8,404 research outputs found

    On Synchronous and Asynchronous Monitor Instrumentation for Actor-based systems

    Full text link
    We study the impact of synchronous and asynchronous monitoring instrumentation on runtime overheads in the context of a runtime verification framework for actor-based systems. We show that, in such a context, asynchronous monitoring incurs substantially lower overhead costs. We also show how, for certain properties that require synchronous monitoring, a hybrid approach can be used that ensures timely violation detections for the important events while, at the same time, incurring lower overhead costs that are closer to those of an asynchronous instrumentation.Comment: In Proceedings FOCLASA 2014, arXiv:1502.0315

    Worst-case temporal analysis of real-time dynamic streaming applications

    Get PDF

    Reconciling a component and process view

    Full text link
    In many cases we need to represent on the same abstraction level not only system components but also processes within the system, and if for both representation different frameworks are used, the system model becomes hard to read and to understand. We suggest a solution how to cover this gap and to reconcile component and process views on system representation: a formal framework that gives the advantage of solving design problems for large-scale component systems.Comment: Preprint, 7th International Workshop on Modeling in Software Engineering (MiSE) at ICSE 201

    Resource-constrained optimal scheduling of SDF graphs via timed automata (extended version)

    Get PDF
    Synchronous dataflow (SDF) graphs are a widely used formalism for modelling, analysing and realising streaming applications, both on a single processor and in a multiprocessing context. Efficient schedules are essential to obtain maximal throughput under the constraint of available number of resources. This paper presents an approach to schedule SDF graphs using a proven formalism of timed automata (TA). TA maintain a good balance between expressiveness and tractability, and are supported by powerful verification tools, e.g. Uppaal. We describe a compositional translation of SDF graphs to TA, and analysis and verification in the Uppaal state-of-the-art tool. This approach does not require any transformation of SDF graphs and helps to find schedules with a compromise between the number of processors required and the throughput. It also allows quantitative model checking and verification of user-defined properties such as the absence of deadlocks, safety, liveness and throughput analysis. This translation also forms the basis for future work to extend this analysis of SDF graphs with new features such as stochastics, energy consumption and costs

    Explicit Model Checking of Very Large MDP using Partitioning and Secondary Storage

    Full text link
    The applicability of model checking is hindered by the state space explosion problem in combination with limited amounts of main memory. To extend its reach, the large available capacities of secondary storage such as hard disks can be exploited. Due to the specific performance characteristics of secondary storage technologies, specialised algorithms are required. In this paper, we present a technique to use secondary storage for probabilistic model checking of Markov decision processes. It combines state space exploration based on partitioning with a block-iterative variant of value iteration over the same partitions for the analysis of probabilistic reachability and expected-reward properties. A sparse matrix-like representation is used to store partitions on secondary storage in a compact format. All file accesses are sequential, and compression can be used without affecting runtime. The technique has been implemented within the Modest Toolset. We evaluate its performance on several benchmark models of up to 3.5 billion states. In the analysis of time-bounded properties on real-time models, our method neutralises the state space explosion induced by the time bound in its entirety.Comment: The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-24953-7_1

    Predictable embedded multiprocessor architecture for streaming applications

    Get PDF
    The focus of this thesis is on embedded media systems that execute applications from the application domain car infotainment. These applications, which we refer to as jobs, typically fall in the class of streaming, i.e. they process on a stream of data. The jobs are executed on heterogeneous multiprocessor platforms, for performance and power efficiency reasons. Most of these jobs have firm real-time requirements, like throughput and end-to-end latency. Car-infotainment systems become increasingly more complex, due to an increase in the supported number of jobs and an increase of resource sharing. Therefore, it is hard to verify, for each job, that the realtime requirements are satisfied. To reduce the verification effort, we elaborate on an architecture for a predictable system from which we can verify, at design time, that the job’s throughput and end-to-end latency requirements are satisfied. This thesis introduces a network-based multiprocessor system that is predictable. This is achieved by starting with an architecture where processors have private local memories and execute tasks in a static order, so that the uncertainty in the temporal behaviour is minimised. As an interconnect, we use a network that supports guaranteed communication services so that it is guaranteed that data is delivered in time. The architecture is extended with shared local memories, run-time scheduling of tasks, and a memory hierarchy. Dataflow modelling and analysis techniques are used for verification, because they allow cyclic data dependencies that influence the job’s performance. Shown is how to construct a dataflow model from a job that is mapped onto our predictable multiprocessor platforms. This dataflow model takes into account: computation of tasks, communication between tasks, buffer capacities, and scheduling of shared resources. The job’s throughput and end-to-end latency bounds are derived from a self-timed execution of the dataflow graph, by making use of existing dataflow-analysis techniques. It is shown that the derived bounds are tight, e.g. for our channel equaliser job, the accuracy of the derived throughput bound is within 10.1%. Furthermore, it is shown that the dataflow modelling and analysis techniques can be used despite the use of shared memories, run-time scheduling of tasks, and caches

    Green computing: power optimisation of VFI-based real-time multiprocessor dataflow applications (extended version)

    Get PDF
    Execution time is no longer the only performance metric for computer systems. In fact, a trend is emerging to trade raw performance for energy savings. Techniques like Dynamic Power Management (DPM, switching to low power state) and Dynamic Voltage and Frequency Scaling (DVFS, throttling processor frequency) help modern systems to reduce their power consumption while adhering to performance requirements. To balance flexibility and design complexity, the concept of Voltage and Frequency Islands (VFIs) was recently introduced for power optimisation. It achieves fine-grained system-level power management, by operating all processors in the same VFI at a common frequency/voltage.This paper presents a novel approach to compute a power management strategy combining DPM and DVFS. In our approach, applications (modelled in full synchronous dataflow, SDF) are mapped on heterogeneous multiprocessor platforms (partitioned in voltage and frequency islands). We compute an energy-optimal schedule, meeting minimal throughput requirements. We demonstrate that the combination of DPM and DVFS provides an energy reduction beyond considering DVFS or DMP separately. Moreover, we show that by clustering processors in VFIs, DPM can be combined with any granularity of DVFS. Our approach uses model checking, by encoding the optimisation problem as a query over priced timed automata. The model-checker Uppaal Cora extracts a cost minimal trace, representing a power minimal schedule. We illustrate our approach with several case studies on commercially available hardware
    corecore