~ Similarly, we define the asymptotic IOWD of diN¢, K¢)

distribution component cod€(N¢) as
pPON)) _ EHIGE) 5 1y pEVe)
oW/ N T W’ (6) fc — lim D oK), 18N (10)
h o, N¢e—o0 Nc ’

where [B) represents the /lOWD ,Of the r;';mdom p”nclt”ri'%’herea and 3 are the normalized input and output weight
operation and we requiré’ < N', h —h' < N =N, ¢ the input block lengthke and the output block length
and 7' < h. Throughout the paper we define the binomial, egpectively, of cod€(Ne). Stirling’s approximation can

coefficient (}) to be zero ifn <k. . be used to bound the binomial coefficients as
The average component mi%n-output weight enumerator (k)
(CIOWE) of an (N, K) TTC, AJ%e™ . ., is the £ < (”) < gnHk/m) (11)
average number of codewords with fixed ian)uts and output n+l k
weightsw, ho, hi, . .., hg, hs, hy,, and by of each component whereH (z) = —zInz — (1 —z)In(1 — z) denotes the binary

encoder in the TTC. The CIOWE is simply the product of thentropy function using the natural logarithm.



Using [4), [3), [ID), and_(11) the asymptotic IOWD of the  Proof: The proposition is trivially proved by setting, =
accumulator is given by 0 (which impliesaa =0, po =0, p;, =0fori=1,...,¢q, and
o o pp = 0) and ps = pl = p/(RgA). Settingp, = 0 results
ofijf =(1-p/)H (F) + SH (2—) —H(«), (12) in the asymptotic IOWDs of the 2-state component encoders
(1-5) B (12), (I3) in the CIOWE of a TTC to be zero and settjng=
wherea = w/N¢ and 3 = h/N¢ (see also[[5]). In the same p/, results in the asymptotic IOWD of the random puncturing
way, the asymptotic IOWD of the 2-state FFCE is given byoperation[(I¥) to be zero, resulting in

c _
FE — (1 - a)H (ﬁ) + ol (%) “H(a). (13) 70.0,01--0,(p/ (Rax),0.0 = -
|
Similarly, by using [(6),[(II0), and_(11), the asymptotic IOWD Thys, it cannot be directly concluded that the resulting en-
of the random puncturing operation is given by sembles are asymptotically good, but we will show in the next

b 1= B— A3 1 section that the 2-state ensembles are indeed asympliptical
fopa=H(E) +——H < T > — 3 H(B), (14 good and we conjecture the same for the 4-state ensembles.

where = h/Nc and 8’ = h'/(AN¢).

. . IV. MINIMUM DISTANCE ANALYSIS
We now define the asymptotic CIOWE of &V, K) TTC

as In this section we make use of the expressions from the

Crro(N) prewous_sgcnon tp perform both an asymptotic and a f|n!te

Crre ~ lim In Aw,ho,hl,...,hq,hs,h;,h (15) length minimum distance analysis of tuned turbo codes with
00,01 ,-P0P5 PhoP N -soo N ’ 2-state component encoders.

wherea = w/K, p; =h;/K,i=0,1,...,q, ps = hs/(¢K),
Py, = h,/(q(p — NK), andp = h/(qu + Zo)K = h/N. A. Asymptotic Analysis
Using [I5), we rewrite the asymptotic spectral shape as theror a TTC withg encoders and accumulators in the outer
optimization problem MPCC (see Fig[]1), the probability that a randomly chosen
. FCrrc o 16) code from the ensemble has minimum distadge, < d is
() a,pil,l.?,p; P01y P a3 P33Py P (16) upper bounded by

We obtain the asymptotic CIOWE of a TTC by inserting its FCTTc(N) - 4CTTc(N)
CIOWE (1) into [I5). The logarithm transforms the product of (dmin < d) < (4g -+ Z Ay (19)
IOWDs in (@) into a sum, and in the limit as the block lengths h=1

of each component cod¥., tend to infinity, the asymptotic X X XK K Kq [KewoNld-1 ™)
CIOWE of a TTC can be written in terms of the asymptotic™ Z Z Z Z Z w?;zi?hl,...,hq,hs,h;,h'
IOWDs of its component codes, weighted by their respective ¥=!ho=To hi=1  hg=Lh.=1  hy=0 =0
block lengths divided byV, as (20)
FCrro _ Note that, while the average number of all-zero codewords
o"”“"’“"“”’q”’s”’f””’q AS™) equalsl for unpunctured linear codes, with punctured
1 1 c Acc codes there is a possibility that all the weight is removed by
gkt <§H (@) + QZ Fasps t foppt A7) the puncturing operation. We take the probability of thisrav
b =0 b into account with the tern@[lOC”C(N) — 1) in (I9) and with
(=N gy u-ry + /\fps-,pé,)\) ; the summation oveh starting from zero in[{20), while the

summation overw starts atw = 1.

where p, = h,/qK and R = K/N is the rate of the We define the valug as follows.

TTC given by [1). To include the normalized total output
weightp = h/N in the asymptotic CIOWE, we represent thé@efinition 1. Let 0 < 5 < Rg\/2 be such that, for alD <
normalized punctured weight of the inner serial accumulatp < p, the unique supremum of the asymptotic CIOWE of TTCs

pL as given by(17) is achieved fop, = 0 and ps = p,, = p/(Rq\).
' h—hl—h
pn = QL}( = ;K 0 Following the procedure established [in][25] ahd [7], we can
4 “n= (18) split (20) into two partsA; and A,, depending on the output
_PIR=alp =N = po. weight of the outer MPCQu, = S°7_, h;. For any positive
qA integerhy, ¢ < hj < Kq, we can write

If there is some > 0 such that(p) < 0 forall 0 < p < p, _
. i . . P (dmin < d) =
we would immediately have that is the asymptotic growth . i
rate of the minimum distance of the ensemble. However, this (dmin < d N hy < hp) +P (dmin < d Ny > hp) - (21)
is not the case for TTCs. A Ao

Proposition 1. For 0 < p < Rg\, the spectral shape of aWe now proceed to show that, with appropriately chosen
TTC cannot be negative but is lower boundedriyy) = 0. values ofh; andd, A1 — 0andA4; — 0 asN — oo for all



d < [N(p —¢€)], wheree > 0 is an arbitrarily small constant, 2) For a fixed input weightv, the IOWDPEY, (N¢) of the
which implies that the ensemble is asymptotically good with 2-state FFCE forms a logarithmically concave sequence
asymptotic minimum distance growth rate in the output weight: and its maximum occurs &t =
2w(1l — w/Neg).
3) For a fixed input weighth, the IOWD]P’l,j(,f,[} of the
random puncturing operation forms a stficﬂy logarith-
A; =P (dmin < [N(p—€)] Nhy < h%) =0 (22) mically concave sequence in the output weightand
its maximum occurs ai’ = Ah.

