

Predictable embedded multiprocessor architecture for
streaming applications
Citation for published version (APA):
Moonen, A. J. M. (2009). Predictable embedded multiprocessor architecture for streaming applications. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR642808

DOI:
10.6100/IR642808

Document status and date:
Published: 01/01/2009

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR642808
https://doi.org/10.6100/IR642808
https://research.tue.nl/en/publications/c049c26e-bc5f-446d-977d-7125d135d983

Predictable Embedded Multiprocessor

Architecture for Streaming Applications

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van

de rector magnificus, prof.dr.ir. C.J. van Duijn, voor
een commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op maandag 15 juni 2009 om 16.00 uur

door

Arnold Joannes Maria Moonen

geboren te Weert

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. R.H.J.M. Otten

en

prof.dr. H. Corporaal

c© Copyright 2009 Arno Moonen

All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission from
the copyright owner.

Cover design: Seph Rademakers

Printed by: Universiteitsdrukkerij Technische Universiteit Eindhoven

A catalogue record is available from the Eindhoven University of Technology
Library

ISBN: 978-90-386-1811-1

Abstract

Predictable Embedded Multiprocessor Architecture for

Streaming Applications

The focus of this thesis is on embedded media systems that execute applications
from the application domain car infotainment. These applications, which we refer to
as jobs, typically fall in the class of streaming, i.e. they process on a stream of data.
The jobs are executed on heterogeneous multiprocessor platforms, for performance
and power efficiency reasons. Most of these jobs have firm real-time requirements,
like throughput and end-to-end latency. Car-infotainment systems become increas-
ingly more complex, due to an increase in the supported number of jobs and an
increase of resource sharing. Therefore, it is hard to verify, for each job, that the real-
time requirements are satisfied. To reduce the verification effort, we elaborate on an
architecture for a predictable system from which we can verify, at design time, that the
job’s throughput and end-to-end latency requirements are satisfied.

This thesis introduces a network-based multiprocessor system that is predictable.
This is achieved by starting with an architecture where processors have private local
memories and execute tasks in a static order, so that the uncertainty in the tempo-
ral behaviour is minimised. As an interconnect, we use a network that supports
guaranteed communication services so that it is guaranteed that data is delivered in
time. The architecture is extended with shared local memories, run-time scheduling
of tasks, and a memory hierarchy.

Dataflow modelling and analysis techniques are used for verification, because they
allow cyclic data dependencies that influence the job’s performance. Shown is how
to construct a dataflow model from a job that is mapped onto our predictable multi-
processor platforms. This dataflow model takes into account: computation of tasks,
communication between tasks, buffer capacities, and scheduling of shared resources.
The job’s throughput and end-to-end latency bounds are derived from a self-timed
execution of the dataflow graph, by making use of existing dataflow-analysis tech-
niques. It is shown that the derived bounds are tight, e.g. for our channel equaliser
job, the accuracy of the derived throughput bound is within 10.1%. Furthermore, it
is shown that the dataflow modelling and analysis techniques can be used despite
the use of shared memories, run-time scheduling of tasks, and caches.

ii

Acknowledgments

Writing this chapter means that my thesis formally comes to an end. This chapter
allows me to show my gratitude to all people that directly or indirectly contributed
to or supported my research.

Support for my research was provided by NXP semiconductors, who gave me the
facility to conduct my research and supported my PhD financially from 2004 until
2008. In this period, I divided my working time between NXP Research in Eind-
hoven (System-On-Chip Architectures and Infrastructure group), NXP semiconduc-
tors in Nijmegen (Business-Line Car Infotainment), and Eindhoven University of
Technology (Electronic Systems group). I have been very lucky to have, on one hand,
the facilities of an excellent research environment, and, on the other hand, the possi-
bility to put research ideas on trial within a development team.

I would like to thank Jef van Meerbergen, from Eindhoven University of Technol-
ogy, for giving me the opportunity to work on the challenging research topic of
predictable embedded multiprocessor architectures. I am very grateful for his en-
couragement and guidance throughout my PhD journey.

I also want to thank Ralph Otten for accepting to be promotor at my PhD defense and
for his support as a group leader of the Electronic Systems group. My thanks also
extends to Henk Corporaal as being my second promotor and for his valuable feed-
back during our discussions at the University. Furthermore, I owe much gratitude
to all members of my PhD committee for reading my thesis, giving useful feedback
and for participating in my defence session.

I am indebted to my supervisors Marco Bekooij, from NXP research, and René van
den Berg, from NXP semiconductors, for their outstanding support, advice, and
guidance in my daily work. With Marco, I had many brainstorm sessions and a lot
of in-depth discussions that were very useful and from which I have learned a lot.
I was greatly inspired by René who is a system architect within Business-Line Car
Infotainment, and who participated in our technical discussions and gave feedback
to my work. Besides being good supervisors, Marco and René are pleasant people to
work with.

Within the System-On-Chip Architectures and Infrastructure group in Eindhoven,
my research was part of the Hijdra project. Unfortunately, I cannot mention everyone
who helped me, but I would like to mention the Hijdra members for the valuable
discussions and for getting the opportunity to work in such a team of enthusiastic
and talented researchers.

iv

I also want to thank all people with whom I have worked within the Business-Line
Car Infotainment, for creating a nice working environment, for supporting my re-
search, and for giving constructive feedback. I really enjoyed being part of the soccer
team FC BION for the sportive relaxation after work.

My thanks also extend to my colleagues at the Electronic Systems group, for the nice
working environment. A special thanks goes out to the members of the PreMaDoNa
project for the technical discussions and for providing valuable feedback on my re-
search.

Finally, I wish to thank my family and friends. My parents have always believed in
me and helped me to reach my goals. The love and encouragement of my girlfriend
Esther allowed me to finish this journey. Finally, I would like to dedicate this work
to my lost father, Wiel Moonen, who left us too soon.

Arno Moonen
April 2009

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Car-infotainment domain . 1

1.2 Reactive and real-time systems . 4

1.3 Platform-based design . 6

1.3.1 Existing platforms . 7

1.3.2 Platform trends . 9

1.3.3 Design-time versus run-time mapping 10

1.3.4 Verification of real-time constraints 11

1.4 Problem definition . 12

1.5 Approach . 14

1.6 Contributions . 16

1.7 Thesis outline . 17

Part I: Design rules for a predictable multiprocessor architecture 19

2 Streaming application domain 21

2.1 Characteristics of streaming . 21

2.2 Job’s real-time constraints . 24

2.3 Sample-rate conversion . 25

2.4 Jobs and use cases in the infotainment nucleus 26

2.4.1 Generation three . 27

2.4.2 Generation four . 29

3 Multiprocessor architecture for streaming applications 31

3.1 Requirements for a predictable architecture 31

3.2 Multiprocessor architecture . 32

3.2.1 Æthereal network-on-chip . 34

vi Contents

3.3 Communication and synchronisation between tasks 37

3.4 Static-order scheduling of tasks . 40

3.5 Concluding remarks . 41

4 Analysing real-time performance 43

4.1 Modelling a job that is mapped to the platform 43

4.2 Dataflow model preliminaries . 44

4.3 Dataflow model construction . 47

4.3.1 Absence of the firing rule in the implementation 49

4.3.2 Modelling static-order schedules 53

4.4 Dataflow analysis techniques . 56

4.5 Concluding remarks . 58

5 Case study: comparison of Æthereal network and interconnects in SAF7780 59

5.1 Car-infotainment generation three . 59

5.1.1 Reference design . 59

5.1.2 Communication requirements 60

5.2 Design flow and tools . 62

5.2.1 Estimating the network area . 63

5.3 Comparison design-space exploration and reference design 65

5.3.1 Network cell area . 65

5.3.2 Network communication latency 68

5.4 Concluding remarks . 69

6 Case study: analysing real-time performance of a channel equaliser 71

6.1 Channel equaliser implementation . 71

6.2 Performance analysis via a dataflow model 73

6.3 Performance comparison with simulation 76

6.4 Sources of inaccuracy . 78

6.5 Concluding remarks . 80

Part II: Multiprocessor architecture extensions 81

7 Shared memory architecture and remote write accesses 83

7.1 Inter-tile communication via a shared memory 83

7.1.1 Address-less versus address-based communication 84

7.1.2 Implementation of inter-tile communication 85

7.2 Upper bound on processor stall cycles 90

7.2.1 Processor stall cycles due to remote write accesses 90

7.2.2 Processor stall cycles due to local memory sharing 92

7.3 Run-time scheduling of task executions 94

7.4 Dataflow model construction . 96

Contents vii

7.4.1 Modelling run-time scheduling of tasks 96

7.4.2 Modelling inter-tile communication 97

7.5 Case study: MP3 playback . 100

7.5.1 Upper bounds on processor stall cycles 101

7.5.2 Latency-rate server representation of the MP3-decoder 103

7.6 Concluding remarks . 104

8 Cache-based multiprocessor architecture 105

8.1 Multiprocessor architecture with external memory 105

8.1.1 Inter-tile communication via external memory 107

8.2 Optimistically-estimated versus conservatively-estimated bounds . . . 109

8.3 Cache-miss reduction techniques . 111

8.4 Cache-aware mapping of streaming jobs 113

8.4.1 Execution scaling . 114

8.4.2 Computation of the execution scaling factor 116

8.4.3 Example of execution scaling in a dataflow model 117

8.5 Case study: Digital-Radio-Mondiale receiver 118

8.6 Concluding remarks . 122

9 Concluding remarks 125

A Modelling static-order schedules: Relation between phase f ′and position q129

Bibliography 131

Curriculum Vitae 137

List of publications 139

viii Contents

Chapter 1

Introduction

1.1 Car-infotainment domain

The target application domain, in this thesis, is the application domain from business-
line car-infotainment solutions at NXP semiconductors. This business line has more
than seventeen years of experience in designing digital signal processing chips for
car radios.

A car is a uniquely challenging environment that combines entertainment (e.g. audio
and video) with information (e.g. weather, news, and traffic information). We refer
to this combination as car infotainment. The main application areas are: radio, audio,
video, and navigation.

In the past, radio was only analog terrestrial radio reception, like Amplitude Mod-
ulation (AM), Frequency Modulation (FM), and Weather Band (WB). Currently, dig-
ital satellite radio and digital terrestrial radio are emerging rapidly. An example of
digital satellite radio is Satellite Digital Audio Radio Service (SDARS). SDARS is a
popular type of digital radio in the United States of America (USA) and it is oper-
ated by XM-Radio and Sirius. Examples of digital terrestrial radio are Digital Radio
Mondiale (DRM), Digital Audio Broadcast (DAB), and Hybrid Digital (HD) radio.

Examples of audio processing are playback compressed and uncompressed audio,
streaming audio from a portable media player, audio post processing for enhanced
audio quality, and encoding audio to a storage device. Current car radios support
various kinds of interfaces for connecting the car radio to portable media players,
mobile phones, and storage devices. Furthermore, the number of supported com-
pression formats is increasing rapidly. Examples of currently used compression for-
mats are MPEG-1 audio layer 3 (more commonly referred to as MP3) and Microsoft’s
Windows Media Audio (WMA).

Currently, video processing is mainly video playback for rear-seat entertainment.
The video source can be a mass storage device (e.g. DVD or hard disk) or digital
radio (e.g. SDARS). Finally, there is navigation processing with, for example, road
access services and eSafety. In this thesis, our focus will be mainly on application
areas radio and audio, because these areas are the main focus of business-line car-

2 Introduction

Figure 1.1: Multi-path reception is just one of the issues that has to be addressed.

infotainment solutions at NXP semiconductors. The individual functions in an ap-
plication are referred to as jobs, like an MP3 decoder job and FM-radio demodulation
job. Note that most of the jobs process on streams of data, like radio, audio, or video
streams.

The car is a living room on wheels, which is a uniquely challenging environment. A
car is a moving object driving at speeds up to 200 km/h (causing doppler effect), au-
tonomously following a radio station, in a continuous changing environment with
temperature variation, high voltage/current peeks, multi-path reception (as depicted
in Fig. 1.1), and background noise. At the same time, the user expects a high qual-
ity audio. Therefore, a number of quality enhancement features are added, like
RDS-follow-me for autonomously switching frequencies for following a radio station,
channel equalising for cancelling distortion coming from multi-path reception, two
reception antennaes enabling an improved reception with phase diversity, and noise
reduction and echo cancellation algorithms for making hands-free phone calls.

The development of the car-infotainment market is not uniform across different re-
gions in the world. For example, terrestrial digital radio and (particularly) satellite
digital radio are growing strongly in the USA, while terrestrial digital radio is emerg-
ing in Europe. In the Japanese market, video is already widespread (often integrated
into the head units) and navigation is well advanced, both in terms of adoption and
technology (three dimensional view and integrated hard-disc devices). The Euro-
pean market has the strongest adoption of Bluetooth (BT) for connecting personal
devices to their car infotainment and the main focus in Asia today are low-end car
radios. Therefore, platforms should be flexible and programmable so that they can
cover multiple regions.

Next to these technical challenges, the car environment has also non-technical chal-
lenges. For example, car manufacturers aim for zero field returns. Therefore, the
system should have zero bugs and it should handle abnormal conditions well. No
system is totally bug free, but a robust system will not lock up, cause damage to data,
or let the user wait forever. Field returns are typically expensive and they harm the
brand’s image. That is why car manufacturers require from their suppliers that they
are automotive qualified. To pass the automotive qualification, the system is exposed
to extensive field tests and it should behave according to its specified behaviour
during these tests. New platforms need to be algorithmic upward compatible with
existing platforms, because current algorithms are already proven in the field and
algorithmic changes need again extensive field tests, which are time consuming and

Car-infotainment domain 3

front-end
RF

front-end
RF

CD / DVD
electronics

amplifier

amplifier

HMI
host
µc

analog
radio

(terrestrial)

video navigation

radio
(terrestrial)

digital

radio
digital

(satellite)

audio
processing

compressed
audio

connectivity
BT

module

USB
module

digital signal processing

Figure 1.2: Simplified car-infotainment system.

costly. Therefore, they increase the development risks for new platforms.

There are some important differences between the life cycles in the automotive, con-
sumer electronics, and personal computer domain, like time for introduction of new
applications, and life time of applications and devices. For automotive products the
planning and development of a new device takes about three years (two years for
design and one year for validation and automotive qualification) and the life cycle
is about eight to ten years. For products in consumer electronic, the planning and
development time is six to nine months and the life cycle is about one and a half
year. For the personal computer world this is even faster (several months). To sur-
vive the automotive life cycle, car-infotainment platforms should support flexibility
and upgrade possibilities. For example, in October 2001 Apple launched its portable
media-player iPod that became a hype in the following years. Car radios that are sold
in 2003 contain digital signal processing platforms that are developed at least three
years earlier. Therefore, they had to be flexible in such a way that the iPod could be
connected to a car radio. Furthermore, when looking at the development of the car
radio of today, can a digital right management solution survive an entire car life cycle?

A simplified block diagram of a car-infotainment system is depicted in Fig. 1.2. The
application areas, such as analog terrestrial radio, digital terrestrial radio, digital
satellite radio, audio processing, compressed audio, video, and navigation, have
been considered as largely distinct in building car-infotainment systems. But fu-
ture systems will be increasingly characterised by convergence of these application
areas. The main digital signal processing platforms of business-line car-infotainment
solutions at NXP semiconductors, support a nucleus of infotainment functionality.
An infotainment nucleus consists of common and stable jobs from the areas radio,
audio, video, as well as navigation. One chip or chip-set, including software, will
be the heart of an integrated infotainment system, where cost, quality and appli-
cation life time are balanced. Standard interfaces, to interconnect multiple chips,
enable high-end application implementations for early market penetration, because
we are never sure what jobs we can expect in future generations (e.g. speech recog-

4 Introduction

supported supported
generation areas modes

an
al

o
g

te
rr

es
tr

ia
l

ra
d

io

au
d

io
p

ro
ce

ss
in

g

co
m

p
re

ss
ed

au
d

io

d
ig

it
al

te
rr

es
tr

ia
l

ra
d

io

si
n

g
le

m
ed

ia

d
u

al
m

ed
ia

tr
ip

le
m

ed
ia

one • • •
two • • • •
three • • • • •
four • • • • • • •

Table 1.1: Overview of current infotainment-nucleus generations.

nition [22], audio spotlight [66], or anti sound [96]). Furthermore, it enables proto-
typing to capture requirements. An overview of the four generation digital signal
processing platforms is shown in Table 1.1. Currently (generation four), the number
of supported media streams is three, one for front-seat audio and two for rear-seat
audio. Future generations will support even more than three streams. For example,
for ripping audio streams to a hard disk (e.g. streams received from multiple radio
stations). Furthermore, we expect that future infotainment-nucleus generations will
increase to integrate additional jobs from the areas digital satellite radio, video and
navigation, in a single chip. The increase in the number of jobs, increase in the num-
ber of active media streams, and increase in quality enhancement algorithms con-
tribute to an rapid increase of possible set of simultaneously active jobs. This rapid
increase will result in an increase of complexity and the demand for new design and
verification methods to come to a robust and cost-efficient system implementation.