Lemma 1. As N — oo, for all J > 2 and b} < N7 ¢, we
have

for arbitrarily small values ofe > 0.
The proofs of these statements can be found in Appdndix A.
From Propositiof]2 it follows that, for a fixed input weigit
Ay =P (dwin < [N(p—€)] N hyp < hY) and a fixed total output weight of the RCEs= Zfil h; (see
* Fig.[d), the CIOWE of TTCs is maximized when the RCEs
<P(hp < hy), . - :
) o ) ~in the outer MPCC contribute equally fq, i.e., whenh; =
the problem is reduced to finding the asymptotic m|n|mu%1r/J or p = hy/JK = py, i € {1,...,J}. Equivalently, the
distance of an MPCC with/ parallel concatenated RCES,cIOWE of TTCs is maximized when the FFCEs in the outer

Proof: Using the simple upper bound

which was lower bounded in[3] and [25] as MPCC contribute equally téy, i.e., whenh; = h¢/(q — J),
P (h < Nﬁﬁ) <y N2 orp;,=hs/(q—J)K =ps, i € {J+1,...,q}. Thus we can
b= - substituteps and ps for the p; in the asymptotic CIOWE and

for arbitrarily small values ot > 0, some positive constantthe number of variables in the maximization problem[inl (24)

C1, and N sufficiently large. m is reduced. The normalized output weight of the outer MPCC
Now, consideringA,, we upper bound the + 5 sums in is then given byp, = (Jps/q+ (¢ — J)pt/q).

(20) by their maximum element time¥ Rq + 1, which is an

; L 2. Ifth ists g then f 2 RCEs in th
upper bound on the number of terms in each sum, and anma ere exists @ > 0 then for./ > s inthe

W&ter MPCC and

obtain In(NRg +1)
. n
Ap =P (dmin < [N(p— €)] N hp > h2) Jim == =0
< q+5 1CrTc(N) . p
<(NRq+1) Z;’:lrﬁi)fiph; Aw,ho,hl,...,hq,hs,h;,h we have
h<[N(p—e)] . *
w,ho,h!, he Ay =P (dmin < [N(p—€)]Nhy > h}) =0
(23) . .
Using Stirling’s approximation{11), we can upper boun@S N — oo, wheree > 0 is an arbitrarily small constant.
each of theg + 4 IOWDS in the CIOWE of[[¥) as Proof: We investigate the asymptotic CIOWE{17) in the
Ci(Ne,) i region0 < p < p by splitting it into two parts,RqF; and
Poyin, S exp {Ncifai,ﬂi +2In(Ne, + 1)} : RqF,, and write
Then using t_he notation of the asymptotic C_:IOV\ZE](17) anfj],}-cmc} } . N . = NRq(Fi+F)
upper boundingVe, + 1 by NRq + 1, we obtain [(2H). N T N e TR
Thus, to boundi; it is necessary to examine the asymptotic (25)
CIOWE and the asymptotic spectral shapd (16) of TTCs. Wéth
now show that if there exists@a> 0 as defined in Definition]1, P —1]I-]I w Iy ,c, J o Ace
we haved, — 0 asN — oo. To this end we make use of the 17y (N—R) * _waR ro b 26
log-concavity of the IOWDs of the component encoders. . q—J pp | phAce (26)
- w h hp s
Proposition 2. It holds that: ¢ "NmowEG-H R N
1) For a fixed input weighto, the IOWDP. ") of the  Fy = (u—N)f, AT, - @D)
accumulator forms a logarithmically concave sequence NRa» Rl A NRq» TNRXq
in the output weight, and its maximum occurs @ = The termF; includes the asymptotic IOWDs of the encoders,
Ne¢/2. whereasrly includes the asymptotic IOWDs of the random
Ay <(NRq+ 1) exp max N - }'CTTC} , h " + (2¢+8)In(NRg+1)
hp>h W< [N (=) ¥R MR NEr o WA N NRGT W
w,ho, bl b
(24)
=exp max N . Ferre ) W + (3¢ +13)In(NRg + 1)
hp>hg h<IN(p=e)] ¥R N Wha - N Mo NRG= &

w,ho,hfhe



puncturing operation. From Definitié 1 we have that, Gor
p < p, the spectral shape has its supremum(aj = 0, which
is achieved forp, = 0 and ps = p/, = p/(Rg\).

First we note that, < 0, with F», = 0 for p, = p. and
F, < 0 otherwise (see the proof of part 3 of Propositidn 2
so we can simply upper bound the telsRkqF, by zero.

Next we note that; tends to zero fop, — 0 (see the proof
of Propositior 1), and hence to upper bousidqF; we con-
sider all possibleh, > h} such thatp, tends asymptotically
to zero, i.e.,

1(p)

. h
lim -2 =0. -0.01
N—oo N ‘Z—SLTypEZ 2-St. Type 1 ‘4—St.Type3
002 $=0.1793 $=0.1911 p=0.2021
Then we have o, 015 .
. . F d
lim NRqF, = lim hy,-— =hy, - — Fi|, _,, ) ) )
N—o0 N—o00 b dpp Pr= Fig. 3.  Asymptotic spectral shapes for the rdte= 1/4 TTCs with u =
hp/N—0 hp/N—0 A =1

(28)
where bothF, and p, = h,/(NRq) tend asymptotically to
zero asN — oo and the fractionfy/p,, is the difference as N — ~ for any hy; satisfying
quotient of the pointF |, —o, which asN — oo yields the

total derivative ofF; with respect top,, evaluated ap,, = 0. lim w =0 and h} < NI ¢
We show in AppendiXB that, if there existspa> 0, then, N=roo hs
for J > 2 accumulators in the outer MPCC, the total derivative u

of Fy with respect top, evaluated ap,, = 0 is bounded by TheorentL proves thgtis a lower bound on the asymptotic
d minimum distance growth rate of a 2-state TTC ensemble. In
— Co, (29) a slight abuse of notation, from now on we refergas the
dpy asymptotic minimum distance growth rate.

F1|Pp:0 S -
for some positive constarity and forps < 1/2.
So, forp, = 0, from (24), (25), [(2b),[(27),[(28), an@(29)B. Asymptotic Minimum Distance Growth Rates

we can write While the spectral shapes of TTCs cannot be negative, the
(30) existence of a positiveh according to Definitior[J1 implies
that the ensemble is asymptotically good. As is common
and limyo.c A2 = 0 for all h% that satisfy practice, we numerically evaluate the spectral shapes & TT
limy 00 In(NRg + 1)/h% = 0. m ensembles and use a subspace trust-region method [26] to
) ) evaluate the supremum of the asymptotic CIOWE. For 2-
Remark 1. The fact that in AppendXIB we require < 1/2  gtate component codes, the asymptotic IOWDs are available
for (29) to be negative together with the fact that we requirg, cjosed form, but for 4-state ensembles, we cannot obtain
ps = ps = p/(RqX) for F, to be zero results in the upperjosed form expressions, so to compute the asymptoticrapect
bound on the asymptotic minimum distance growth rate  ghanes we use the method outlined[inl [27] to calculate them

Ay <exp{—Cs-h,+ (3¢+13)In(NRqg+ 1)},

 Rg\ numerically.
A (31)  Fig. @ shows the asymptotic spectral shapes for the rate
) ) o R = 1/4 TTC ensembles withu = X = 1, i.e., the spectral
given in Definitior[]L. shapes of the HCCs. The asymptotic spectral shape fundtion o
We summarize our results in the following Theorem. the entire ensemble of block codes is also shown. It crosses

zero at the GVB for rate? = 1/4. The ensembles with 2-
Theorem 1. If there exists g > 0 as defined in Definitoll 1 state RCEs in the outer MPCC are plotted with solid lines,
for a 2-state TTC ensemble with > 2 RCEs in the outer while the ensembles with 4-state RCEs in the outer MPCC
MPCC, then the 2-state TTC ensemble is asymptotically gog@ plotted with dashed lines. The spectral shapes are never
and the asymptotic minimum distance growth rate is at leagkgative, but they start out with a zero stretch and turntipesi
p- at the asymptotic distance growth rgie

Proof: From Lemmad1l an@]2 we have that, for an AMong the 2-state ensembles, the type 1 scheme has the

arbitrarily small constant > 0, both largest asymptotic distance growth rate pf = 0.1911.
Replacing one of the parallel concatenated accumulatoits by

P (dmin <[N(p—e]nhy, < h;) —0 feedforward inverse (type 2) decreases the asymptotiardist
growth rate top = 0.1793. When only three branches enter
and the inner serially concatenated accumulator and the output
P (dmin < [N(p—€)] Ny > h3) =0 of the 1 + D branch is sent straight through to the channel
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Fig. 6. Lower bound on the minimum distance of the= 1/4 type 2
Fig. 4. Asymptotic minimum distance growth rates of the t@p@TC as | 1CS with 2-state component encoders (filled markers) asth#- component
the tuning parametek varies,0 < A < . In each case, the GVB is drawn €ncoders (empty markers) for = 1, e = 1/2, and different values of the
only up to X = p, the maximum possible value of tuning parameten.

0.25

rates approach the GVB. The green curve for the fate 1/2

GVB atrate R = /4 code ensemble shows the steepest increase (among the curves
b TTETTTOTTAIITITTTIT shown) but then flattens out arouid= 0.15. Like the 4-state
GVB at rate R = 1/3 code ensembles it reaches the GVB fot 1. The asymptotic
________________________ e distance growth rates of the type 2 tuned turbo code show the
015} o3 - . .
L PPt same general behavior, but they are smaller than those of the
,/::—"' type 1 ensemble and the increase for smaié not as steep.
-7 Type 3 and 4 TTCs also show the same general behavior,
——W=1,R=1/4,25T with the asymptotic distance growth rates of the type 3
Rl ensemble being slightly larger than for the type 4 ensemble.
- - -u=1,R=1/4,4ST The asymptotic distance growth rates of the type 4 ensemble
e e e are shown in FigJ5. The initial slope of the curves is smaller
% 01 o0z 03 04 05 06 07 08 08 1 than for the type 1 ensemble, and fdr= u the asymptotic

distance growth rates are further away from the GVB. They

also increase more smoothly with than for the type 1
Fig. 5.  Asymptotic minimum distance growth rates of the typ@TC as  ansemble.
the tuning parametek varies,0 < X < p. In each case, the GVB is drawn
only up toA = u, the maximum possible value of.

C. Finite Length Analysis

(type 3), the asymptotic distance growth rate reduces éarth The minimum distance of a TTC ensemble for a finite block

to p = 0.1276, and for the systematic type 4 scheme we obtalength V can also be analyzed usifg119). In particular, if we

an asymptotic distance growth rate of orfly= 0.1179. setP (dmin < d) = €, Wheree is any positive value between
Employing 4-statd5/7]s codes instead of accumulators irend 1, we expect that at least a fractidn- e of the codes in

the outer MPCCs increases the asymptotic distance growhie ensemble have a minimum distankg,, of at leastd. In

rates w.r.t. the 2-state ensembles. In the case of the tythe following, we choose = 1/2, i.e., we expect that at least

1 and type 2 ensembles with 4-state encoders in the outetf of the codes in the ensemble have,g, at least equal

MPCCs, the positive part of the asymptotic spectral shapethe value predicted by the curves.

is practically indistinguishable from the spectral shap¢he In Fig.[@ we show the lower bound af,;,, versus the code

entire ensemble of block codes. block lengthNV for the R = 1/4 type 2 tuned TTC ensembles
Fig. [4 shows the asymptotic minimum distance growtlith 2- and 4-state component encoders and several values

ratesp of the type 1 TTC as the tuning parametewvaries, of A. The finite length GVB is also plotted for reference.