A short summary of characteristics in the car-infotainment domain is given below:

• Most jobs fall in the class of streaming, i.e. they process on a stream of data.

• Increasing demand for flexibility, e.g. supporting multiple digital-radio stan-
dards and multiple compression formats.

• The supported number of jobs and number of media streams is increasing.

• The possible number of simultaneously active jobs is increasing rapidly.

1.2 Reactive and real-time systems

The streaming jobs in the car-infotainment domain, typically need to react on their
environment within certain timing constraints. Reactive systems [41, 6] have to re-
act to an environment which cannot wait. Reactive systems maintain a permanent

Reactive and real-time systems 5

d

FRT

ad
d

ed
v

al
u

e

time

ad
d

ed
v

al
u

e

SRT

d time

ad
d

ed
v

al
u

e

HRT

d time

ad
d

ed
v

al
u

e

time

BE

Figure 1.3: Example of jobs performance contribution function for different types of
requirements.

interaction with their environment and have externally defined timing constraints.
Radio reception is an example where the system should keep up with its environ-
ment, because the radio transmitter cannot be held up.

In [14], computing systems that must react within precise timing constraints to events
in its environment, are called real-time systems. As a consequence, the correct be-
haviour of these systems depends not only on the value of the computation but also
on the time at which the results are produced. Streaming media applications typ-
ically have such real-time constraints, i.e. deadlines. By contrast, non-real-time or
best-effort (BE) systems are systems for which there are no deadlines, even if fast re-
sponse or high performance is desired. Depending on the consequences that may
occur when missing a deadline, real-time requirements are usually distinguished in
three classes: (i) hard real-time (HRT), (ii) soft real-time (SRT), and (iii) firm real-time
(FRT) [14].

(i) A job has hard real-time requirements if missing its deadline may cause catas-
trophic consequences on the environment (e.g. may result in the loss of life or in
large damage). Therefore, in case of a hard real-time job, it is not allowed to miss
any deadline. A hard real-time job contributes to its performance if it completes its
function within its deadline d, as depicted in Fig. 1.3. Completing its function after
its deadline, would jeopardise the behaviour of the system, therefore, its quality con-
tribution can be seen as minus infinity. Systems that typically have hard real-time
constraints, due to the potentially severe outcome of missing a deadline, are safety
critical systems.

(ii) A job has soft real-time requirements if meeting its deadline is desirable for per-
formance reasons, but missing its deadline does not cause serious damage to the
environment and does not jeopardise correct system behaviour. If a soft real-time
job completes its function after its deadline, it still contributes to the quality, but this
contribution may decrease over time. Soft real-time jobs are typically those used
where there is a need to keep a number of results up to date with changing situa-
tions. An example of a job with soft real-time constraints is navigation, dropping
frames while displaying a map is hardly noticeable by a user as long as the deadline
misses are sporadic.

(iii) A job has firm real-time requirements if missing its deadline results in no contri-

6 Introduction

implementation domain

application domain

mapping of an application

platform realisation

platform

implementation
instance

job

Figure 1.4: Platform-based design paradigm.

bution to its performance, but missing its deadline does not cause serious damage to
the environment and does not jeopardise correct system behaviour. Audio and radio
processing are examples of jobs with firm real-time requirements. Missing a dead-
line, when processing an audio stream, will result in a steep quality degradation. For
example, missing deadlines at a digital-to-analog converter can cause hiccups in the
audio, or missing a deadline in the digital radio path can result in loss of synchroni-
sation. In both examples there are severe quality losses, but there are no catastrophic
consequences on the environments. In this thesis, we will focus on jobs with firm
real-time requirements, because our focus is up to infotainment-nucleus generation
four, which exclude video and navigation jobs.

1.3 Platform-based design

The growing complexity of current and future embedded systems leads to a demand
for new design paradigms. The car-infotainment domain consists of an increasing
number of jobs, as described in Section 1.1. Implementing these jobs in a system-on-
chip that meets the functional and non-functional constrains, is a large design prob-
lem. Platform-based design [24, 47] is an example of a design paradigm in which
the design complexity is split into two, by specifying a platform specification in the
middle as depicted in Fig. 1.4. The platform is targeting multiple jobs from a spe-
cific domain. The platform specification allows software engineers to map their jobs
to the platform at the same time as the hardware engineers realise an implementa-
tion instance that meets the platform specification. Furthermore, a platform design
increases the reuse between different products from the same application domain.
This also reduces the non-recurrent engineering cost and time-to-market in develop-
ing a new product.

A system platform consists of a high-level architecture specification for hardware
as well as software. For this high-level architecture, services are defined that can be

Platform-based design 7

allocated to a job, which is mapped onto the platform. Mapping a job to the platform
is challenging for meeting its real-time constraints like throughput and end-to-end
latency. At the bottom in Fig. 1.4, there are possible implementations of the platform
that comply to the high-level architecture specification and that are able to deliver
the specified services. Realisation of a platform implementation is challenging for
meeting cost constraints in terms of silicon area and energy consumption. In this
thesis, we propose an architecture and design rules for building a platform that is
optimised for infotainment-nucleus generation four and beyond.

1.3.1 Existing platforms

This section evaluates existing platforms within the car-infotainment domain and it
elaborates on the platform trends. From a consumer perspective, we divide current
NXP’s car-infotainment platforms into four generations, as described in Table 1.1.

The design of the first generation car-infotainment chip SAA7701, started in the early
nineties. It supported analog terrestrial-radio reception and audio post-processing
functionality. The radio input signal was coming from a tuner chip and the radio
signal was demodulated by a dedicated hardware Intellectual Property (IP) module.
Beside the radio input, the chip had capability for two analog and two digital in-
put signals. This chip integrated one Digital Signal Processor (DSP) (which belongs
to the EPICS family [72]) that was able to process one audio stream at a time. The
main task of the processor was audio post processing. Derivatives of the SAA7701
included a hardware accelerator for extra audio features, like equalisation, and they
supported up to five analog and three digital input signals. As the chips were im-
plemented in smaller process technologies, the processors were able to execute with
higher clock frequencies and supporting more features with an increasing sound
quality. The processor has a local on-chip memory that is used by only the processor.

The second generation car-infotainment platform supports processing single and
dual media stream, for independent front-seat and rear-seat audio. The first chip
that supported this was SAA7706, which was also the first car-infotainment system
that integrated two DSPs instead of one. The chip SAA7724 was the first chip capable
of processing two independent analog terrestrial-radio streams. It integrated three
special purpose processors, for demodulating the two radio input streams, together
with two DSPs, for sample-rate conversion and audio post processing. The chip
SAF7730 [71] is also capable of processing two radio input signals and it consists of
five DSPs and five hardware accelerators. Three DSPs in combination with the five
hardware accelerators are used to demodulate two radio streams. The two remain-
ing processors are used for sample-rate conversion and audio post processing. Next
to dual-radio processing, the SAF7730 is also capable of single-radio reception with
phase diversity, which is an advanced algorithm for improved radio reception. The
interconnect of the chip SAF7730 is as follows. There are hardwired point-to-point
connections between a processor and hardware IP modules like accelerators or pe-
ripherals. The interconnect between the processors is implemented with circular
buffers that are stored in dual-ported memories. Next to these inter-processor com-
munication memories, the processors have local memories for storing instructions,
coefficients and data.

8 Introduction

peripherals + peripheral busses
micro controller + memory +

PER PER PER PER

DIO

ITC

AHB

M

M

M

M

M

M

M

M

M

M

M

D
S

P

D
S

P

D
S

P

PERCRD FIR PER

M

D
S

P

Figure 1.5: Hardware architecture generation three (SAF7780).

In the first two generations, the digital signal processing chips are controlled and
monitored by a host micro controller (µc) that is connected to these chips. The micro
controller can program the chip’s parameters, like control parameters and filter co-
efficients. Such a micro controller is integrated in the third generation car-radio chip
SAF7780 [88, 8]. Furthermore, it supports analog terrestrial-radio reception, play-
back compressed audio (MP3 and WMA), and connectivity to portable devices in
different user modes, like single-media versus dual-media audio. Although it sup-
ports dual media, it can demodulate only one radio-input stream at the same time.
This chip is composed of four DSPs, one micro controller (which can be used as
host), three hardware accelerators (one Finite-Impulse-Response (FIR) filter and two
Coordinate-Rotation-Digital computer (CRD) accelerators), and a number of input
and output peripherals (PER), as depicted in Fig. 1.5. The radio demodulation is
performed by two DSPs in combination with the three hardware accelerators. The
two other DSPs perform sample-rate conversion, compressed-audio decoding, and
audio post processing. As interconnect, the platform uses a multi-layer bus (AHB)
in the micro-controller subsystem, a crossbar switch (ITC) between the DSPs, and a
crossbar switch (DIO) between the DSPs and the accelerators/peripherals. The DSPs
make use of local memories (M) for instructions, coefficients and data. In contrast
with generation one and two, these processors make use of shared local memories
instead of private local memories, i.e. a processor can also write to the local memory
of another processor.

The fourth generation car-infotainment platform is currently under development
and it will support analog as well as digital terrestrial-radio reception and decod-
ing as well as encoding compressed audio (various formats). Compared to previous
generations, this platform will support processing up to three independent media
streams, one for front-seat and two for rear-seat audio. The platform will include
a number of DSPs, a Very-Long-Instruction-Word (VLIW) processor, a micro con-
troller, and a number of hardware accelerators and peripherals. The interconnect of

Platform-based design 9

the chip will consist of a number of multi-layer busses that are connected via bridges.
Such an interconnect is a first step towards a network-on-chip. The memory architec-
ture is as follows. There will be an off-chip memory because the memory footprints
(e.g. for the digital radio jobs) are considered to be too expensive to store on-chip.
The processors will have local shared memories as well as caches to hide the large
latencies in accessing the off-chip memory.

1.3.2 Platform trends

By investigating existing car-radio platforms, we observed the following trends. The
first generation platforms contain only one processing core. Next generation plat-
forms contain multiple processing cores. For cost and power-efficiency reasons, we
see that heterogeneous multiprocessor systems are used that combine various types
of processors with configurable hardware accelerators. The trend of an increase in
the number of processing cores is expected to continue in the future. It is also visible
in other application domains. For example in the CELL processor from IBM, which
combines one PowerPC core with eight synergetic processors [46]. Another example
is coming from Intel. Instead of still increasing the clock frequency, Intel shifts its
strategy to increasing the number of processors. Currently, they shift from single-
core to multi-core systems, and later on they expect to shift from multi-core towards
many-core systems, which consist of more than hundred processing cores [10].

The integration of different types of cores into a working system is a major chal-
lenge. Currently multiple busses and custom interconnects (point-to-point, cross-
bar switches) are used and they are interconnect to each other via bridges. How-
ever, with an increasing number of cores, designed in technologies with decreasing
dimension, they do not sufficiently address hardware problems (deep sub-micron
VLSI design) and software problems (application programming). Networks-on-chip
tackle these problems and, therefore, are a better answer to the integration chal-
lenges. From a hardware perspective, they structure the top level wires in a chip,
and facilitate modular design [74]. Structured wiring results in predictable electri-
cal parameters, such as crosstalk. Network interconnects are segmented and multi-
hop. The advantage of segments is that only those segments are activated that are
actually used in the communication, so only those segments dissipate power. Multi-
hop is needed because the transport delay from source to destination can become
longer than the clock period. From a software perspective, networks can reduce the
programming effort by defining proper transport-level services. The bottleneck in
single-processor architectures is computation, whereas the bottleneck in multipro-
cessor architectures shifts from computation towards communication. Getting the
right data at the right place at the right time will dominate the architecture. Net-
works that offer guaranteed-communication services make systems easier to program,
easier to design [34], and more robust.

The first two generation car-infotainment platforms have only processors with pri-
vate local memories. Although there is a C-compiler available, most of the code is
written in assembly for performance and legacy reasons. Software algorithms that
are written in assembly code are typically more efficient in terms of required proces-
sor cycles and memory usage compared to compiled C-code. The disadvantages of
assembly code are that it is much harder to write, read, and maintain compared to

10 Introduction

C-code and it is only applicable for the targeted processor. The trend is that proces-
sors become faster, larger, and more complex. Furthermore, software tasks become
also larger and more complex in contrast to the small tasks as in the first platform
generations. Therefore, the trend is larger memory footprints and more variation in
the temporal behaviour. From small tasks in combination with predictable memory
access latencies, we are able to derive conservatively-estimated upper bound on the
execution times of these tasks, as we will describe later. For such a system, worst-case
design is achievable because conservatively-estimated bounds (e.g. on the required
number of processor cycles) are not far from the typical case. In current and future
generation platforms, the local memories are shared, the code will be off-loaded to
an off-chip memory, and caches will be introduced to prevent that every memory
access will receive a large memory access latency. In such a memory hierarchy, the
access latency from a processor to the external memory can vary, because of an un-
known state of the cache, possible contention in the communication infrastructure,
and possible contention at the external memory. Therefore, the distance between the
typical-case and worst-case memory access latency will increase. The uncertainty
of the required number of processor cycles increases and worst-case design can be-
come too expensive, if the worst case is an order of magnitude different from the
typical case. This increase of uncertainty makes it a challenge to build cost-efficient
platforms with worst-case design methodologies.

1.3.3 Design-time versus run-time mapping

A platform consists of a high-level architecture for which platform services (or re-
sources) are defined that can be allocated to a job. Mapping a job is defined as allo-
cating resources to a job and finding scheduling settings in case of resource sharing.
The main challenge that is discussed in this thesis, is mapping a job so that the job’s
real-time requirements are met.

There are trade-offs between run-time and design-time mapping of a job. Design-
time mapping has a few advantages. First of all, the scope is typically larger than
in case of run-time mapping, i.e. with design-time mapping the designer can make
decisions based on knowledge over a large number of iterations, e.g. gathered via
profiling during simulation, via static code analysis, or via knowledge from the ap-
plication domain. Furthermore, design-time mapping can be more complex than
run-time mapping, because computation is not time critical. The main advantage of
run-time mapping is a more precise knowledge about the system load. For example,
it is known in which scenario [30] or mode the job is executed and it is known which
resources are actually used. However, at run-time the scenario or resource usage can
change rapidly. Furthermore, computing a specific mapping will occupy a processor,
takes time, and consumes energy. Therefore, run-time mapping algorithms should
be simple.

In this thesis, we combine design-time and run-time mapping in the following way.
Every possible set of simultaneously activated jobs, which we refer to as a use case,
is investigated separately at design time. Each job in a use case is mapped to our
platform, one by one. Tasks from a job are bound to the processing tiles. The re-
quired resource budgets and scheduler settings are computed so that the real-time
requirements are met. At run-time, the jobs are started and stopped by loading a

Platform-based design 11

predefined mapping.

1.3.4 Verification of real-time constraints

To verify that the job’s real-time requirements are met, we need a performance anal-
ysis technique to analyse the temporal behaviour of a job. We identify two categories
for existing analysis techniques, namely (i) simulation and (ii) exhaustive analysis.

(i) Extensive simulation is often used for analysing the temporal behaviour of a
job and to verify that its throughput and end-to-end latency requirements are satis-
fied. The simulation tools accompanying the modelling language SystemC [44] and
POOSL [85], for example, are used to simulate transaction level models [21]. Trans-
action level models trade-off accuracy for running time. However simulation can be
performed at different levels of abstraction, simulation of all operation modes for a
large set of input stimuli is time consuming. From cycle-accurate simulation, we can
derive an optimistic estimate on the minimum throughput, because the throughput
observed during simulation is only valid for the given set of input stimuli. A larger
set of input stimuli can increase the accuracy, however, we are unable to guaran-
tee that throughput requirements are met for all possible input stimuli and starting
states.

Assuming that the parameters in a model (e.g. worst-case execution times) are con-
servative, proper analysis techniques, such as exhaustive analysis, are able to guar-
antee that no deadlines are missed, i.e. can guarantee a minimum throughput and
maximum end-to-end latency.

(ii) Exhaustive analysis techniques are based on min-plus algebra [11] or max-plus
algebra [3]. Network calculus [17], real-time calculus [53, 87], and event-models [45]
have their roots in the min-plus algebra [5]. These analysis techniques bound the
data traffic between tasks with (piece-wise) linear bounds. The analysis is based on
the assumption that the bounds for each pair of communicating tasks can be given
the same average slope. The slope of a bound can be adapted by, for example, chang-
ing the settings of run-time schedulers or by regulating arrival of data by introducing
traffic shapers. An important drawback of this analysis approach is that it has prob-
lems with cyclic data dependencies that affect the temporal behaviour. The reason
is that the linear bounds on the traffic are considered an input of the problem and
not an outcome of the analysis. More precisely, the linear bounds are derived for
each task in isolation. For acyclic graphs the end-to-end temporal behaviour can
be computed given these bounds. However, for cyclic graphs incorrect results can
be obtained because cyclic dependencies can affect these bounds and, therefore, can
influence the job’s temporal behaviour. Cyclic dependencies can be caused by func-
tional dependencies (e.g. in the case of feedback loops), schedule dependencies (e.g.
in the case of static-order scheduling), and back-pressure (to prevent buffer over-
flow). In our car-infotainment system, we have such cyclic dependencies. Therefore,
we should be able to cope with them.

Dataflow-analysis techniques [51, 76, 91] have their roots in max-plus algebra [5].
Multiple dataflow models are described in literature, each with a different trade-off
between expressivity and analysability. The best well known dataflow models are
Single Rate DataFlow (SRDF) [9], Multi-Rate DataFlow (MRDF) [9, 50], Cyclo-Static

12 Introduction

SRDF

MRDF

CSDF

Figure 1.6: Ordering of dataflow models according to their expressivity.

DataFlow (CSDF) [9, 64], Boolean DataFlow (BDF) [13], and Dynamic DataFlow
(DDF) [63]. Marked graphs [16] and Weighted Marked Graphs, which are a sub-
class of timed Petri Net theory, have the same expressiveness as SRDF and MRDF
graphs, respectively. SRDF and MRDF are also known as Homogenous Synchronous
DataFlow (HSDF) [76] and Synchronous DataFlow (SDF) [50], respectively. MRDF
and CSDF graphs can be transformed into equivalent SRDF graphs, but the number
of actors of the equivalent SRDF graphs can be large. Therefore, for a one-to-one
relation between tasks in the implementation and actors in the model, Fig. 1.6 shows
the ordering of SRDF, MRDF, and CSDF models according to their expressivity [9].
These models do not support data dependent input and output behaviour of tasks,
as is supported in the by BDF and DDF models. But in these models, throughput
and end-to-end latency cannot be derived for an arbitrary graph. Some generalisa-
tions of dataflow models have been proposed, i.e. techniques to allow input data
dependent input and output behaviour of tasks [93, 84, 7], and that maintain the full
potential for analysis. Another generalisation on dataflow models is scenario aware-
ness, which is referred to as a Scenario-Aware DataFlow (SADF) model [86]. This
model uses a dataflow model to represent a specific scenario and it uses a stochastic
approach to model the order in which scenarios occur. The underlying model is a
Markov chain that can be analysed using exhaustive or simulation-based techniques.

An important advantage of dataflow-analysis techniques [76, 28] is that it allows
cyclic data dependencies that influence the temporal behaviour. Therefore, also
back-pressure is supported by the dataflow model. This allows execution-time esti-
mates of tasks, in case conservatively-estimated upper bounds are not available, as
will be described in Chapter 8.

1.4 Problem definition

A car-infotainment system consists of a hardware platform on which the application
software is executed. The application consists of a number of jobs that process on
streams of data. For performance and power efficiency reasons, these jobs are exe-
cuted on a heterogeneous multiprocessor architecture. Furthermore, the jobs have
real-time constraints, like throughput and end-to-end latency. To reduce the veri-
fication effort, the job as well as the hardware platform should have a predictable
temporal behaviour. This allows the designer to verify, at design time, that the job’s
real-time requirements are met. In the literature, also composable systems [49, 5, 37]
are proposed to reduce the verification effort in integrating multiple jobs to a hard-

Problem definition 13

ware platform. In a composable system, the temporal behaviour of one job cannot be
affected by another job while they are both executed on the same platform. There-
fore, in a composable system the job’s real-time requirements can be verified in iso-
lation. The isolation of temporal behaviour is realised with fixed resource budgets
for jobs. In a predictable system, in contrast with a composable system, jobs have
a minimum resource budget and not a fixed resource budget. A composable sys-
tem is especially useful in case jobs (e.g. soft real-time jobs) can have an overload.
In a composable system, this overload cannot affect the performance of other jobs
(e.g. firm real-time jobs), because the temporal behaviour of one job cannot affect
the temporal behaviour of another job. Therefore, composability will ease the sys-
tem’s performance-verification effort, because an overload of a job will only affect
the performance of the misbehaving job. Predictable and composable architectures
are orthogonal to each other and they can be combined in one system, as is shown
in [37]. In this thesis, we only focus on a predictable system on which firm real-time
jobs are executed. A predictable system is necessary to be able to guarantee that the
job’s real-time requirements are met.

Definition of a predictable system:

Definition 1 (Predictable system). A system is predictable if we can verify at design
time whether temporal constraints are satisfied for the respective condition to hold.

The temporal constraints are expressed as repetitive deadlines at source or sink tasks,
as will be described in next chapter. On the one hand, deadlines can be derived from
a task’s throughput constraint or end-to-end latency constraint. On the other hand, if
we can guarantee an upper bound on end-to-end latency that is lower than the end-
to-end latency constraint, and if we can guarantee a lower bound on throughput
that is higher than the required throughput, then it is sure that no deadlines will
be missed. Therefore, we should be able to derive an upper bound on end-to-end
latency and a lower bound on throughput for every job. Furthermore, these bounds
should be tight to enable a cost-efficient implementation of the system.

For a job with hard real-time requirements, no data can be lost. When mapping
a job with hard real-time requirements on a hardware platform, the condition of a
predictable system is as follows:

Definition 2 (Condition for hard real-time). A hard real-time system must satisfy
the temporal constraints for any input stream and any initial state of the system.

A system with hard real-time constrains must keep up with its environment in any
circumstance. Therefore, for a hard real-time system, we must derive a conserva-
tively-estimated upper bound on end-to-end latency and a conservatively-estimated
lower bound on throughput for every job. These bounds must hold for any possible
set of input stimuli and for any possible initial state of the hardware platform (e.g.
initial state of a time-division-multiplex scheduler or cache).

For a job with firm real-time requirements, no data should be lost and the system
should keep up with its environment. Not keeping up with the system environment
does not jeopardise correct system behaviour, because it has firm real-time require-
ments instead of hard real-time requirements. When mapping a job with firm real-
time requirements on a hardware platform, the condition of a predictable system is
as follows:

14 Introduction

Definition 3 (Condition for firm real-time). A firm real-time system must satisfy the
temporal constraints for a set of input streams and any initial state of the system.
Furthermore, a firm real-time system must have a fall-back mechanism to recover
from deadline misses.

For a firm real-time system with a specific set of input stimuli, we can derive an up-
per bound on end-to-end latency and a lower bound on throughput for every job.
Notice that the derived bounds are optimistic estimates, because they are not guar-
anteed for every possible set of input stimuli. If the job exceeds our optimistically-
estimated bounds on end-to-end latency or throughput, it can miss a deadline. When
the set of input stimuli is representative, we are confident that the system exceeds
a deadline only sporadically. It is not catastrophic if the job sporadically misses a
deadline due to firm real-time requirements. Not keeping up with the system envi-
ronment must not jeopardise correct system behaviour, so it must have a fall-back
mechanism in case of a deadline miss. An example of a fall-back mechanism is
reusing a previous computed audio sample.

When mapping a job with soft real-time requirements on a hardware platform, the
condition of a predictable system is as follows:

Definition 4 (Condition for Soft real-time). A soft real-time system has a target for
its average behaviour but does not have temporal constraints. Furthermore, a soft
real-time system must have a fall-back mechanism to recover from deadline misses.

For jobs with soft real-time requirements it is desirable that the system keeps up
with its environment, but missing a deadline does not cause serious damage to the
environment since there is a fall-back mechanism. In a soft real-time system, it is
allowed to derive an estimated end-to-end latency and estimated throughput instead
of optimistically-estimated bounds as in case of firm real-time. Therefore, the target
temporal behaviour is typically average case. In this thesis, we only focus on hard
and firm real-time systems and we do not investigate systems with soft real-time
requirements. Furthermore, all active jobs are equally important.

We now arrive at the main problem statement of this thesis:

Problem statement. Develop a multiprocessor architecture for a predictable firm
real-time system that is optimised for infotainment-nucleus generation four. Fur-
thermore, show that a job, which is mapped on the architecture, can be represented
in a dataflow model, so that existing dataflow-analysis techniques can be used to
verify that the system satisfies the real-time constraints.

In next section, we elaborate on our approach in dealing with this problem.

1.5 Approach

A system consists of multiple jobs executed on a hardware platform. In order to
come to a predictable system, we need (i) jobs from which we are able to reason
about the temporal behaviour, (ii) a platform architecture from which we are able to

Approach 15

reason about the temporal behaviour, and (iii) a model of a job that is mapped on the
platform in order to reason about the temporal behaviour of the total system.

(i) When a job complies to our model of computation, we are able to reason about its
temporal behaviour at design time. Chapter 2 formulates the characteristics of such
a job. A job can be represented in a task graph, where tasks are represented by nodes
and inter-task communication channels are represented by edges. The main char-
acteristics in order to bound the temporal behaviour are bounded execution times,
bounded production behaviour, and bounded consumption behaviour of tasks. The
bounds on execution times should be conservatively estimated in case of hard real-
time requirements, or they can be optimistically estimated in case of firm real-time
requirements.

(ii) We are able to reason about the temporal behaviour of the following platform
architectures. First, we start by defining a multiprocessor architecture with limited
resource sharing, to limit the uncertainty in the temporal behaviour. Predictable
memory-access latencies are achieved with a local private memory for each pro-
cessor, i.e. a processor only accesses its local memory and this memory is not ac-
cessed by another processor. Furthermore, each processor executes only tasks from
the same job and these tasks are executed in a static order. As an interconnect be-
tween the processors, we make use of a network-on-chip that supports network
connections with guaranteed communication services. For such a system, we are
able to derive conservatively-estimated bounds on throughput and end-to-end la-
tency for each job. The architecture has limitations in terms of the supported sizes
for memory footprint and data containers. Furthermore, the supported number of
communication channels and the supported buffer capacities for inter-tile commu-
nication, are fixed at design time. This architecture is only applicable for jobs coming
from infotainment-nucleus generation one and two, because these jobs make use of
sample-based processing.

Next, this multiprocessor architecture is extended with shared local memories be-
tween processors. This allows us to communicate via circular buffers that are stored
in the local memory of a processor. The main advantages of these circular buffers is
a cost-efficient implementation of large buffers and that the buffer capacities are pro-
grammable at run time. The number of supported communication channels is also
programmable at run time. Furthermore, the use of circular buffers enables checking
of available space or data, which in its turn enables the use of run-time scheduling of
tasks that belong to different jobs. This sharing of memory and processor resources
will increase the uncertainty in the temporal behaviour of the system. However,
conservatively-estimated bounds on throughput and end-to-end latency can still be
derived. The architecture has still the limitation in the supported memory footprint,
because tasks are assumed to fit in the local memories of the processors. Therefore,
this architecture is only applicable for jobs up to infotainment-nucleus generation
three.

Finally, the multiprocessor architecture is extended with an off-chip memory that
is shared between the processors. This is required in case the memory footprint of
tasks is considered to be too large to store on-chip. The access latencies to an off-chip
memory are larger than the access latencies of local memories. Therefore, processors
will use level one caches to hide these larger access latencies. This thesis does not
elaborate on explicitly (software controlled) pre-fetching of the task’s program code

16 Introduction

and working data set into a local memory, but it is seen as future work. The intro-
duction of caches will introduce additional uncertainty in the temporal behaviour
of the system. In practice, for such an architecture, optimistically-estimated bounds
on throughput and end-to-end latency are used instead of conservatively-estimated
bounds. This architecture is applicable for jobs from infotainment-nucleus genera-
tion four.

(iii) In order to reason about the temporal behaviour, we require a model that accu-
rately represents the temporal behaviour of a job that is executed on the platform.
For such a model, we make use of dataflow models. First, the job’s task graph will
be transformed into a dataflow graph. Next, the job will be mapped to the plat-
form and after every mapping step additional constraints are added to this dataflow
model. For every extension in the architecture, we need to represent the temporal be-
haviour in a dataflow model. Finally, the job’s real-time requirements are verified by
making use of existing dataflow-analysis techniques. Furthermore, buffer capacities
and scheduler settings can be derived for given throughput and end-to-end latency
constraints.

1.6 Contributions

This thesis makes several contributions to develop a predictable and cost-efficient
system for streaming jobs.

Main contribution of this thesis

• Introduction of a network-based multiprocessor system that is predictable. This
is achieved by starting with an architecture where processors have private local
memories and execute tasks in a static order, so that the uncertainty in the tem-
poral behaviour is minimised. This architecture is extended with shared local
memories, run-time scheduling of tasks, and a memory hierarchy. After each
extension, it is shown that the temporal behaviour can still be modelled in a
dataflow model and, hence, we are still able to verify that the job’s throughput
and end-to-end latency requirements are met.

Contributions in Part I of this thesis

• We show that tasks, which are executed in a static order, can be represented
with one actor despite the absence of the firing rule in the implementation. An
algorithm is introduced for generating a CSDF graph that models tasks that
are executed on processors with static-order schedules. Earlier versions of this
work were published in [58, 57].

• For an industrial case study, we compare the Æthereal network-on-chip with
the traditional interconnects for infotainment-nucleus generation three. For
this generation, we conclude that it is feasible to replace the traditional inter-
connects by an Æthereal network and still meet the communication require-
ments. We conclude that the network-area cost is mainly determined by the
number of connections (translating to a number of buffers) and the network

Thesis outline 17

topology (affecting the number of routers, the slot table and the sizes of the
buffers). Earlier versions of this work were published in [60, 55].

• For an industrial case study, we investigate the tightness of a conservatively-
estimated lower bound on the throughput for a job mapped onto our multipro-
cessor platform. The conservatively-estimated throughput bound is computed
from a dataflow model and it is compared with the optimistically-estimated
throughput bound that is measured with cycle-accurate simulation. The dif-
ference is only 10.1% for our job, which is a channel equaliser for FM radio.
The difference is small because of tight conservatively-estimated bounds on
execution times (each processor has a private local memory) and communi-
cation latencies (due to guaranteed-throughput services and a small slot table
in the network). Finally, we identify three causes for the difference between a
throughput bound that is computed from a dataflow model and a throughput
bound that is measured with cycle-accurate simulation. An earlier version of
this work was published in [57].

Contributions in Part II of this thesis

• For address-based communication, we introduced a formula to compute an
upper bound on the number of processor stall cycles, which can be translated
in a lower bound on the processor utilisation. For our industrial case study,
which is an MP3 decoder, we have shown that the bound on the processor
utilisation has an accuracy of at least 6 %. Furthermore, in case of sharing of
a network connection between multiple communication channels, it is shown
that larger network-interface buffers can lead to larger buffer requirements for
the circular buffers in the memory. An earlier version of this work was pub-
lished in [56].