0 < X < u. As the code rate increases by reducing thEhe results are consistent with the asymptotic analysis in

coefficient i, the initial slope of the asymptotic distancehe previous section and show increasing minimum distance

growth rate curve becomes steeper. For sthathese curves growth rates with increasing values af Also, for a given

approach the upper bound grgiven by [31) and indicated by value of the tuning parametey, the minimum distance of

the linep = ﬁ for the type 1 ensemble. This steep increagbe type 2 code ensemble with 4-state component encoders

in the asymptotic distance growth rates withis followed is larger than for the code ensemble with 2-state component

by the curve flattening out as the asymptotic distance growghcoders.
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—A— A=1/3 we assume thaf{s — oo and No — oo. For information
—h— A=8/30 symbolu the corresponding priori L-value (or log-likelihood
T ;iigg ratio) is denoted by.¢ (u). Using the Gaussian approximation,
O a=2/30 o~ L¢(u) can be expressed as:
to0M T o /(/1
------------ GVB ﬂ/N Ve c 0’2 m
£ -A/N — Ly(u) = —~u+w (32)
o //" 2
zf"} /ii/n/v
50 ..ﬂ"/ ”/X/:/y/ wherew is a zero-mean Gaussian random variable with vari-
/%”ég/:;§~:jé jﬁjg anceo? ,. We denote byl (u; LS (u)) the mut_ua] information
g%;&:;;ﬂ%ﬂ/ S (MI) betweenu and LS (u). The average priori Ml for the
=i e information symbols is
O0 100 2:)0 300 4;0 500 600 700 800 900 1000 1 Ke1
N Liw= g0 2 s L), (33)

i=0
Fig. 7. Lower bound on the minimum distance of the= 1/2 type 4 ) )
TTCs with 2-state component encoders (filled markers) asti#-component which depends only os, ,, and can be computed using ttie

encoders (empty markers) for=1/3, e = 1/2, and different values of the function asI¢ = J(a ) [@] Note that ifw is transmitted
tuning parameten. L a,u T UAT AU :
over the (binary-input Gaussian) channgf,(u) corresponds
to the channel L-valueL.,,,) = 4Ryr, where R is the

In Fig.[7 we display the same set of curves for fhe- 1/2 €0de rate,y denotes the SNRE,/No, 7 = a + n is the
type 4 TTCs with 2- and 4-state component encoders. Agafficéived observation; is the BPSK modulated symbol, and
the results are consistent with the asymptotic analysisfan 7 1S AWGN with varianceN, /2. In this case it can be easily
a given value of the tuning parameterthe minimum distance Shown thatr?, = 8R-. _ o _
of the code ensemble with 4-state component encoders i$0r code symbols, the corresponding priori L-value is
larger than for the code ensemble with 2-state componélifnoted byL{ (x). Using the Gaussian approximatidry (x)

encoders. can be written as
For 4-state RCEs we cannot obtain a closed form WE. . o2,
However, since 2-state TTCs are asymptotically good, and Ly(z) = ——z +w, (34)

. . . 2
replacing the accumulators in the outer MPCC with more
complex[5/7]s RCEs increases both the asymptotic distand#here w is a zero-mean Gaussian random variable with
growth rates (see FigBl[3-5) as well as the finite block lengfAriances? .. As before, we denote by(z; LS (x)) the MI
minimum distances (see Figs. 6 d0d 7), we strongly conjectlietweenz and LS (z). The averaga priori Ml for the code
that the resulting code ensembles with the same structere 8Ymbols is given by

still asymptotically good. Ne—1
0

1
V. ITERATIVE DECODING CONVERGENCETHRESHOLD Ne i=

To determine the iterative decoding thresholds of tuneg: 1 can be computed using theunction as/C, = J(oa..)

turbo code ensembles we employ an extrinsic informatigfiha code symbols are transmitted over the chanmgl, =
transfer (EXIT) chart-based analysis [28]. EXIT chartskra SR '

the exchange of extrinsic information between component de
coders in a concatenated code scheme to estimate itsumrag
decoding threshold. In the following we briefly describe EXI
charts for type 1 TTCs. The decoder is depicted in Elg.
A similar procedure as the one described below can also
applied to type 2, type 3, and type 4 TTCs.

Letu; = (UO, . 7chi—1) andx; = (.%'0, . 7chi—1) be

The a priori L-values L¢(u) and LE(z) are inputs to an

posteriori probability (APP) decoder which computes the
xtrinsic L-valuesLS (u) and LS () for information symbols

%nd code symbols, respectively. The extrinsic L-values are
§o Gaussian with varianee? , and o2, respectively. The

e,x’

average extrinsic Ml for information and code symbols isgiv

the sequence of information symbols and the sequence of cgge Ke_1
symbols, respectively, of thih (N¢,, K¢,) component code € — 1 Z I(u»-LC(u»)) (36)
C; of the TTC. (In the following, we will drop the index oM Ke & e
when referring to a generic component code.) Each component
decoder in Fig[18 is fed witla priori information (from either and No1
o

other component decoders or the channel) on its information c 1 e
and coded symbols and computes extrinsic information which Tox = Ne Z (i Le (1), (37)

in turn, is used by the other component decodera gsiori =

information. In convergence analysis using EXIT chartssit respectively.

common to model thea priori information as a Gaussian The input-output behavior of the APP decoder for encéder
random variable. Also, as required in EXIT charts analysiss completely characterized by two EXIT functiofi$, and7,,
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i i i P . LSy L5 (u
which specify the evolution of the extrinsic Mls as a funatio %= 4
iori & (uy Si(u
of the a priori Mls: G G
LE*2 () . 182 (uy
( IC IC ) l,ﬁ'l(ul). L2 (us)|

a,u’ "a,x . ..
’ ’ (38)  rimwy |
Al CH

Ty
C C
Ty (I I ) Lf!(uo.LEﬁ(us)
3

a,u’ a,x
In practice, these functions can be obtained by Monte Carl:., = ..
simulation for all values) < IS, <1 and0 < I, <1 by
modeling thea priori information as Gaussian distributed, agiy. 8.
noted above.