• We proposed a novel cache-aware mapping technique that reduces the number
of instruction and data cache misses for streaming jobs that are mapped onto
a multiprocessor system. This technique is based on a technique [73] that exe-
cutes tasks multiple times in a loop before executing another task. It is shown
that it is only beneficial if the individual tasks fit in the instruction and data
cache, and the set of tasks, which are executed on a processor, do not fit si-
multaneously. We use a dataflow model for representing an application that is
mapped onto a multiprocessor with a specific number of successive task execu-
tions. From this dataflow model we derived the maximum number of succes-
sive task executions by making use of existing dataflow-analysis techniques.
For our industrial case study, which is a Digital-Radio-Mondiale receiver, we
reduce the number of cache misses by a factor 4.2. This work was published
in [58].

1.7 Thesis outline

This thesis is divided into two parts. In part I, we introduce design rules for a pre-
dictable multiprocessor system-on-chip. In part II, these concepts are extended to-

18 Introduction

wards a multiprocessor architecture for jobs up to infotainment-nucleus generation
four.

Part I: In the next chapter, we first formulate a streaming job and describe its charac-
teristics. For these streaming jobs we define, in Chapter 3, a scalable heterogeneous
multiprocessor architecture that consists of tiles which communicate via a network-
on-chip. In Chapter 4, we describe dataflow modelling and analysis for verifying
the real-time requirements of our streaming jobs. This chapter also describes how
such a model can be constructed, so that it captures the temporal behaviour of a job
mapped onto a multiprocessor platform. In Chapter 5, the network cost is investi-
gated in terms of area and latency for a number of automatically generated network
instances and this is compared to traditional interconnects from car-infotainment
platform SAF7780. Chapter 6 evaluates the practical use and tightness of dataflow
modelling and analysis for our channel-equaliser case study.

Part II: In Chapter 7, we extend the multiprocessor architecture with shared on-chip
memories and run-time scheduling of tasks. For these extensions, it will be shown
that the real-time constraints can still be verified by dataflow modelling and analy-
sis. In Chapter 8, the multiprocessor architecture is extended with a shared off-chip
memory. It introduces a cache-aware mapping technique for streaming applications,
because an efficient use of the memory hierarchy is important for current and future
multiprocessor systems. Finally, Chapter 9 concludes this thesis and gives recom-
mendations for future work.

Part I: Design rules for a
predictable multiprocessor
architecture

20 Introduction

Chapter 2

Streaming application domain

The jobs in the infotainment nucleus, typically process streams of input data and
generate streams of output data. Furthermore, they have real-time constraints, for
example caused by a periodic source (e.g. analog-to-digital converter), periodic sink
(e.g. digital-to-analog converter), or both periodic source and sink. These jobs are
called streaming jobs in this thesis. The characteristics of streaming jobs are de-
scribed in the following section. In Section 2.2, we elaborate on the real-time require-
ments of these jobs. Jobs with sample-rate conversion are described in Section 2.3.
Finally, Section 2.4 gives some examples of streaming jobs in the car-infotainment
domain.

2.1 Characteristics of streaming

Streaming jobs are common in the embedded domain and they encompass a broad
spectrum of applications, including media encoding and playback. Every possible
set of simultaneously activated jobs is called a use case. Jobs can be started and
stopped by the user. The user can start or stop jobs while others continue. Further-
more, the mode of a job can be changed by the user. Muting an audio stream or
changing its volume are examples of mode changes where switching between use
cases is not necessary. A switch between use cases is a dynamic process, which must
be handled at run time. The number of use cases is increasing rapidly, because of the
increasing number of supported jobs. For example, if there are N jobs and each job
can be active or inactive, then the number of use cases is theoretically 2N . Obviously,
jobs can only be started if enough resources are available.

Streaming jobs are characterised by concurrent computation processes, which we re-
fer to as tasks, that process potentially infinite sequences of data provided by the
environment. A task represents a function transformation that has one or more in-
puts and outputs. Furthermore, tasks execute independently and they can have state
that contains all the information necessary to execute. They are repeatedly executed
and thus have explicit start and finish times. After a task started its execution, it will
continue to execute until it is finished. In case of run-time scheduling, tasks can also

22 Streaming application domain

u1 u2 u3
c1 c2

Figure 2.1: Example of a streaming job represented as a task graph.

be interrupted, as we will see in Part II of this thesis. Once a task finished its exe-
cution, it can start to execute its next iteration. Tasks are executed by, for example,
a processor or hardware accelerator. A scheduler repetitively enables tasks to start
executing. Of course, when the user stops the job, the tasks are not enabled anymore.

For each task, it is made explicit which data is private to a task (state) and which data
is shared between tasks (communication). A task has random access to its private
data. Shared data is communicated from one task to another task via a communica-
tion channel. Containers are used for the synchronisation between tasks, i.e. tasks
communicate containers via First-In First-Out (FIFO) buffers. A fixed amount of data
can be stored in a container and they can be full or empty. Containers are also useful
for memory management, namely for allocating and releasing space in a memory.
Examples of containers are audio stereo samples, MP3 frames, video pixels, video
lines, or video frames. A task can have random access within a container, despite
the FIFO synchronisation between containers. The number of containers that can be
stored in a communication channel is fixed, i.e. the FIFO buffer capacity is fixed.
During one execution of a task, it consumes a number of full data containers from its
input channels and it produces a number of containers to its output channels.

It is natural to express a streaming job as a graph, where the nodes represent inde-
pendent tasks and the edges represent communication channels between these tasks.
Such a task graph H = (U,C) consists of a finite set of tasks U and a finite set of com-
munication channels C. Fig. 2.1 shows an example of a task graph that represents a
streaming job that consists of three tasks and two communication channels.

A communication channel ck = (ui, uj) connects an output of task ui to an input of
task uj with ui, uj ∈ U and ck ∈ C. Task ui produces data containers on this channel
and tasks uj consumes data containers from this channel. The maximum number of
containers that can be stored in a channel ck is bounded and it is denoted with d(ck).

After a task started its execution, it will continue until it is finished. The start time
of the l th execution of task ui is denoted by s(ui, l). The time that task ui finished
its l th execution, is denoted by f(ui, l). After one execution of task ui, the number
of data containers that are produced on channel ck is denoted by µ(ui, ck) ∈ N+.
The number of data containers that task uj consumes from channel ck is denoted
by λ(ui, ck) ∈ N+. In this thesis, we assume that the number of consumed and
produced containers are known at design time and cyclo static.

Every task has an execution time that is defined as:

Definition 5 (Execution time). The execution time of task ui is defined as the differ-
ence between the time this task started its execution and the time this task finished
its execution, i.e. f(ui, l)−s(ui, l), assuming that sufficient filled containers are avail-
able at all its inputs, sufficient empty containers are available at all its outputs, and
this task is the only task executed on a processor and the processor is the only master

Characteristics of streaming 23
d

is
tr

ib
u

ti
o

n
o

f
ti

m
es all execution times

worst case

conservative
estimate

execution time
of task ui

τ(ui) τ̂(ui)

Figure 2.2: The definition of worst-case executions time and a conservatively esti-
mated upper bound on the execution time.

that is accessing the memories.

This execution time does not include the time a task has to wait for input data and
output space. It does also not include the time a task has to wait before it is scheduled
and it does not include the interference time caused by interrupting tasks. Further-
more, execution time does not include processor stall time caused by arbitration at
shared memories and cache misses. Therefore, task execution times do not include
dependencies between resource and tasks.

For a predictable system we can derive bounds on throughput and latency for every
active job. In order to derive these bounds on throughput and end-to-end latency,
we need upper bounds on execution times. Conservatively-estimated execution-
time upper bounds can be computed with static-program analysis techniques [15].
Unfortunately, it is not always possible to obtain upper bounds on execution times
of tasks [95]. This is only possible if we use a restricted form of programming, which
guarantees that tasks always terminate, i.e. recursion and loops are only allowed if
the iteration counts are explicitly bounded. A task typically shows a certain variation
of execution times, e.g. depending on the input data. The maximum of all possible
execution times is referred to as the worst-case execution time, as depicted in Fig. 2.2.
The worst-case execution time of task ui is denoted by τ(ui).

Conservatively-estimated upper bounds on the execution time of a task can be com-
puted by methods that consider all possible execution times of the task. These meth-
ods use abstraction of the task to make timing analysis of the task feasible. Abstrac-
tion loses information, so the computed upper bound usually overestimates the exact
worst-case execution time. A conservatively-estimated upper bound represents the
worst-case guarantee that the method or tool can give. How much is lost depends
both on the methods used for timing analysis and on overall system properties, such
as the hardware architecture and characteristics of the software. In part I of this the-
sis, we make use of conservatively-estimated upper bounds on execution times. The
conservatively-estimated upper bound on the execution times of a task ui, is denoted
by τ̂(ui).

24 Streaming application domain

fs fs

u1 u2 u3

Figure 2.3: Example of a job where the source (u1) and sink (u3) task execute strict-
periodic with sample frequency fs.

2.2 Job’s real-time constraints

Jobs in the infotainment nucleus have real-time constraints, as introduced in Sec-
tion 1.2. Each job is composed of communicating tasks and it is represented in a task
graph, as described in previous section. In this section, we elaborate on the job’s
real-time constraints in terms of throughput and end-to-end latency.

The jobs in the infotainment nucleus contain typically a source or sink task. These
source or sink tasks have often repetitive deadlines, e.g. periodic or cyclo-static
deadlines. An example of a sink task with strict-periodic deadlines is a digital-to-
analog converter, because it takes an input sample every clock edge and this clock
has a fixed sample frequency. Similar holds for an analog-to-digital converter which
is a source task with strict-periodic deadlines. In this thesis, we assume that source
and sink tasks produce and consume a fixed amount of containers per execution and
that they have strict-periodic deadlines. Therefore, we define throughput constraint
as follows:

Definition 6 (Throughput constraint). A throughput constraint is specified for the
number of containers per time interval at the output channel of a source task or at
the input channel of a sink task.

For example in case of a digital-to-analog or analog-to-digital converter, the number
of containers per second are specified by the sample frequencies of these converters,
because they consume and produce one container per execution. Figure 2.3 depicts
an example of a job with a strict-periodic source and sink task that execute fs times
per second. The strict-periodic executions of the source and sink tasks are indicated
with the open arrows in Fig. 2.3. The sample frequencies are specified by the num-
bers next to these arrows.

Next to a throughput constraint, a job can have an additional end-to-end latency
constraint. Most streaming jobs can tolerate additional end-to-end latency, there-
fore, the throughput constraint is typically more critical than the end-to-end latency
constraint. However, the German quality management system for the automobile
industry Verband der Automobilindustrie [20], specified, for hands-free terminals, the
maximum delay from mouth reference point to output of the speech codec in a mo-
bile phone. This results in an end-to-end latency constraint of 30 milliseconds be-
tween the microphone in the hands-free terminal and the Bluetooth device that is
connected to the mobile phone.

The specification of end-to-end latency can be difficult in case there is no direct rela-
tion between containers at a source task and corresponding containers at a sink task.

Sample-rate conversion 25

u1

u2

u3

1/fs

time

l − 1 l l + 1 l + 2

l − 1 l l + 1l − 2

l l + 1 l + 2 l + 3

end-to-end latency

Figure 2.4: Definition of end-to-end latency L(u1, u3) for a job with a source (u1) and
sink (u3) task that both execute strict periodic with sample frequency fs.

For our case studies in this thesis, we specify end-to-end latency between a strictly-
periodic source and sink task that are executed with the same sample frequency.
Therefore, in this thesis, end-to-end latency constraint is defined as follows:

Definition 7 (End-to-end latency constraint). End-to-end latency constraint L(ui, uj)
is defined as an upper bound on the time between the source task ui started its l’th
execution and the time the sink task uj finished its l’th execution, that means Eq (2.1)
must hold.

f(ui, l) − s(uj , l) ≤ L(ui, uj) (2.1)

Therefore, end-to-end latency is the total time data takes to ripple through the chain
of tasks. The end-to-end latency of the job in Fig. 2.3 is made visible in Fig. 2.4. For
this job a possible schedule for task u1 through u3 is depicted assuming that the tasks
consume and produce one container per execution. The source and sink tasks u1 and
u3 are executed with the sample frequency fs and the sample period is 1/fs. Now the
end-to-end latency is the time between task u1 started to produce the l’th container
and task u3 finished consuming the l’th container, as depicted in Fig. 2.4.

2.3 Sample-rate conversion

Sample-rate conversion is required when the sample frequency of the source task
is different from the sample frequency of the sink task. Sample-rate conversion can
be implicit in case of a so called multi-rate graph where tasks consume a number of
containers and produce a different number of containers per execution of the task. It
can also be explicit, so that it is specified by a sample-rate converter task in the task
graph. Sample-rate conversion can be synchronous or asynchronous (also known
as fixed or flexible sample-rate conversion [23]). Synchronous sample-rate conver-
sion can be used when there is only one source or sink task that has a throughput
constraint, e.g. in case of MP3 playback from compact-disc, as we will see in Sec-
tion 2.4.1. It can also be used when there is a fixed rate between the sample-rate fre-
quencies of the source and sink tasks, i.e. at design time there exists a k ∈ Q ∧ k > 0
(i.e. k is a positive rational number) so that fsource = k · fsink. In this case, the consumed

26 Streaming application domain

ASRC

u3

job A job B

f1 f2

u1 u′
2 u′′

2

Figure 2.5: An asynchronous sample-rate converter can be seen as a composition of
two tasks. Task u′

2 is the sink of job A and task u′′
2 is the source of job B.

number of containers related to the produced number of containers is predefined
and known at design time. Therefore, synchronous sample-rate conversion can be
represented with one task.

Asynchronous sample-rate conversion is required when the source and sink tasks
have independent sample frequencies. In this case, the relation between the con-
sumed number of containers and the produced number of containers, is not known
at design time. Asynchronous sample rate conversion works as follows. Next to
the media samples it receives also time stamps when input samples arrived at the
source and when output samples should have been produced at the sink. From the
samples and the received time stamps, the sample-rate converter is able to recon-
struct an over-sampled media stream. The output stream is then derived from the
over-sampled media stream and the time stamps on which the output should have
been produced. The implementation of an asynchronous sample-rate converter con-
sists of two tasks that share their state data. One task will consume containers from
the input stream and the number of executions of this task matches with the sam-
ple frequency of the source task. The other task produces containers to the output
stream and the number of executions of this task matches with the sample frequency
of the sink task. Therefore, an asynchronous sample-rate converter is represented
with two tasks (u′

2 and u′′
2 in Fig. 2.5) that are executed on the same processor. More

precisely, the asynchronous sample-rate converter will split the original job into two
jobs, as depicted in Fig. 2.5. The sample-rate converter task u′

2 is a sink task for job A,
and task u′′

2 is a source task for job B. The throughput constraint of job A is f1 exe-
cutions per second of task u1 and the throughput constraint of job B is f2 executions
per second of task u3. The tasks u′

2 and u′′
2 are both executed on the same processor

and they are scheduled using a run-time scheduler, which will be described in part II
of this thesis.

2.4 Jobs and use cases in the infotainment nucleus

In this section, we describe the infotainment nucleus of two generations car-radio
platforms, namely generation three and four. Generation three is based on NXP’s
car-radio chip SAF7780 [88, 8], which went in production in 2007. For this gener-
ation, we will do a quantitative comparison between our proposed network-based
architecture and the existing architecture with traditional interconnects in Chapter 5.
The development of car-radio generation four started in 2007. Although the devel-
opment of generation four is still in progress, we describe a few jobs for the purpose

Jobs and use cases in the infotainment nucleus 27

of our case studies in part II of this thesis.

2.4.1 Generation three

The platform SAF7780 is, among other things, capable of terrestrial analog-radio
reception, compressed audio playback and hands-free voice with acoustic echo can-
cellation, possibly in different use cases like single versus dual media sound. Next to
the radio and audio jobs, the user-interface software of a customer is executed on the
micro controller that is integrated in the chip. In this thesis, our focus is on the radio
and audio jobs and not on the user-interface software, because that is dependent of
the car-radio set maker.

The platform SAF7780 supports the following jobs: (i) analog terrestrial-radio recep-
tion, (ii) playback compressed audio, (iii) read one or more audio streams from input
peripherals, (iv) acoustic echo cancellation for hands-free voice, and (v) audio post
processing. An example of a supported use case is depicted in Fig. 2.6. All these jobs
are equally important, i.e. all jobs have the same priority.

(i) The analog terrestrial-radio reception job comes in several flavours, like Ampli-
tude Modulated (AM) radio, Frequency Modulated (FM) radio, and Weather Band
(WB) radio. The input of the radio job is first sampled at 41.6 MHz by an analog-to-
digital converter (ADC), and then down-sampled to a sample frequency of 325 kHz
by a primary decimation chain (PDC). The radio processing is performed by the ra-
dio demodulation tasks RD1 and RD2 in combination with CRD and FIR hardware
accelerator tasks. The radio job has an Automatic Gain Control (AGC) that controls
the amplitude of the analog radio signal at the input. The automatic gain control
algorithm requires a feedback signal from task RD1 to the tuner chip. The tuner chip
is designed with analog hardware, therefore this signal is converted with a digital-
to-analog converter (AGC-DAC). The received Radio Data Service (RDS) messages
are decoded by the radio data service decoding task RDS-dec and they are sent via a
UART peripheral to the display in a car. The radio processing implicit down converts
the 325 kHz radio stream with a factor eight, into an audio stream with a sample rate
of 40.625 kHz. An asynchronous sample-rate converter task (ASRC) converts the
40.625 kHz audio stream into a 44.1 kHz audio stream that matches the digital-to-
analog converter task DAC.

(ii) The playback compressed-audio job receives its input data from a compact disc or
a portable storage device. Two compression formats are supported, namely MPEG-1
audio layer 3 (more commonly referred to as MP3) and windows media audio (which is
developed by Microsoft). The compressed-audio playback job is depicted in Fig. 2.6
and it is composed of a Block Reader (BR) task, Source Decoder (SD) task, and a syn-
chronous sample-rate converter (SSRC) task. The task BR is responsible for reading
the input data from a compact disc (CD) or portable memory device. This data is
transferred into bursts of 512 words to task SD, which will decode the compressed
audio stream. The source decoder supports input bit-rates up to 320 kbit/s. At the
output of task SD, the container size is one stereo sample of two words and the avail-
able sample frequencies are 32, 44.1 and 48 kHz. The output stream will be converted
by a sample rate converter so that it will match the 44.1 kHz sample frequency of the
digital-to-analog converters.

28 Streaming application domain

dec

front

AMP
rear

ADC

PCM

PCM

IIS

BR

ADC

AGC
DAC

PDC

FIR CRD CRD

SD

RD1 RD2

RDS

APP
DAC

UART

AMP
DAC

APP
ASRC

SSRC

ASRC ASRC

ASRC

ASRC ASRC

ASRC ASRCAEC

MIC

Bluetooth

NAV

CD/DVD

Display

Tuner

prim

sec

8 kHz

8 kHz

8 kHz

8 kHz

41.6 MHz

40.625 kHz

44.1 kHz

44.1 kHz

Figure 2.6: Task graph of a dual-media use case supported by car-radio generation
three.

(iii) Additional to the analog terrestrial-radio and compressed audio stream, the sys-
tem can have one or more audio input streams from several input peripherals. In
generation three, there are two analog-to-digital converter input peripherals, four
Inter-IC Sound (IIS) digital input peripherals, one Puls-Code Modulation (PCM) in-
put peripheral, and one Sony/Philips Digital Interconnect Format (SPDIF) input
peripheral. The external input device can vary from a navigation system (NAV),
hands-free phone, up to a compact-disc changer, or Digital Video Disc (DVD) player.
Typically, digital input streams are converted to a sample frequency of 44.1 kHz. The
container sizes of the input streams are one word for mono audio samples and two
words for stereo audio samples.

(iv) Acoustic Echo Cancellation (AEC) is used in a use case where a driver makes a
hands-free phone call while the driver is listening to background music. It is used
to improve voice quality on a telephone call by removing echo from voice commu-
nication and to cancel background sound from the loudspeakers. The background
audio is removed by subtracting it from the signal that is recorded by the microphone
of the hands-free terminal. The mobile phone is connected to a Bluetooth module,
which in its turn is connected to the puls-code modulated peripheral, as depicted
in Fig. 2.6. The microphone (MIC) signal, which is an analog signal, is sampled by
an analog-to-digital converter. Background-audio substraction is done by task AEC.
The audio stream that is sent to the loudspeaker, is subtracted from the microphone
input stream before it is sent to the mobile phone. The voice-audio stream is mono
audio with a sample frequency of 8 kHz and a container size of one word. The end-
to-end latency constraint from task ADC to task PCM is 30 milliseconds, which is

Jobs and use cases in the infotainment nucleus 29

derived from the specification of the Verband der Automobilindustrie [20].

(v) Finally, the audio post-processing job is responsible for, for example, audio en-
hancement, equalisation, blending input streams, and changing the audio volume,
fader and balance. Generation three supports two modes, namely single media (only
primary) and dual media (primary and secondary). In case of dual media, there are
different streams for front-seat and rear-seat audio, as depicted in Fig. 2.6. The Audio
Post Processing (APP) of the primary and secondary audio streams are performed
by task APP-prim and APP-sec, respectively. The audio streams have a sample fre-
quency of 44.1 kHz and container sizes vary between one word for mono audio and
two words for stereo audio. Audio streams can be sent to several output peripher-
als. In generation three, there are two stereo digital-to-analog converter peripherals,
one puls-code modulation peripheral, and three inter-IC sound output peripherals.
Examples of external devices are amplifiers (AMP) for front-seat speakers, rear-seat
speakers, centre speaker, sub-woofer speaker, and headphones.

2.4.2 Generation four

The platform SAF7780 can already connect a CD/DVD changer, personal naviga-
tion device, portable storage device and portable media player, for example, via a
Universal Serial Bus (USB) or Bluetooth module. Connectivity is becoming more
popular in infotainment-nucleus generation four, for example, the platform should
be able to connect a hard-disc memory device (for mass storage) and a WiFi module
(for synchronisation with a home server). Furthermore, the number of supported
jobs and the number of use cases are increased. The main differences in functional-
ity between generation three and four are: advanced audio post processing with a
sample rate up to 96 kHz, playback compressed audio with the support for various
formats with and without digital right management, encoding audio streams for rip-
ping audio streams to a hard disc, and digital terrestrial-radio reception. There are a
number of digital radio-transmission standards and different standards are common
in different regions.

For the purpose of our case studies, we make use of two jobs from generation four.
These jobs are: (i) channel equalisation for FM radio and (ii) Digital Radio Mondi-
ale [78].

(i) Channel equalisation reduces multi-path distortion in an FM signal, as was il-
lustrated in Fig. 1.1. This distortion is caused by houses, cars, and hills that reflect
FM signals and these reflections cause variations in the magnitude and phase of the
signal. The user can add the channel equalisation in front of an FM-radio demodula-
tion job for improved radio reception. The input of the channel equaliser is coming
from task PDC and the output is going to task RD1. The task graph of our chan-
nel equaliser job will be described in Section 6. This job should keep up the output
stream of task PDC, which has a sample frequency of 325 kHz.

(ii) Digital radio Mondiale [78] is a technology designed to work over the bands
currently used for AM broadcast. This technology is based on in-band on-channel,
which is a method of transmitting digital radio and analog radio broadcast signals
simultaneously on the same frequency. By utilising additional digital subcarriers or
sidebands, digital information is piggybacked on a normal AM signal, thus avoid-

30 Streaming application domain

ing any complicated extra frequency allocation issues. Digital Radio Mondiale can fit
more channels than AM radio, at higher quality, into a given amount of bandwidth,
using various compression and decompression techniques. It has been designed es-
pecially to use portions of older AM transmitter facilities such as antennas, avoiding
major new investments. Furthermore, it is robust against the fading and interference
which often plagues conventional broadcasting on these frequency ranges. The task
graph of our Digital-Radio-Mondiale job will be described in Chapter 8. This job
should keep up with the periodic input task ADC, which is triggered with a sample
frequency of 48 kHz. The main difference between our analog and digital radio job
is that the digital radio job requires a larger memory footprint than the analog radio
job.

Chapter 3

Multiprocessor architecture for
streaming applications

Existing multiprocessors can be easy to program, but they are, typically, hard to tune.
It can be time consuming before every job satisfies its real-time constraints. The
end-to-end timing behaviour depends, among others, on the interaction between
multiple local arbiters that can be mutually dependent. Every arbitration level will,
typically, increase the uncertainty in the temporal behaviour at design time.

In this chapter we describe our multiprocessor architecture with limited resource
sharing. The architecture is optimised for applications that belong to the class of
streaming, from which the characteristics are described in previous chapter. First, in
Section 3.1, we describe the requirements for a multiprocessor architecture that has
a predictable temporal behaviour. In Section 3.2, we introduce a tiled multiproces-
sor architecture that is built on top of a network-on-chip. Section 3.3 describes the
communication and synchronisation between tasks that are executed on the multi-
processor architecture. Finally, we summarise this chapter with concluding remarks
in Section 3.5.

3.1 Requirements for a predictable architecture

In this thesis, we build a multiprocessor system that has a predictable temporal be-
haviour so that we can reason about the temporal behaviour of the jobs when they
are mapped to the system at design time. For a predictable system, we must be
able to derive a conservatively-estimated lower bound on throughput and a con-
servatively-estimated upper bound on end-to-end latency for each active job, as
described in Section 1.4. Therefore, the architecture should enable the derivation
of a conservatively-estimated upper bound on the execution time of a task. This
results in a requirement for predictable memory-access latencies for every proces-
sor in our multiprocessor architecture. Furthermore, the architecture should sup-
port a conservatively-estimated upper bound on the communication latency for the
communication between two tasks. This requires a communication infrastructure

32 Multiprocessor architecture for streaming applications

with guaranteed communication services. When sharing resources like processors
and communication resources, the arbiter should guarantee a minimum resource
budget and it should bound the interference, otherwise we are unable to derive
conservatively-estimated bounds on execution times and communication latencies.
Finally, the derived bounds should be tight, so that we can come to a cost-efficient
implementation.

In part I of this thesis, we focus on an architecture that minimises the uncertainty
in the temporal behaviour. That means, an architecture that enables the derivation
of tight upper bounds on execution times of tasks and tight upper bounds on com-
munication latencies. This architecture can support most of the streaming jobs from
infotainment-nucleus generation three. In Part II, we will describe architectural ex-
tensions to be able to support all jobs from infotainment-nucleus generation three
and four.

3.2 Multiprocessor architecture

Embedded media applications demand for an increasing performance without in-
creasing the area and power dissipation. For the performance and power efficiency
reasons, such media applications are typically executed on heterogeneous platforms
that contain different types of processing cores, like micro controllers, digital signal
processors, and application-specific hardware accelerators. This allows a task to be
executed on the processor that is most efficient in terms of performance and power
dissipation. Furthermore, a system contains peripherals for the communication with
the system environment and memories for storing the job’s program code and data.

On-chip memories will be distributed, that means attached close to the processing
cores, again for reasons of performance and power dissipation. This leads to the
formation of clusters, which we refer to as tiles, that consist of processing cores with
local memory. Each tile can have one or more memories, which we refer to as local
memories. The processing core in a tile has low-latency memory accesses to its local
memory, which enables a high processor utilisation and a high performance. A tile
can also contain a peripheral for the communication with the system environment.

The integration of our heterogeneous tiles into a working system is a major chal-
lenge. The bottleneck in such multiprocessor architectures shifts from computation
towards communication. Getting the right data at the right place at the right time
will dominate the architecture. Currently busses and custom interconnects (point-to-
point, crossbar switches) are often used, but with an increasing number of tiles de-
signed in technologies with decreasing dimension, they do not sufficiently address
hardware problems (deep sub-micron VLSI design) and software problems (appli-
cation programming). Networks-on-chip tackle these problems and therefore are a
better answer to the integration challenges.

First, hardware problems: networks help to answer some basic deep sub-micron questions
because they structure the top level wires in a chip, and facilitate modular design
[74]. Structured wiring results in predictable electrical parameters, like crosstalk.
Network interconnects are segmented and multi-hop. The advantage of segments is
that only those segments are activated that are actually used in the communication.

Multiprocessor architecture 33

tile

M

P

NI

tile

M

P

NI

network

tile

Figure 3.1: Tiled-multiprocessor architecture where tiles communicate via a
network-on-chip.

So only those segments dissipate power. In addition, multiple segments can be ac-
tive simultaneously, enhancing throughput (or reducing wiring cost). Multi-hop is
needed because the transport delay from source to destination can become longer
than the clock period.

Second, software problems: to reduce the programming effort proper transport-level
services have to be defined. In particular, networks that offer guaranteed-communication
services make systems on chip more robust, easier to design [34] and easier to pro-
gram with a much lower non-recurring engineering cost. Networks also provide
concurrency, i.e. several transactions can be dealt with simultaneously.

To come to a scalable architecture, the inter-tile communication infrastructure should
be scalable. Furthermore, each tile should execute at its own desirable clock fre-
quency, i.e. globally there is asynchronous communication and locally inside a tile
there is synchronous communication. Tiles are very much autonomous, i.e. they
run independent from other tiles and from the communication infrastructure. Sim-
ilar multiprocessor architectures can be found in literature. For example, the au-
thor of [18] describes a generic scalable multiprocessor architecture that consists
of a collection of essentially complete computers (tiles in our case), including one
or more processors and memory, communicating through a general-purpose high-
performance scalable interconnect.

In part I, we assume the multiprocessor architecture that is depicted in Fig. 3.1. A
tile consists of a processing core (P), a memory (M) and a network interface (NI). The
processing core is the only master that is accessing its own local memory. Therefore,
the processing core cannot access a memory in another tile. The processing core has
predictable memory-access latencies, because it is the only master that is accessing
its own local memory. This enables us to derive tight conservatively-estimated up-
per bounds on execution times of tasks, as is required for a predictable architecture.
The disadvantages of this memory architecture are: each processing core has a fixed
amount of available memory space and all program code, program data, and state of
each task must fit in the on-chip local memory of a processor. Therefore, this archi-
tecture can become expensive in terms of area cost and the flexibility is limited. In
part II of this thesis, we will extend our multiprocessor architecture with shared lo-

34 Multiprocessor architecture for streaming applications

NI

tile

NI

tile

tileNI

tileNItile NI

NI

tile

NI

tile

tile NI R R

RR

Figure 3.2: Network is composed of Network Interfaces (NI) and Routers (R) that
are combined in a scalable fashion.

cal memories and a shared off-chip memory to make the multiprocessor architecture
more flexible and more cost efficient.

3.2.1 Æthereal network-on-chip

In our multiprocessor, tiles communicate via the Æthereal network-on-chip [33]. The
Æthereal network is modular because it is built with only two parameterisable com-
ponents, network interfaces [70] and routers [68], that are combined in a scalable
fashion to form the complete communication infrastructure, as depicted in Fig. 3.2.
Each tile is connected to a network interface, which translates the tile’s communi-
cation protocol to network-internal packet-based protocol. Furthermore, they im-
plement clock-domain crossings, so that each tile can run at its own desired clock
frequency. Each network interface is connected to a router via a link. The routers are
interconnected by links and the router network can have a generic, but predefined,
topology.

Communication channels between tasks can be mapped to network connections, in
case the tasks are executed on processors from different tiles. The definition of a
network connection is as follows:

Definition 8 (Network connection). A network connection is a point-to-point con-
nection between two network interfaces. Each network connection contains a set of
network-interface buffers that are dedicated to the network connection. Data that is
sent to the buffer at one network interface will be delivered, by the network, to the
buffer in the other network interface.