The decoder of the type 1 TTC consists @ft+ 1 APP

Le(xmpcc)
RSN

C
Ie,u

C
Ic,x

L& (xacc)
oL k
acc

LCacc(u
La(xmpcc) 7 (tace)
E—

Decoder for a type 1 TTC.

component decodeﬂs;l, . 7cq—1, andC;.! corresponding to component of the outer MPCC can then be expressed as
the component encodegs, . . ., C, of the outer MPCC and to 1

the inner accumulator, respectively, which iterativelgleange . _ ¢ | Z g1 (Icciu.)Q 1<

extrinsic information (see Fi@l 8). A decoding iteratiomsists o eyt o T

of a single activation of; *,...,C, ! andC;.. in this order. : (41)
The evolution of the extrinsic Ml can then be tracked in a e e Ll (e \2 e
multi-dimensional EXIT chart[[29], which plots togethereth I =T | J Z J (Icfm) i |

EXIT functions of theq + 1 component encoders and can =Lzl

be used to predict the convergence threshold. Unfortupatdbr information symbols and code symbols, respectively.
such a multi-dimensional EXIT chart is hard to visualizein (@1) we used the fact thal.S (u) = D i LS (u)

To generate EXIT charts that are easier to deal with, théd (assuming independence}, = > izl 0., from
EXIT functions of the component encoders of the outer MPCihich (using the J function) it follows that ]gful =
can be combined to obtain the EXIT function of the MPCC, 3

without any precision loss in the prediction of the convexge J <\/ZiL_11,i;£l J1 (Iccu) ) [28]. Note that, for the type
thresholds[[30]. In this way, the behavior of TTCs can be

determined by using a two-dimensional EXIT chart, dispigyi 1

. . . X i i Ci — 7Cace tion 7€
in a single figure the EXIT functions of the outer MPCC and@'"® identical and, = Ics< . The EXIT function/gyree,
of the inner recursive encoder: can be computed for all valudgs < Iec‘ha < 1 by activat-

ing all ¢ decoders of the MPCC until{!, and IS have
converged to a fixed value. In other words, to obtain the

tuned turbo code, the four EXIT functiod§, and I

€,Xq

Cmpcc Cmpcc
°=XBC4PCC Tw(IaZ,prccg (39) two-dimensional EXIT plot, we assume that a large enough
I = Tu(lse o 1) number of iterations is performed within the decoder of the

outer MPCC before iterating with the decoder of the inner
where JCvurcc  — JCacc and ICaxe — J[Cwrcc  Note accumulator. Then, since all component encoders of the oute
MPCC are identical /SyFoc . is just equal tol$., . Finally,

S &XMPCC | ©,Uacc a,Uacc €,Xmpcc’
that, since the inner accumulator is connected to the chan e, XMPCC
IS s a function ofy. In particular, we must distinguish "€ convergence behavior of the type 1 TTC can be tracked

between the MI corresponding to the parity bits generated By displaying in a single plot the two EXIT functions i {39).

the accumulator and the MI corresponding to the input bits"€ EXIT charts of type 2, type 3, and type 4 TTCs can be

since the two branches are punctured with different puirggur €OMputed in a similar way. Note that for type 3 and type 4, the
rates. Assuming random puncturing, taepriori MI for the EXIT function of the outer MPCC also depends prthrough
parity bits of the inner accumulator, punctured with ratgs €ncoderCo, which is directly connected to the channel. For
given by \J(/8R7), while thea priori MI provided by the the type 2 TTC, the computation df.,lrvclff;(ép is a bit more
channel for the input bits of the inner accumulator, puredur COMPlex, since the EXIT function of the first encoder in the
with ratep—\, is (u—\).J(v/8R7). With these considerations,outer MPCC is different.

the EXIT function of the inner accumulator can be written as !N Fig-[8 we show the EXIT charts of the rafe = 1/4
type 1 (triangles) and type 4 (solid curves with no markers)

c c TTCs with 2-state component encoders for= 1. A vertical
I = Tulleineee s A (V8RY), (0 — A)J(V/8RY))).  step between the lower curves and the upper curves repsesent
(40) a single activation of the inner decoder, while a horizontal
What remains is the computation #f\rc¢ . Looking in step between the upper curves and the lower curves repsesent
more detail at the EXIT functions of the component encodeas unspecified number of activations of all the component
of the outer MPCC, we observe that titl, I = {1,...,4}, decoders of the MPCC until nothing more can be gained. We
component decoder is fed with priori information onu; observe that the type 4 TTC converges significantly earlier
generated by all the other component decoders of the MPQE,= 1.03 dB) than the type 1 TTCH( = 2.24 dB), thanks
and witha priori information onx; provided by the decoder to the systematic branch. Note also that the EXIT chart for
of the inner accumulator. The EXIT functions of thth the type 1 tuned turbo code is identical to that of tHeAR
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Type 4 ensembles for different rates
0.18r
0.9 /Zi —w—4State Tp4, R=1/4,p=1 A=1p
//A 0.167| - w -4 State Tp4, R=1/3, p=2/3 Ao
- — - x
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0.7 7151 & :
Cb:Cacc 47 / / A g 01
=06 A" - E
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PRy / A b
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- /A/ o A
A e 5 L
03 ooa - e T 002 0
__O——-O'—'o'y/ / R - i *» i i L L
= > + $
A7 // Ca:MPCC 0 05 1 1.5 2
0.2 7 / Iterative Decoding Threshold in E /N,
/AfA//
0.1y Fig. 10. Asymptotic minimum distance growth rgteversus the iterative
A decoding convergence threshold for the type 4 TTC with &stad 4-state
0 encoders in the outer MPCC.

0O 01 02 03 04 05 06 07 08 09 1
Ia(Cb); Ie(Ca)

, , the code is equal to the outer MPCC consisting of a parallel
Fig. 9. EXIT charts of the type 4 TTC with = 1 andy = 1.03 dB concatenation of three RCEs and a systematic branch. In this
(solid curves with no markers), the type 1 TTC with= 1 and~ = 2.24 o ’ y X -
dB (triangles), and the type 1 TTC with = 0.3 and~ = 1.09 dB (circles). case, the minimum distance does not grow linearly with block
R = 1/4, 2-state component encoders. length and the asymptotic distance growth rate therefore is
zero. Note that the outer MPCC with 4-state encoders has a
significantly better iterative decoding convergence thoés

Ey, /Ny = —0.04dB) than the MPCC with 2-state encoders

BEb/NO = 0.63dB). For\ = 1, the R = 1/4 2-state ensemble

Rhibits a better thresholdEy, /Ny = 1.03dB) but a lower

code, where the EXIT function of encodéy, in the figure
corresponds now to the EXIT function of the repeat-by-fo
code. The convergence threshold of the type 1 TTC can

significantly improved if some of the-parity bits at the outpl asymptotic distance growth ratg € 0.1179) than the 4-state
the inner encoder are replaced by bits from the outer MPCC’e semble. Therefore the dynamic range over which the 2-stat

the expense of a smaller a_symptotic r_ninilﬁum distance 9" semble can be adjusted is only 0.4 dB, whereas the 4-state
ratlte.folr(;gedt%pg 1 -I;T1C5 V(\j'gh ~ (I)_'?’ ((I:'r(ilﬁ_ )atunr:EI Otpenslensemble can be tuned over a larger range of thresholds and
aty =L 18, 1 earlier. in this case, the type asymptotic distance growth rates. This indicates that & th

TTe W'th.)‘ = 0.3 has a similar convergence threshold an esign of TTCs it is important to use an outer MPCC with
asymptotic growth rate as the type 4 TTC with= 1. very good convergence properties.