Figure 3.3 depicts a network connection that transfers data from an output buffer
in one network interface to an input buffer in another network interface. For each
network connection, flow control is used to prevent data loss caused by buffer over-
flow and to prevent deadlock. Flow control is implemented using credits [83] that
are sent back from destination to source [70] after data is consumed from the buffer

Multiprocessor architecture 35

sh
el

l
co

n
fi

g

CNIP

config

tile tile

CNIP

control control

sh
el

l
co

n
fi

g

master

sh
el

l

F
IF

O

sh
el

l

F
IF

O

data

credits

NI NI

router
network

kernel kernel

M
a

buffer space
remote credits to

report

S
l

Figure 3.3: Network-interface architecture and network-connection implementation.

at the destination. The credit flow is depicted with the dotted arrow in Fig. 3.3 and
it works as follows. For each network connection, there is a counter (remote buffer
space) tracking the empty buffer space of the destination network-interface buffer.
This counter is initialised with the destination buffer capacity. When data is send
from source network-interface buffer, the counter is decremented. When data is con-
sumed at the destination network-interface buffer, credits are produced in a counter
(credits to report) to indicate that more empty space is available. These credits are
send to the source network interface (dashed line in Fig. 3.3) to be added to the
counter remote buffer space.

The network-interface buffers have three purposes. First, they implement clock
boundaries between the tiles and the network. Second, they decouple and isolate
tile communication behaviour from network behaviour. That is, data bursts from
the tile are buffered to fit the network’s schedule, and vice versa. Third, they hide
the round-trip latency of flow-control credits for the request and response channel.

The Æthereal network offers two types of network connections (or service classes):
guaranteed throughput, and best effort [33]. To guarantee bandwidth and latency, re-
sources such as links are allocated to network connections [25]. Both, guaranteed-
throughput and best-effort network connections use source routing, i.e. the path to
the destination is decided a priori and it is known by the source network interface.
The source network interface is configured with this path. Data is sent from one
network interface to another using packets and wormhole routing, which has a low
buffering cost. In case of wormhole routing, the packet contains a header with the
destination. The transmission from the source to the destination is done through a
sequence of routers. When packets arrives at an intermediate router for forwarding,
the router examines the header, sets up a circuit to the next router, and then trans-
fers the packet. A packet is broken in smaller pieces, called flits. Flits of a single
packet may occupy multiple consecutive routers and links, like a worm. One flit
is defined as three words of 32 bits. Every router contains guaranteed-throughput

36 Multiprocessor architecture for streaming applications

input buffers consisting of one flit and best-effort buffers of eight flits. Guaranteed-
throughput input buffers require only one flit, as guaranteed-throughput packets
never stall in the router network. This is accomplished by globally time-division-
multiplex scheduling packet injection from the network interfaces to the routers, so
that packets never use the same link at the same time (thus avoiding contention).
The pipelined virtual connections that are implemented this way, have a guaranteed
bandwidth (roughly, the number of slots reserved for the connection) and bounded
latency. The time-division-multiplex slot allocation is an optimisation problem per
use case. Guaranteed-throughput connections are used for transferring data contain-
ers over communication channels, so that we can derive conservatively-estimated
upper bounds on communication latency. Best-effort connections use slots that have
not been reserved, or have not been used by guaranteed-throughput packets. Best-
effort packets are scheduled dynamically at run time, and their behaviour (band-
width and latency) is therefore dependent on the guaranteed-throughput packets.
Furthermore, packets may occupy multiple routers causing dependencies between
routers. Therefore, it is hard to predict the behaviour (bandwidth and latency) of
best-effort packets. Data that is sent on best-effort network connections is guaran-
teed to arrive at the destination (due to flow control), but without minimum band-
width and maximum latency bounds. Best-effort network connections can be used
for programming the network and tiles, in case the job start-up times are not time
critical.

From a tile’s perspective, network communication can be divided into address-less
and address-based communication. In case of address-less communication, a tile
is connected to a network interface via a hardware FIFO interface port. Master
(Ma) and slave (Sl) ports are used to connect a tile to a network interface in case of
address-based communication. These ports are connected to a network-interface kernel
via network-interface shells, as shown in Fig. 3.3. A network-interface shell converts
transaction requests of a particular IP protocol (e.g. DTL Peer-to-Peer Streaming
Data [65]), into transport-layer messages. For address-based communication, trans-
action requests contain a command, address, and potentially some data (in case of
write accesses). As commands we distinguish read, acknowledge write, and posted
write accesses. In case of accessing a remote memory with read or acknowledge
write, the processor waits until it receives the read data or an acknowledge that the
data is written. For posted write accesses, the transaction is stored in the network-
interface buffer and the processor does not have to wait for an acknowledge, but it
can continue doing useful work while the transaction is transported over the net-
work and the data is written at the destination. The kernel converts these generic
transport-layer messages into network-layer guaranteed-throughput or best-effort
packets, this conversion is referred to as packetisation. It is also responsible for de-
packetisation, which is the conversion of the guaranteed-throughput or best-effort
packets into generic transport-layer messages.

In part I of this thesis, we focus on address-less communication, because it matches
the streaming model of computation. An example of address-less communication is
DTL Peer-to-Peer Streaming Data [65]. In address-less communication, only data is
sent over network connections. No addresses need to be sent additional to the data,
because these connections are configured a priori, in such a way that the source, des-
tination and the path are known. Each network-interface buffer can be addressed

Communication and synchronisation between tasks 37

directly by the processing core in a tile. Address-based communication will be ex-
plored in part II of this thesis.

The network must be programmed with the appropriate configuration at run time.
The configuration consists of allocating slots to network connections and the routing
path from source to destination. In this thesis, we solve the configuration for each use
case at design time, resulting in predefined configurations. At run time these config-
urations can be programmed (or loaded) into the network by a configuration master,
e.g. the host micro controller. Programming the network is done by programming
the configuration for all connections in every network interface via address-based
communication (DTL Memory-Mapped Input Output [65]). The network interfaces
can be programmed via a so called Configuration Network-Interface Port (CNIP).
This configuration port is looped back to a network-interface slave port, as depicted
at the bottom right in Fig. 3.3. Therefore, the network is configured using itself and
no separate control interconnect is required [33].

3.3 Communication and synchronisation between tasks

Streaming jobs from the infotainment nucleus will be mapped onto our multipro-
cessor architecture. A streaming job consists of tasks and communication channels,
as described in Section 2.1. Tasks are executed by the processors in tiles and com-
munication channels are implemented as intra-tile communication or inter-tile com-
munication. To illustrate the mapping step, we map a producer consumer job to the
multiprocessor platform in Fig. 3.1.

When two communicating task are executed on the same processor, then the commu-
nication channel between these tasks is implemented with intra-tile communication.
Intra-tile communication is implemented with a circular buffer [26] that is located
in the local memory, as shown by the communication channel c1 between task u1

and u2 in Fig. 3.4. The buffer management is done at the level of containers and the
synchronisation between containers is FIFO based. A processor has random access
within a container, because it is stored in the local memory of the processor. A cir-
cular buffer consists of a buffer administration and of a memory region for storing
the data containers. The buffer administration consists of a base-address, size, Read-
Pointer (RP), and Write-Pointer (WP). The memory region where the data containers
are stored, is defined by the administration values base-address and size. The read-
pointer is pointing to the memory location where the first full container is stored. The
memory location of the first empty container is defined by the write-pointer. A task
only reads or writes from a buffer if there are, respectively, full or empty containers
available. A task can check for the number of available full and empty containers in
the buffer, by investigating the buffer’s administration values. After the consuming
task has read a full container, it updates the read-pointer so that it points to the next
full container in the buffer. After the producing task has filled an empty container, it
updates the write-pointer. Once a pointer reaches a memory location that is outside
the buffer’s memory region, the pointer value wraps around and will point to the
beginning of the buffer again. Therefore, this buffer is called a circular buffer. The
protocol for intra-tile communication will be described in six steps. The steps are
also depicted in Fig. 3.4 and are as follows:

38 Multiprocessor architecture for streaming applications

F
IF

O

tile i

231,4 56
P

M

tile

NI

network

1 1c1
u1 u2

R
P

W
P

Figure 3.4: Streaming communication, between two tasks mapped to the same tile,
via a circular buffer located in the local memory of a processor.

1. The processor, on which task u1 is executed, reads the administration values
from its local memory (i.e. read and write pointers) to see if there is space
available to store a data container.

2. In case there is space available, task u1 produces output data and the processor
stores it in the circular buffer that is located in its local memory.

3. After the data container is written, the processor updates the write pointer in
the buffer administration.

4. The processor, which also executes task u2, reads the circular-buffer’s admin-
istration values from its local memory (i.e. read and write pointers) to see if
there is a data container available in the circular buffer.

5. In case there is a data container available, the processor reads the data con-
tainer from its local memory.

6. After the processor has finished reading the data, it updates the read pointer
in the buffer administration.

When two communicating task are executed on two different processors, then the
communication channel between these tasks is implemented with inter-tile commu-
nication. An example of inter-tile communication, is the implementation of the com-
munication channel c1 between task u1 and u2 in Fig. 3.5. This communication is
implemented with address-less communication over a network connection between
tile i and tile j. Address-less communication requires the allocation of a network
connection for every inter-tile communication channel to distinguish data between
communication channels, as no address information is sent along with the data. Net-
work interfaces contain input and output buffers that are implemented in hardware.
Data containers are stored in network-interface buffers and buffer accesses are word

Communication and synchronisation between tasks 39

M

P

NI

tile i

network

u1
1 1c1

u2

tile j

M

P

NI

31

2

4

Figure 3.5: Address-less communication between two tiles in the multiprocessor.

by word and in sequential order. A processor can write directly to an output buffer
by accessing the tail of this FIFO buffer. A processor can read from an input buffer by
accessing the head of this FIFO buffer. The processor is blocked if it writes to a full
network-interface buffer, or if it reads from an empty network-interface buffer. The
protocol of inter-tile communication is described with four steps that are depicted in
Fig. 3.5. In spite of the fact that we describe the steps sequentially, the processors and
the network will perform these steps concurrently. Each step is implemented with a
blocking semantics so that the whole path shows back-pressure behaviour. The four
steps are as follows:

1. The processor, on which task u1 is executed, produces an output container and
stores it in the network-interface buffer in tile i.

2. The network will transfer the data from the network-interface buffer in tile i to
the network-interface buffer in tile j.

3. The processor, on which task u2 is executed, reads the data from the input
buffer that is located in the network interface of tile j.

4. After the data has been read from the input buffer, the network will sent credits
back to the network interface in tile i to report that there is space available in
the network-interface buffer which is located in tile j.

The communication latency of address-less communication over a network connec-
tion, from a source network-interface port to a destination network-interface port, is
defined as follows:

Definition 9 (Address-less communication latency). The address-less communica-
tion latency of a container that is sent over a network connection, from a source

40 Multiprocessor architecture for streaming applications

network-interface port to a destination network-interface port, is defined as the time
between the moment that this container is accepted by the source network interface
and the moment when this container can be read from the destination network in-
terface, assuming that no other data is pending in the network connection.

Communication latency is composed of waiting latency and network latency. Waiting
latency is defined as the difference in time at which the container is arrived in the
source network-interface buffer and the time it has been scheduled for packetisation.
This time depends on the distances between two allocated slots in the slot table.

Network latency is a consequence of latency in the network-interface shells, network-
interface kernels, clock-domain crossings, routers, arbitration, and end-to-end flow
control. A network-interface shell introduces two to four cycles latency (e.g. de-
pending on address-less or address-based communication). Between one and three
clock-cycles latency is introduced by the network-interface kernels (as data needs
to be aligned to a three word flit boundary) [70]. The clock-domain crossings, be-
tween source and destination, introduce two clock-cycles latency at the destination
clock. Three clock-cycles latency are introduced per router. Per slot-table rotation a
predefined number of words can be sent over the network. Therefore, time-division-
multiplex scheduling causes additional latency, namely a predefined number of slot-
table rotations that are necessary for transferring a message. The round-trip latency
of end-to-end flow-control credits can be neglected if it is hidden by sufficiently large
network-interface buffers [25].

Notice that, at design time, the communication latency cannot be bounded from
above, for a container that is sent via a best-effort network connection. Because in the
slot table no slots are allocated to best-effort network connections and the connection
may be starved.

3.4 Static-order scheduling of tasks

In case multiple tasks are executed by the same processor (e.g. tasks u1 and u2 in
Fig. 3.4), a scheduling mechanism determines the execution order of these tasks. In
this thesis, such a scheduling mechanism is divided into design-time scheduling and
run-time scheduling. Part I of this thesis considers design-time scheduling of tasks
and run-time scheduling of tasks is considered in part II of this thesis. Examples of
design-time schedules are fully-static schedules [49] and static-order schedules [76].
In a fully-static schedule, the start times of tasks are predefined. An advantage is
a low synchronisation overhead. The disadvantage is that a global notion of time
is required. This can be problematic when each tile has its own clock frequency. In
static-order schedules, on the contrary, a global notion of time is not required. It
only requires an execution order of the tasks that are executed by a single processor.
Therefore, we make use of static-order schedules. That means processors can only
execute tasks from the same job or from jobs which are triggered by the same (or
a derived) sample frequency. For each processor, the static-order schedule is deter-
mined in such a way that all throughput and end-to-end latency requirements are
met, as we will describe in next chapter.

Concluding remarks 41

3.5 Concluding remarks

In this chapter, we described our first architecture that limits the uncertainty in the
temporal behaviour to enable tight bounds on throughput and end-to-end latency.

The multiprocessor architecture has processing tiles that contain local memories and
the processor is the only master who is accessing its local memory. Furthermore, it
makes use of local synchronisation, which means that all input and output contain-
ers of a task are stored locally (i.e. stored in local memories and network-interface
buffers). The transport from one tile to another is implemented as a separate step,
i.e. a copy action over the network using the guaranteed communication services of
the network. This way computation and communication are separated. Tasks are ex-
ecuted on processors by means of static-order schedules. So that the execution order
of tasks, that are executed on the same processor, is known at design time.

The advantage of this architecture is that we can derive tight conservatively-esti-
mated bounds on execution times and communication latencies. This enables us to
derive tight bounds on throughput and end-to-end latency. There are also some lim-
itations. First, the task’s program code and the complete working data set must fit
in the local memory of a tile and, in case of inter-tile communication, the network-
interface buffers must be able to contain a complete data container. So containers
must be rather small. Second, it is a hardware driven approach which lacks flexi-
bility. For example, the number of supported network connections is coupled to the
number of hardware buffers in the network interfaces. Third, data containers need to
be stored at both sides (source and destination) which can have a negative impact on
area and end-to-end latency. As a consequence, the target domain is sample-based
processing, like analog terrestrial radio.

42 Multiprocessor architecture for streaming applications

Chapter 4

Analysing real-time
performance

Performance-analysis techniques are used to analyse the temporal behaviour of jobs,
in order to verify that its real-time requirements, like throughput and end-to-end
latency, are met. In this chapter, we motivate dataflow-analysis techniques to verify
the real-time requirements of every job running on our multiprocessor platform.

First, in Section 4.1, we describe the use of dataflow graphs for modelling a job that is
mapped to the multiprocessor platform. Next, Section 4.2 introduces the semantics
of dataflow graphs that will be used throughout this thesis. Section 4.3 describes how
we construct a dataflow model from our implementation, in case tasks are executed
in a static-order schedule. Existing dataflow analysis techniques are described in
Section 4.4. Finally, we summarise with concluding remarks in Section 4.5.

4.1 Modelling a job that is mapped to the platform

In this thesis, we focus on performance analysis at design time. Figure 4.1 depicts
the relation between mapping a job on a platform, the job’s dataflow model repre-
sentation, and the job’s real-time performance analysis.

A job is specified by a task graph, as described in Chapter 2. A task is typically
specified in a sequential programming language, like C. The job’s task graph as well
as the tasks are assumed to be given in this thesis. Jobs can contain loops (cycles in
the task graph) that influence the temporal behaviour of a job.

The tile-based multiprocessor architecture is described in Chapter 3. A streaming
job is mapped to the multiprocessor platform. For performance reasons, a job is
mapped to multiple tiles and therefore tasks can execute in parallel. The temporal
behaviour of a job’s implementation depends also on the mapping of the job to the
multiprocessor platform. A mapping of a job consists of the binding of tasks to
processors, static-order scheduling of tasks on a processor, configuration of network
connections, and buffer sizing.

44 Analysing real-time performance

dataflow model

dataflow analysis

mapping

job specification platform

Figure 4.1: The mapping of a job on an architecture, the dataflow model that repre-
sents the job’s implementation, and the dataflow analysis to derive the job’s real-time
performance.

The analysis technique should account for (cyclic) data dependencies between tasks,
because they can affect the temporal behaviour. Cyclic dependencies can be caused
by functional dependencies (e.g. in the case of feedback loops), schedule depen-
dencies (e.g. in the case of static-order scheduling), and back-pressure (to prevent
buffer overflow). We make use of dataflow modelling and analysis techniques, be-
cause they can take into account cyclic dependencies that influence the temporal
behaviour. The streaming job that is mapped to the multiprocessor architecture is
modelled in a dataflow graph. That means, it models the execution of tasks on pro-
cessors, the static-order scheduling of tasks, the intra-tile as well as inter-tile com-
munication between tasks, and the buffer capacities of circular buffers and network-
interface buffers. The dataflow-model semantics will be described in Section 4.2 and
the construction of a dataflow model will be described in Section 4.3.

By analysing the job’s dataflow model with existing dataflow-analysis techniques,
we can derive conservatively-estimated bounds on the job’s throughput and end-to-
end latency. The derived bounds should be tight, because a large deviation can result
in a significantly over-dimensioned system. Existing dataflow-analysis techniques
will be described in Section 4.4.

4.2 Dataflow model preliminaries

In this section, we describe the semantics of a dataflow graph [50]. A dataflow graph
G = (V ,E) is a directed graph that consists of a finite set of actors V , and a finite set
of directed edges E = {(vi, vj)|vi, vj ∈ V }. An actor represents a quantum of work,
e.g. a function with an input and output. Actors synchronise by communicating
tokens over edges that represent FIFO channels. A token is used to represent a con-
tainer in which a fixed amount of data can be stored. The number of initial tokens on
an edge e ∈ E is denoted with ζ(e). An initial token is depicted as a black dot on an

Dataflow model preliminaries 45

1

v2

v4
1

11

1 11
v1

11
1

1

1 1

1

1
11

1 1

1 1 1 1

v3

1

Figure 4.2: An example of a strongly connected dataflow graph G.

edge. In case there are more than one initial tokens, the number of initial tokens ζ(e)
is depicted next to the black dot. An actor is enabled to fire when the firing rule is
evaluated as true, i.e. the number of tokens that will be consumed is available on
each input edge. The number of tokens consumed by actor vi is determined by the
edge e ∈ E and equals γ(e) tokens. When actor vi finishes, it produces the specified
number of tokens on each output edge e = (vi, vj). The number of tokens produced
is denoted by π(e). If the number of tokens consumed (γ(e)) or produced (π(e)) are
not depicted in the picture of a dataflow graph, then we assume them equal to one.
This is done in order to make the graph more readable. An actor in the dataflow
model supports auto-concurrency because an actor is per definition stateless. In the
implementation tasks contain state and they are executed by a single processing core,
therefore, they can only be started again after completing the previous execution.
This is modelled in the dataflow graph with a self cycle e = (vi, vi) with one initial
token. In part I of this thesis, we assume that each actor has a self cycle with one ini-
tial token (which excludes auto concurrency). In part II, we will distinguish actors
with and without a self cycle to be able to represent run-time scheduling of tasks in
a dataflow model.

Dataflow graphs are extended with a notion of time, i.e. actors are annotated with an
execution time [76]. The execution time ρ(vi) is the difference between the finish and
the start time of actor vi. The specified number of tokens is consumed in an atomic
action from all input edges when the actor is started. When an actor vi finishes, it
produces the specified number of tokens on each output edge in an atomic action.
Therefore, this consumption and production of tokens does not take time.

There are a number of classes of dataflow models described in literature, as already
mentioned in Section 1.3.4. The main difference is in the expressiveness of an ac-
tor, as depicted in Fig. 4.3. In an Single-Rate DataFlow (SRDF) graph [50], which is
a subclass of Multi-Rate DataFlow (MRDF) graphs [50], every actor consumes one
token from every input edge and it produces one token to every output edge, i.e.
γ(e) = 1 and π(e) = 1. As all production and consumption rates are equal to one,
the repetition rate [76] (i.e. the relative firing frequency) equals one for every actor in
the SRDF graph. This means that every actor is executed as often as any other actor
in the SRDF graph. Actor v1 in Fig. 4.3, is an example of an actor that consumes
and produces one token per firing. Any consistent MRDF graph can be converted to
an equivalent SRDF graph, by using the conversion algorithm in [76]. In an MRDF
graph, the number of tokens consumed and produced by an actor equals, respec-

46 Analysing real-time performance

1

MRDF
480 441

v2

11

CSDF
〈18〉 〈07, 1〉

v3

VRDF
1152

v4
{0,960}

1 1

1 1

1 1
SRDF v1

1

Figure 4.3: Actors from different classes of dataflow models.

tively, γ(e) and π(e), with γ(e), π(e) ∈ N. In Fig. 4.3, actor v2 is an example of an
MRDF actor that consumes 480 tokens and produces 441 tokens per firing.

A Cyclo-Static DataFlow (CSDF) [9, 64] actor vi ∈ V has θ(vi) distinct phases of
execution and transitions from phase to phase in a cyclic fashion. The phase f of
CSDF actor vi in firing k is f = ((k − 1)%θ(vi)) + 1, where k ≥ 1, 1 ≤ f ≤ θ(vi),
and x%y stands for x modulo y with the result the same sign as the divisor y. The
execution time ρ(vi, f) is the difference between the finish and the start time of phase
f of actor vi. The number of tokens consumed by an CSDF actor is determined by the
edge e ∈ E and the current phase f of the actor and therefore equals γ(e, f) tokens.
The number of tokens produced in a phase will be denoted by π(e, f). Actor v4 in
Fig. 4.3 is an example of a CSDF actor. The notation 〈18〉 and 〈07, 1〉 is equivalent to,
respectively, 〈1, 1, 1, 1, 1, 1, 1, 1〉 and 〈0, 0, 0, 0, 0, 0, 0, 1〉, which means the number of
tokens consumed and produced in each phase of the task. If the number of tokens
consumed (γ(e, f)) or produced (π(e, f)) are not depicted in the picture of a dataflow
graph, then we assume them equal to one for every phase f .

For a Variable Rate DataFlow (VRDF) [93] actor, the number of tokens that are con-
sumed on an edge e ∈ E, in a particular firing, is a value taken from γ(e), where γ(e)
has a minimum and maximum token consumption quanta. For example in Fig. 4.3,
the minimum and maximum consumed number of tokens is, respectively, 0 and 960
tokens per firing of actor v4. Similar can hold for the token production quantum in
that firing on an edge e, which is a value taken from π(e), where π(e) has a minimum
and maximum token consumption quanta. For example, actor v4 has a fixed number
of produced tokens per firing, namely 1152.

In this thesis, we make use of the CSDF model. The CSDF model will be used
to model the job that is executed on the multiprocessor platform. The throughput
and end-to-end latency are derived via a so called self-timed execution of the CSDF
graph, which is defined as follows:

Definition 10 (Self-timed execution). In a self-timed execution of a dataflow graph,

Dataflow model construction 47

actors fire as soon as they are enabled.

Furthermore, we say that a CSDF graph maintains a FIFO ordering of tokens, if each
actor either has a constant execution time, or has a self cycle with one token. This is
because queues by definition maintain FIFO ordering of tokens, which means that
tokens cannot overtake each other in such a CSDF graph. An important property is
that self-timed execution of a strongly connected CSDF graph that maintains a FIFO
ordering of tokens is monotonic in time, which is defined as follows [94].

Definition 11. A CSDF graph executes monotonically in time if a decrease in execu-
tion time or start time of any firing k of any actor vi cannot lead to a later enabling
of any firing l of any actor vj .

If a CSDF graph G maintains FIFO ordering of tokens, the self-timed execution of
G is monotonic [94]. This is because a decrease in execution time or start time can
only lead to earlier token production times, and therefore only to an earlier actor
enabling.

4.3 Dataflow model construction

In this section, we describe the construction of a dataflow graph that models a job
which is mapped to our multiprocessor platform. This dataflow model takes into
account: computation of tasks, communication between these tasks, arbitration at
shared resources, and FIFO buffer capacities, because all these properties influence
the job’s temporal behaviour.

A streaming job is composed of tasks that communicate via communication chan-
nels, as described in Section 2.1. All tasks are bound to tiles in the multiprocessor
platform and these tasks are executed on a processor or hardware accelerator. In the
implementation, tasks read data from their input channels and produce data to their
output channels during their execution. In the dataflow model, actors are enabled
when the firing rule is evaluated as true. That means, actors are enabled if sufficient
tokens are available at every input edge. As we will show in Section 4.3.1, when
tasks are executed in a static-order schedule, each task can still be modelled with
one actor despite the absence of the firing rule in the implementation. Therefore,
tasks do not have to wait for sufficient full and empty containers, but they can al-
ready start executing after the previous task, in the static-order schedule, is finished.
The task’s conservatively-estimated upper bound on the execution time is taken as
the execution time of the actor that represents this task.

Tasks communicate data containers over communication channels. These contain-
ers are represented by tokens that are communicated between actors in the dataflow
model. A communication channel in the implementation has a bounded capacity,
whereas the capacity of an edge, in the dataflow graph, is by definition unlim-
ited. Therefore, a FIFO buffer with a bounded capacity is modelled, in the dataflow
model, with two edges in opposite direction (a forward and backward edge). The
availability of full containers in the FIFO buffer corresponds with the presence of
tokens on the forward edge. If a task consumes a full container, it creates space
in a FIFO buffer, which corresponds to the production of a token on the backward

48 Analysing real-time performance

implementation

1

1

1

1

3

11 1 1

v1 v2dataflow model

1 1
u1 u2

3 containers
capacity

Figure 4.4: Dataflow model representation of a FIFO buffer with a bounded capacity.

edge. In other words, the production of tokens on the backward edge represents
the production of empty containers in the FIFO buffer of the implementation. The
number of initial tokens on both edges represents the buffer capacity in the number
of containers. An example of a dataflow model of a bounded FIFO buffer is shown
in Fig. 4.4 where task u1 and u2 are represented by actor v1 and v2. The bounded
FIFO buffer is represented by the forward and backward edge and the FIFO buffer
capacity of three containers is modelled by the three initial tokens located on the
backward edge (v2, v1).

The communication between two tasks is either intra-tile or inter-tile communica-
tion, as described in Section 3.3. Intra-tile communication is the communication be-
tween tasks that are executed on the same processor. This communication is imple-
mented via a circular buffer in the local memory of the processor. The circular buffer
has a bounded capacity, therefore, it is modelled with a forward edge, backward
edge, and a number of initial tokens to represent the buffer capacity. More advanced
intra-tile communication implementations can be expressed in a CSDF graph by re-
laxing the tight relation between tokens and containers [19], but this is beyond the
scope of this thesis.

Inter-tile communication is the communication between tasks that are executed on
processors of different tiles. This communication is implemented with address-less
communication over a network connection from the network interface in one tile
to the network interface in another tile. Inter-tile communication can be modelled
with one or more actors in the dataflow model. In [54, 59, 40] a detailed dataflow
model of an Æthereal network connection is introduced, which models the routers,
network interfaces, network-interface buffers, time-division-multiplex scheduling,
and flow control. In this thesis, we model the communication latency with one actor
for simplicity reasons. For example, actor v3 in Fig. 4.5 models the communication
latency, as defined by Definition 9. This is a suitable model in case the network-
connection bandwidth allocation is sufficiently large, so that the jobs throughput is
only affected by the communication latency. The execution time of actor v3 is equal
to this communication latency. Task u1 and u2 are represented by actor v1 and v2.
The two network-interface buffers are modelled with the forward and backward
edges between actor v1 and v3, and between actor v3 and v2. The buffer capacities
are modelled with the number of initial tokens that are placed on the edges (v3, v1)
and (v2, v3).

Dataflow model construction 49

1

1

1

1
11 1 1

v1 v2v3

11

1

1

1

1

32

dataflow model

u2
1

u1
1

P NI NI P

router

network
implementation

Figure 4.5: Dataflow model representation of inter-tile communication implemented
with address-less communication over a network connection.

Multiple tasks can be executed on the same processor. Therefore, a scheduler de-
termines which task is executed next by means of a predefined scheduling mecha-
nism. Such a scheduling mechanism can be divided into compile-time scheduling
(e.g. static-order scheduling) and run-time scheduling (e.g. round robin and time
division multiplex), as described in Section 3.3. By modelling these schedule mech-
anism in the dataflow model, the throughput and end-to-end latency can be found
by analysing the self-timed executed dataflow graph. In part I of this thesis, tasks
are executed using a static-order scheduling mechanism. Actors are enabled to fire
when sufficient tokens are available on every input edge. Therefore, the static-order
execution of tasks can be modelled with additional edges between these tasks. These
edges form a cycle and we place one initial token on this cycle, so that the actors ex-
ecute sequentially. The initial token is placed at the input of the actor that represents
the first task in the static-order schedule to make sure that this actor can start to fire.
An algorithm to model generic static-order schedules into a CSDF graph, will be in-
troduced in Section 4.3.2. A dataflow model of a run-time scheduler that belongs to
the latency-rate server class [77], will be described in part II of this thesis.

4.3.1 Absence of the firing rule in the implementation

In this section, we will show that if tasks are executed in a static-order schedule, they
do not need to implement the firing rule in the implementation. Therefore, the task’s
C-code can be modelled without modification, which reduces the modelling effort.

A CSDF actor is enabled to fire when the firing rule is evaluated as true, i.e. the
number of tokens that will be consumed is available on each input edge. The min-
imum throughput can still be computed from a CSDF model, despite the absence
of the firing rule in the implementation. Intuitively, tasks can already start consum-
ing containers before the corresponding actor is enabled (firing rule is not present
in a task) and earlier consumption of containers cannot result in later correspond-
ing token production times (temporal monotonic). Therefore, the CSDF model is a
conservative representation of the implementation. This will be described in detail
below.

We use a generic example to show that the CSDF model is a conservative represen-

50 Analysing real-time performance

B
..

..

.

(a) (b)
while(true) {

schedule() {

}
}

u x();

u x() { v2
x

v0
x

v1
x

v3
x

v4
x}

write(B,y);

int x1,x2,y;
x1=read(A);
x2=read(A);
y=func(x1,x2);

A

A

v5
x

B

vx

(c)

2

2

A
.

Figure 4.6: (a) Pseudo code of static-order schedule and task ux, (b) intermediate
CSDF model of a specific trace from task ux, and (c) actor vx that is modelling task ux.

tation of the implementation. A task ux is executed on a processor p in a static-order
schedule Sp. The pseudo codes of the static-order schedule and task ux are shown
in Fig. 4.6a. Task ux reads two words of input data from FIFO buffer A, computes
the output data, and writes the output data to FIFO buffer B. During the statements
x1=read(A); and x2=read(A); the processor is stalled if no data is available in FIFO
buffer A and it continues again if there is data. During the statement write(B,y);
the processor is stalled if FIFO buffer B is full and it continues again if space is avail-
able.

Task ux will be modelled with actor vx that consists of a set of edges Eb modelling
the FIFO buffers A and B, and of the set of edges Es modelling the scheduling depen-
dencies. FIFO buffers A and B are modelled with two edges in opposite direction, as
depicted in Fig. 4.6c. The initial tokens represent the FIFO buffer capacities. Actor vx

is enabled if: two tokens are available at the input edge that represents the commu-
nication of full containers in FIFO buffer A, one token is available at the input edge
that represents the communication of empty containers in FIFO buffer B, and one
token is available on the dashed input edge that models the static-order schedule.
When actor vx finishes its execution, two tokens are produced on the output edge
that represents the communication of empty containers in FIFO buffer A, one token
is produced at the output edge that represents the communication of full containers
in FIFO buffer B, and one token is produced on the dashed output edge that models
the static-order schedule.