Puncturing TTCs to ratd?R = 1/3 (¢ = 2/3) results in
a right shift of the curves, while leaving their general shap
In thIS SectiOI’l we Combine the minimum diStance resultS mtact. Since the maximum asymptotic distance growth rates
Sectior 1V and the iterative decoding convergence resudta f (for A = y) of the underlyingR = 1/4 code ensembles are

SectionY. We observed the tuning effect, namely asymptoligt very close to the GVB, they are only slightly reduced by
minimum distance growth rates and iterative decoding threshe puncturing process (see also Fi. 5).

olds increasing with)\, for all typgs of tuned turbo codes.. “In contrast to FigT0, which shows the values for the
However, the effectiveness of tuning depends on the specifiteshold and the asymptotic distance growth rate direictly
combination of distance and threshold results. Fig.[Id we show the gap between the convergence threshold
Fig. [I0 shows the asymptotic minimum distance growthyy channel capacity and the gap between the asymptotic
rate p versus the iterative decoding convergence thresholdnimum distance growth rate and the GVB. Singe= 0
for the type 4 TTC w_ith 2-state and 4-state encoders in the \ — o the gap of the leftmost point of any curve is equal
outer MPCC, respectively. For all curves, we computed 1} ihe GVB. As) increases, the gap to the GVB decreases, but
equally spaced values froth = 0 t0 A = . For R = 1/4  he gap to channel capacity increases in all casesRFerl /4
(v = 1) and A = 1, the ensemble with 4-state encoderg,q )\ — 0, the 2-state type 2 and type 3 ensembles are
exhibits an asymptotic distance growth rate @f= 0.17 jjentical. Due to the FFCE, they exhibit an iterative dengdi
and a threshold of,/No = 1.8dB. Decreasing) leads 10 hreshold off, /N, = —0.04 dB, only 0.75 dB from capacity.

better convergence properties, but also to a reduction®f th,, - 0, the two ensembles exhibit somewhat different
asymptotic distance growth rate. In the extreme case-=6f0, .naracteristics.

INote that the EXIT function of the outer MPCC for type 1 TTCs is Forp =1 (R - 1/4) and A = 1, the type 2 ensemble
identical for A = 1 and A = 0.3, since it does not depend on has an asymptotic distance growth rate @f= 0.1793,

VI. TUNING BEHAVIOR
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Type 3 tuned turbo code

——R=1/4
-+ -R=13
—e= R=112

—w— Type 2
——Type 3 0.9+

IPGVB)

A
-p
o
2

0.5r
0.4

0.3r

0.2r <

Relative Gap to GVB (1

(5.10) T T e, o1t
0 0.5 1 15 2 25 3 i i i i i i i
Gap to Channel Capacity in dB 0 0.5 1 1.5 2 25 3 35

Gap to Channel Capacity in dB

Fig. 11. Gap of the threshold to channel capacity versus #pe af the

asymptotic minimum distance growth rate to the GVB for Zestoype 2 Fig. 12.  Gap of the threshold to channel capacity versus efaive gap
and type 3 TTCs and rateR = 1/2, 1/3, and1/4. As a comparison, for of the asymptotic minimum distance growth rate to the GVBtfeg 2-state
R = 1/2 the thresholds and asymptotic distance growth rate caaitiwiof type 3 TTC ensemble with rate8 = 1/2, 1/3, and1/4.

some regular LDPC code ensembles, as well as the ARJA ensd@&jlare

also given.

corresponding to a gap 6f0352 to the GVB, and a threshold
of F,/No = 2.05dB, corresponding to a gap to capacity
of 2.85dB, while the type 3 ensemble exhibits a gap to th
GVB of 0.0869 and a gap to capacity ¢f.08dB, which is
similar to the type 2 ensemble with= 0.6. While puncturing
the code ensembles resulted in a right shift of the curves
Fig.[10, in the representation of F[g.]11 puncturing moves tl
curves closer to the origin, i.e., for a fixed gap to capacit
the gap to the GVB is smaller. It is interesting to note that fc
A = 0 the gap to capacity of the type 2 ensemble increas
slightly as the rate increases, while for the type 3 ensetthiele
gap to capacity decreases slightly as the rate increases. . ‘
asymptotic distance growth rates for tRe= 1/2 type 2 TTC 0% 05 1 15 2 25 3
behave like those shown in Figl 4 for type 1 ensembles. F Ey/N, in dB
small values of\ they rapidly increase and then flatten out as
the asymptotic distance growth rate approaches the GVB. Ti{g 13. Frame error rate performance Bf= 1/4 (u = 1) type 2 TTCs
. . . . . with 2-state component encoders for different values ofttming parameter
iterative decoding threshold, however, continuously éases
with ), so that the tuning behavior of thR = 1/2 type 2
ensemble flattens for a stretch before it reaches the GVB at .
A = u = 1/2. Therefore the parameter range over which tHéistance from the GVB, namely — ——£—. The slopes of
ensemble can be effectively tuned is from= 0 to A = 0.2, the three curves are almost identical. Therefore improttieg
which brings the asymptotic distance growth rate to withigssSymptotic distance growth rate from zero to half of the GVB
0.02 of the GVB. in each case corresponds to a difference in the convergence
As a comparison we also give the threshold and asymptofifeshold of roughly 1 dB. The curves plot the maximum
distance growth rates for rate = 1/2 regular LDPC code POssible range ok values, withA = 0 corresponding to the
ensembles and the rat8 = 1/2 ARJA [23] ensemble. topmost point anch = x corresponding to the lowest point of
With the exemption of the (3,6) LDPC code ensemble, f&ach curve.
a given gap to channel capacity, the LDPC code ensembles
exhibit a larger asymptotic distance growth rate than th€ TT VII. SIMULATION RESULTS
ensembles. However, in contrast to the asymptotically goodwhile the previous sections focused on asymptotic results
LDPC codes, TTCs have a simple encoder structure wibr the minimum distance and the iterative decoding conver-
O(1) encoding complexity. On the other hand, the quasi-cycligence behavior, in this section we show simulation results
subensemble of the above LDPC codes that alsoddg illustrating that the tuning principle also applies to tifely
encoding complexity is not asymptotically good. short block lengths. We did not make any attempt to optimize
Fig. 12 again shows the tuning behavior of the 2-statee simulated codes but rather focused on the ensemble
type 3 ensemble, but this time the y-axis shows the relatiagerage code performance. To this end, random interleasrs

Frame Error Rate
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the HCC, which has the best error floor. In particular, the
code with A = 0 performs best in the waterfall region, as
predicted by the EXIT charts. However, it has the highesirerr
floor, in agreement with the minimum distance analysis. In
general, lower error floors are obtained for increasing eslu
of A, but at the expense of poorer performance in the waterfall
region. Note that, due to the more powerful 4-state componen
encoders employed, the error floors of tRe= 1/2 type 4
TTCs are lower than those observed in Eig. 13 forfhe: 1/4
type 2 TTCs with 2-state component encoders.

10

-1

10 "¢

107}

103}

-4

10 ¢

Frame Error Rate

A=0
10°L|—8—A=2130 A
A =4/30 VIIl. CONCLUSIONS
o' | ——A=6/30 Inthi . . .
10° )= g3 n this paper, we have introduced a family of hybrid concate-
—A— ) = 10/30 nated codes where a tradeoff between asymptotic minimum

10_7 i i i i i
0 0.5 1 15 2 25 3 35 4 4.5

E,/N, (dB)

distance growth rate and iterative decoding threshold @n b
achieved by varying a tuning parameteBy decreasing, the
convergence behavior of the code is improved at the expense
of a smaller asymptotic minimum distance growth rate and
worse error floor performance, and vice versa. An important
advantage of the hybrid tuned turbo code constructionsais th
they are asymptotically good for a large range of values,of
well as random puncturing patterns, were employed. Cdyefuko that even small values of are sufficient to ensure linear
designing the interleavers and puncturing patterns shgeld asymptotic distance growth with block length, potentially
better codes than the ones shown here in terms of error fleegulting in low error floors. In addition, a second tuning
performance[[31]. Interleaver design, however, usuallg hparametey, can be used to change the rate of a TTC ensemble,
little influence on the iterative convergence thresholde Thhereby allowing a system designer to trade off between code
information block length for all simulations & = 1024 bits  rate, iterative decoding convergence behavior, and emor f|
and we use 20 iterations. performance without changing the encoder structure.

In Fig.[I3, we display frame error rate (FER) curves for rate
R = 1/4 type 2 tuned turbo codes with 2-state component APPENDIXA
encoders and € [0, 1]. The type 2 code withh = 0 performs PROOF OFPROPOSITIONZ]
best in the waterfall region, but it has a high error floor due t A sequencey;, i = 0,1,...,n, is logarithmically concave
its poor minimum distanEaIn this case, the code is equivalentf
to the MPCC in[[15]. On the other hand, the code witk- 1
shows the worst convergence, but according to the analysis . _
in Section[TV, it has the best asymptotic minimum distanda0!ds for every element; with 1 <i <n -1 [32]. _
growth rate, potentially resulting in the lowest error floBy 1) For the accumulator, we now consider the ratio

Fig. 14. Frame error rate performance of R=1/2 type 4 TTC# Wistate
component encoders for different values of the tuning patar.

2
QF 2 o1t Qg

tuning A, we can obtain any behavior in between these two (PACC(NC))Q

extreme cases: whendecreases, the convergence behavior of R, — w,h

the code improves (the curves get closer to the performafnce o v ]}DUAJC}CLNIC)]PUAJC&A{C)

the MPCC), but the error floor is higher. For small values of NC _h " Ne —h— |w/2] +1
A, where the minimum distance is small, the simulations were :Nc il Ne —h - [w/2] :

able to reach the error floor of the code. Compared te 0,
the code withA = 0.2 loses about 0.5 dB in the waterfall
region but the height of the error floor improves by two orders
of magnitude. Foi = 0.4, the convergence threshold is again
0.5 dB worse than the. = 0.2 case, but the error floor is
lowered beyond what can be observed in the simulations.
Similar behavior is observed in Fig.]J14, where FER curves
for rate R = 1/2 type 4 TTCs with 4-state component
encoders are shown. Again, by varying the tuning parameter
we can obtain any behavior between the outer MPCC, which
shows the best iterative decoding convergence behavidr, an

2The height of the error floor of the MPCCs\ (= 0) in Figs.[I3 and
[I4 is accurately predicted by the union bound of the codegatidg that
the dominant cause of decoding error is decoding to a wroagword. For
A > 0, the error floor is above the union bound, indicating thatrttieimum
pseudo-weight of the code is limiting performance in theefioor region.

h—1 h—[w/2]+1
h h—[w/2]

Since the ratiomj”—l1 - I’;—jl > 1 for 27 > x2, we obtain
Ry =1forw=1andR, > 1forw > 1. The sequence
is thus logarithmically concave. Since the logarithm is a
monotonically increasing function, the maximum of the
IOWD equals the maximum of the asymptotic IOWD
and can thus be obtained by taking the derivative of
(@2), which is given by

0 nce B 1-B—a/2

— =In|—— In{ ——— 42

8[’3 o, n 1_[_3 +In ﬂ—Oé/2 ) ( )
so the maximum occurs g = 1/2, Wheref(‘j‘ic/2 =0.

Correspondingly, the IOWD of the accumulator is max-
imized forh = N¢/2.
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2) For simplicity, we consider the terminated 2-state FFCgarallel encoder; = 1 if there is a simple systematic branch,
with even output weighk. (Considering the terminatedandc € [0, 2] if the parallel encoder is the 2-state FFCE.
code does not change the asymptotic IOWD of the code.)The total derivative w.r.tp, is then given by
The ratioR,, is given by d 9

2 — K| a=ape = —F1+
(PEF}ch)) dpp 1|£[§ alf/;r 8pp !
R _ s =acpy
w FE(N, FEF(N,
Pons Prnys’ S (aiFl oD D
D241 Ne—w—h/2+1 w—h/2+1 _ +ablg—J) \Op @ Pr
“h/2—1 Ne—w—h/2—1 w—h/2—1 ;Fl.gf’uaiﬂ.g”o) o—ap, -
The sequence is strictly logarithmically concave since P Pr PO Pr ,’?32‘3%‘;

every term in the above product is strictly larger than

one. The derivative of{13) is given by The derivatives of the asymptotic IOWDs of the component

encoders with respect to their output weight are giveri by (42
9 err _ 1y (a - ﬁ/2) R (1 —a— 5/22 and [@B). The derivatives with respect to their input weigtet

ap P T 2 B/2 B/2 given by
so the maximum occurs af = 2a(1 — a), where 9 acc 7%111 (ﬂ - Oé/2> I <1 —15 - a/2> +1n2
—
1
2

f(fg‘;(l Q) = = 0. Correspondingly, the IOWD of the 2- oo’ P 1— 2
state FFCE is maximized fdr = 2w(1 — w/N¢). In (42(1 — 2))
3) For random puncturing, we consider the ratio ’

2 B-a/ (44)
’ —a/2
. (]pl;(}i\f;) wherex = 54~ and
h =PV’ P(N’
Ph,(h’f)l.,kph,(h’ﬁlj 0 ol < « ) I (1 —a— [3/2) . (45)
W41 AN - 41 da’® l-a a—f/2
h , AN — 1/ . We now evaluate the contributions of the component en-
h—h+1 A-NN-h++1 coders inF} to the total derivative and show that fpg — 0,
h—n (I=XNN—h+W or equivalentlyp, — 0, the contribution of each component

The sequence is strictly logarithmically concave sindg either zero or negative. For convenience, for the compbne
every term in the above product is strictly larger thagncoders of the outer MPCC and the systematic branch we

one. The derivative of{14) is given by consider the derivative w.rd, rather than the derivative w.r.t.

5 g 5 Ag pp- When the parallel encoder is simply a systematic branch,
—f}?ﬁ/ y=-In ( )—i—ln <—> , Its contribution to the total derivative is a constant. Witee
op’ L=p L=A=B+ A5 parallel encoder is the 2-state FFCE, its contribution ® th

so the maximum occurs &' = 3, where f} ; | = 0. total derivative is given by
Correspondingly, the IOWD of the random puncturing

operation is maximized foh’ = Ah. Zy 9 g da Iy 9 ,pp 9po
q Ba 7p0’p0 acpr ap q ap « po‘po aCPr apr
APPENDIXB Toa 1 —ap, —acp; /2
THE TOTAL DERIVATIVE FOR I :T In 1—ap, —In (1 - 5) +
We bound the total derivative of ! ( apy )} Toac [1 (1 —apy — acpr/Q)
n n +
= lH J Acc —J FF Acc 1- apr 2(] 1- apr
1_q (o) + fo‘p“ O‘pr+ q cpr T oy, ap:(1 —c/2) acpy/?2 acpy/?2
n () e () e ()
asp, — 0. apr 1—ap; apy

To capture the dependency pf on the normalized input
weight o, the normalized output weight of the 2-state FFCEs Toa (c/2)=¢/?(ap,)t—¢/?
pr and the normalized weight of the systematic brapgh :T ( (1= ap,)i—</? ) +
we parameterizex as a = ap,, with a € [0,2], where the
range ofa follows from the fact that the output weight of !
the accumulator cannot be less than half the input weight. (f + 1) In (M> +
Likewise we parameterizg; = ba = abp,, With b € [0, 2]. 2 L—ap:
With the above parameterization, the weighfsand p, are 2
related by a multiplicative factor, i.ep, = p,(J + ab(q —

))/a C Nn(1-)_ (€
We parameterize the output weight of the optional parallel (5 B ) n( B 5) a3t (5)
encoder aspy = ca = acp,, wherec = 0 if there is no 5 M



For a = 0, the above expression takes on the value zero. For
any fixeda, 0 < a < 2, term 1 is zero fore = 2 and tends to [1]
—oo otherwise. Term 2 is zero far= 0 and strictly negative
otherwise, and it vanishes as — 0. Terms 3 and 4 are
constants and are zero for= 0 andc = 2.

Similarly, the contribution of the FFCEs in the outer MPCC
to the total derivative is given by

(2]
(3]

q—J 0 g |aa da  q—J O FF‘aa Ipe
q Oa o pr—abp. Opr g Opr P ety Opr 14
alg —J) (b/2)"*2(ap,)' b/

g [1“< (1 —ap) 02 [5]

—ap:(1+ b/2)> N

>+
<g+1>m<1 1—aps
(3-1)m(1-2) -2 (3)].

and either tends to zero efroo asp, — 0.
The contribution of the RCEs in the outer MPCC to thel8]
total derivative is given by

(6]

(7]

3 1 ( ) Acc % 9 J Acc [l
da \ ¢ 0 ) | amap, Opr  Opr g TP
a1 apy 1 p(l—a/2) [10]
_q [ J1n<1_apr>+21n< 1 —ap, *
lln<1_pr ap:/ >+ln2]—|— [11]
2 1 —ap;
J ln< Pr >+1n<—1_pr_apr/2>} [12]
al 1—pr pr — apy/2
1-2/J _ [13]
_Jay, [ Hap) L (L ta/2)y
g |2 \a(l—ap)=%7) 2 1—ap,
[14]
= 1 2
1- pr(l + G/2) a a
a_ _a [15]
1n< — +(5-1)m(1-3)
s ! [16]

For a = 0, the above expression is zero. For any fixed
0<a<2,andJ > 2, term 1 tends to-oco asp, — 0. Terms
2 and 3 vanish fop, — 0 and term 4 is a constant.
Finally, the contribution of the inner accumulator to th&ato
derivative is given by
0
Ipp
with =z = %:/2, which is negative for allke < 1/2, or
equivalentlyps < 1/2.
Thus, usingo, < p/(Rq)) and the fact tha{{46) is concavel20]
inz, forany0 < p<p< Rq)\/2 we have

d (-5)) -

— F 1 4—
dpy 1'%*0—2 n( R
where we have used the fact that, fgy — 0, © — ps.

[17]

Acc (18]

PpPs

= %ln (4z(1 —x)), (46)

[19]

[21]

[22]
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