To show that actor vx is a conservative representation of task ux, we make use of
an intermediate CSDF model, which is shown in Fig. 4.6b. The intermediate model
has a one-to-one relation with a specific trace of task ux. A trace is composed of read
statements, write statements, and non-blocking code segments. A non-blocking code
segment is a code segment that, after it is started, can always finish without having
to wait for additional input data or output space. That means, in our case, a non-
blocking code segment is a code segment between read and write statements. A trace

Dataflow model construction 51

of task ux can be seen as a row of CSDF actors vi
x with 0 ≤ i < w, in such a way that

every non-blocking code segment, read statement and write statement is represented
as a separate actor. For example, in Fig. 4.6b we see a CSDF model of the trace from
task ux with w = 6. The read and write statements are represented by the actors v1

x,
v2

x and v4
x, and the non-blocking code segments are represented by actors v0

x, v3
x,

and v5
x. The dependencies between the read statements, write statements, and non-

blocking code statements are modelled with the vertical dashed edges in Fig. 4.6b,
i.e. modelling the order within a specific trace. The intermediate model has a one-
to-one relation with the specific trace of task ux, because in the implementation the
processor stalls during read and write statements until data or space is available,
whereas in the model the actors v1

x, v2
x and v4

x are enabled to fire when sufficient
tokens are available at every input edge.

We will show that actors v0
x through v5

x in Fig. 4.6b can be modelled by actor vx in
Fig. 4.6c, so that the production behaviour of actor vx is conservative with respect
to the production behaviour of actors v0

x through v5
x. To show this, we make use

of the following terminology. For actor vx in Fig. 4.6c, we define Ix and Ox to be
respectively the set of input and output edges representing the FIFO buffers in the
implementation, with Ix, Ox ⊂ Eb. We further define ac(m, jm) to be the arrival time
at the input m ∈ Ix of the jm-th token and ac(n, jn) to be the arrival time on the
output n ∈ Ox of the jn-th token, both of actor vx. The vertical dashed edges in
Fig. 4.6c are part of the set of edges Es, representing the static-order schedule Sp.
We define ac(px, j) to be the arrival time of the j-th token on this dashed input edge
and we define ac(qx, j) to be the arrival time of the j-th token on this dashed output
edge, with px, qx ∈ Es. For actor vi

x, we define Ii
x and Oi

x to be respectively the
set of input and output edges representing the FIFO buffers in the implementation,
with Ii

x ⊂ Ix and Oi
x ⊂ Ox. We define ab(m, jm) to be the arrival time at the input

m ∈ Ii
x of the jm-th token and ab(n, jn) to be the arrival time on the output n ∈ Oi

x

of the jn-th token, both of actor vi
x. The vertical dashed edges in Fig. 4.6b model

the execution order of the read statements, write statements, and non-blocking code
segments. The time when the j-th token arrives at this vertical dashed input edge
of actor vi

x is defined as ab(p
i
x, j) and the time when the j-th token arrives at this

vertical dashed output edge is defined as ab(q
i
x, j).

In general, the production behaviour of actor vx is conservative with respect to the
production behaviour of actors v0

x through vw−1
x if the following holds.

Theorem 1. If the worst-case arrival times of tokens at the input are conservative (i.e. con-
dition (4.1) holds) and the execution time of actor vx is at least the sum of every actor that
models the trace of task ux (i.e. condition (4.2) holds), then the worst-case arrival times of
tokens at the output are conservative (i.e. Eq. (4.3) holds).

∀m ∈ Ix, ab(m, jm) ≤ ac(m, jm)∧

ab(p
0
x, j) ≤ ac(px, j)

(4.1)

w−1
∑

i=0

(

ρ(vi
x, f)

)

≤ ρ(vx, f) (4.2)

∀n ∈ Ox, ab(n, jn) ≤ ac(n, jn)∧

ab(q
w−1
x , j) ≤ ac(qx, j)

(4.3)

52 Analysing real-time performance

Intuitively, actors vi
x can consume and produce the tokens only earlier than actor vx,

because an actor vi
x is enabled if there are sufficient number of tokens available on

a subset of all inputs of actor vx (i.e. Ii
x ⊂ Ix) and the execution time of actor vx is

conservative (i.e. Eq. (4.2) holds).

Proof of Theorem 1. Let yc be the maximum arrival time of the tokens at all inputs
m ∈ Ix of actor vx that enable actor vx (as defined by Eq. (4.4)), then the arrival time
of the jn-th token of all outputs n ∈ Ox ∩ {qx} of actor vx is given by Eq. (4.5).

yc = max
m∈Ix

(ac(m, jm)) (4.4)

ac(n, jn) = max (yc, ac(px, j)) + ρ(vx, f) (4.5)

Let yi
b be the maximum arrival time of the tokens at all inputs m ∈ Ii

x of actor vi
x that

enable actor vi
x (as defined by Eq. (4.6)), then the arrival time of the jn-th token of all

outputs n ∈ Oi
x ∩ {qi

x} of actor vi
x is given by (4.7).

yi
b = max

m∈Ii
x

(ab(m, jm)) (4.6)

ab(n, jn) = max
(

yi
b, ab(p

i
x, j)

)

+ ρ(vi
x, f) (4.7)

In Fig. 4.6b, the ordering between code segments is modelled with the vertical dashed
edges between actors vi−1

x and vi
x, therefore, we know the following.

ab(p
i
x, j) = ab(q

i−1
x , j) , for 1 ≤ i < w (4.8)

After substituting Eq. (4.8) in Eq. (4.7) for output n = qi
x we get the following recur-

rence relation with 1 ≤ i < w.

ab(q
0
x, j) = max

(

y0, ab(p
0
x, j)

)

+ ρ(v0
x, f)

ab(q
i
x, j) = max

(

yi, ab(q
i−1
x , j)

)

+ ρ(vi
x, f)

(4.9)

By applying the relation max(r, s + t) ≤ max(r, s) + t iteratively on Eq. (4.9) we can
rewrite it into.

yb =
w−1
max
i=0

(

yi
b

)

(4.10)

ab(q
w−1
x , j) ≤ max

(

yb, ab(p
0
x, j)

)

+ Σw−1
i=0 ρ(vi

x, f) (4.11)

The right-hand side of Eq. (4.11) is smaller than ac(qx, j) from Eq. (4.5) if Eq. (4.1)
holds (i.e. yb ≤ yc and ab(p

0
x, j) ≤ ab(px, j)) and Eq. (4.2) holds. Furthermore, ac-

tor vw−1
x is the last actor in the trace, so we know that all outputs n ∈ Ox have

an arrival time ab(n, jn) ≤ ab(q
w−1
x , j). Therefore, we conclude that the production

behaviour of actor vx is conservative with respect to the production behaviour of ac-
tors v0

x through vw−1
x for all outputs n ∈ Ox ∩{qx}. We further conclude that actor vx

is conservative for all possible traces of task ux and it is independent of the order
in which data is consumed and produced, when ρ(vx, f) is the worst-case execution
time of task ux for every phase f .

Each FIFO buffer in the implementation results in two edges in opposite direction in
the CSDF graph, therefore, our model is a strongly connected CSDF graph. In Sec-
tion 4.2, we have shown that the self-timed execution of a strongly connected CSDF

Dataflow model construction 53

graph that maintains FIFO ordering, is monotonic in time. Since we know that the
self-timed execution of the CSDF graph has a monotonic temporal behaviour and ev-
ery actor has a conservative temporal behaviour compared with the corresponding
task, we arrive at the following conclusion. If during static-order execution, the first
execution of the first task in the schedule is not enabled later than the corresponding
actor, then producing containers before the task finishes or a shorter execution time
of a task cannot result in a later production of containers than the production of the
corresponding tokens.

4.3.2 Modelling static-order schedules

In a static-order schedule the order in which tasks execute is fixed at design time.
In [75], it is shown how a static-order scheduling of an SRDF graph can be modelled
into another SRDF graph such that, in the self-timed execution, actors are fired in
the order specified by the static-order schedule. This is done by adding edges to
the original SRDF graph. These edges form a cycle that enforces the ordering in
which the actor firings should occur. It is shown in [82], that in general a static-order
schedule cannot be modelled in a MRDF graph without adding additional actors.
This is, for example, possible by first converting the MRDF graph into an equivalent
SRDF graph and then applying the method from [75]. The disadvantage is that this
can lead to an exponential increase in the number of actors in the graph.

In this section we take a different approach. We model static-order schedules in a
CSDF graph instead of a SRDF graph, therefore, we prevent that the number of ac-
tors increase exponentially. Instead of increasing the number of actors, the number
of phases are increased. Furthermore, additional edges are added between the ac-
tors to enforce the ordering in which the actor firings should occur, according to
the static-order schedule. One initial token is placed on the cycle that represents
the static-order schedule. The initial token is placed before the actor that represents
the first task in a static-order schedule. After modelling the static-order execution
of tasks, existing dataflow-analysis techniques can be applied to check whether the
static-order schedule is deadlock free and to compute the throughput. Note, that we
use a static-order schedule for jobs where the tasks consume and produce a prede-
fined number of containers from the input and output channels, i.e. the jobs can be
represented in CSDF graphs. For these jobs we can derive, at design time, static-
order schedules that are deadlock free.

In this section we use the following terminology. Each task is executed on a proces-
sor p and each processor p is executing tasks in a static-order schedule. A static-order
schedule can be denoted by Sp = (s0, s1, ..., sN−1), with task si executed on proces-
sor p. Furthermore, in this chapter, we assume that every task ui is represented by
actor vi.

Now we introduce a method to extend a CSDF graph that represents a job, into a
CSDF graph that represents a job from which the tasks are executed on processors
using static-order schedules. The input of our algorithm is: a CSDF graph G =
(V ,E) representing a job, and a specified mapping that consists of a binding of actors
to processors and a static-order schedule Sp for each processor p. The output is a
CSDF graph G′ = (V ′, E′) that models the job with the specified mapping of tasks.

54 Analysing real-time performance

v1 v2 v3 v4 v5

2

2 1

1 1

1

1

1

1

1

3

3

2

2

1

1

Figure 4.7: CSDF graph G representing a streaming job.

The algorithm is illustrated with an example of a streaming job that consists of five
tasks. Tasks u1 and u2 are bound to processor p1 and task u3 through u5 are bound
to processor p2. Depending on the processor and its clock frequency, each task will
have a certain conservatively-estimated upper bound on its execution time. In our
example, these upper bounds equal T time units and every task has only one phase.
Task switching cost (e.g. due to cache misses) is assumed to be C time units for every
task switch. The task switching cost will be taken into account in part II of this thesis.
Furthermore, processor p1 and p2 use the static-order schedules Sp1 = (u1, u2, u2)
and Sp2 = (u3, u3, u4, u5, u3, u5), respectively. The streaming job is represented by
the CSDF model that is depicted in Fig. 4.7. Each actor vi represents task ui. The
execution time ρ(vi, f) = T time units for every actor vi with 1 ≤ i ≤ 5 and phase f =
1, because θ(vi) = 1.

For our algorithm we use the following terminology. The number of occurrences
of task ui in schedule Sp equals Ω(ui, Sp), with 0 ≤ Ω(ui, Sp) ≤ N . For example,
the number of occurrences of task u1 and u2 in schedule Sp1 equal Ω(u1, Sp1) = 1
and Ω(u2, Sp1) = 2, respectively. Furthermore, for a certain schedule Sp, the l’th
occurrence of task ui is at position φ(l, ui, Sp), with 1 ≤ l ≤ Ω(ui, Sp) and 0 ≤
φ(l, ui, Sp) < N . For example, the third occurrence of task u3 in schedule Sp2 is
at position φ(3, u3, Sp2) = 4.

The new graph G′ is constructed by (i) creating the new set of actors V ′ and (ii)
creating the new set of edges E′.

(i) The new set of actors V ′ consists of an equal number of actors as in set V . Each ac-
tor v′

i ∈ V ′ of graph G′ is representing actor vi ∈ V of the original graph G. A task ui

is modelled with actor vi and the cyclo-static behaviour of the task is represented by
the θ(vi) distinct phases of actor vi. Actor vi is translated into actor v′

i that also mod-
els the cyclo-static behaviour of the static-order schedule. Task ui occurs Ω(ui, Sp)
times in schedule Sp. The different positions of task ui in schedule Sp, are modelled
with different phases of Actor v′

i. Therefore, the number of phases θ(v′
i) of actor v′

i is
equal to the least common multiple (lcm) of the number of occurrences of task ui in
schedule Sp and the number of phases of actor vi, i.e. θ(v′

i) = lcm(Ω(ui, Sp), θ(vi)).
The modelling of the different positions in the schedule has also the advantage that
task switching cost can be modelled. With the number of phases θ(v′

i) we can express
the cyclo-static behaviour of the static-order schedule as well as the cyclo-static be-
haviour of the task. For phase f ′ of actor v′

i, its firing is at position q in the static-order
schedule Sp, where the position q is can be compute as follows:

q = φ(((f ′ − 1)%Ω(ui, Sp)) + 1, ui, Sp) (4.12)

Equation (4.12) is further described in Appendix A. The execution time of actor v′
i can

be calculated from the execution time of actor vi and the actor switching overhead
cost Ci. The execution time of actor v′

i in phase f ′ is computed by Eq. (4.13) with

Dataflow model construction 55

actor θ(v′
i) ρ(v′

i)
v′
1 1 〈T + C〉

v′
2 2 〈T + C, T 〉

v′
3 3 〈T + C, T, T + C〉

v′
4 1 〈T + C〉

v′
5 2 〈T + C, T + C〉

Table 4.1: The number of phases θ(v′
i) and the worst-case execution times ρ(v′

i) for
actor v′

1 through v′
5.

1 ≤ f ′ ≤ θ(v′
i). We only have to account for the task-switching overhead cost if the

previous task in a schedule Sp = (s0, s1, ..., sN−1) is different from the current task,
i.e. only if there is a task switch. There is a task switch when sj = ui ∧ s

(j−1)%N
6=

ui. Per definition sq = ui. Therefore, the execution time of actor v′
i in phase f ′ is

computed as follows:

ρ(v′
i, f

′) =

{

ρ(vi, ((f
′ − 1)%θ(vi)) + 1) if s

(q−1)%N
= ui

ρ(vi, ((f
′ − 1)%θ(vi)) + 1) + Ci if s

(q−1)%N
6= ui

(4.13)

Table 4.1 gives an overview of the number of phases and the execution times of the
actors v′

1 through v′
5 in our example.

(ii) The new set of edges E′ consists of the set of edges E′
b modelling the FIFO buffers

(with forward and backward edges) and a set of edges E′
s modelling the scheduling

dependencies, i.e. E′ = E′
b ∪ E′

s. The set of edges E′
b of graph G′ consists of an

equal number of edges as in set E of the original graph G. Each edge e′b ∈ E′
b is

representing edge e ∈ E. The number of tokens consumed (γ(e′b, f
′)) and produced

(π(e′b, f
′)) by actor v′

i on edge e′b ∈ E′
b equals, respectively, Eq. (4.14) and Eq. (4.15)

for every phase f ′, with 1 ≤ f ′ ≤ θ(v′
i).

γ(e′b, f
′) = γ(e, ((f ′ − 1)%θ(vi)) + 1) (4.14)

π(e′b, f
′) = π(e, ((f ′ − 1)%θ(vi)) + 1) (4.15)

The static-order schedule of tasks is modelled with the set of edges E′
s. The static-

order schedule Sp = (s0, s1, ..., sN−1) represents the execution order of tasks, which
are represented by actors. In the CSDF graph G′, there is an edge e ∈ E′

s from the
actor that represents task si to the actor that represents task s

(i+1)%N
, where task

si 6= s
(i+1)%N

, for 0 ≤ i < N . For our example, every edge e′s ∈ E′
s is depicted

with a dashed arrow in Fig. 4.8. One initial token is added on every input edge e′s ∈
E′

s of the actor that represents task s0 of every schedule Sp to take care that these
actors can start to fire. For our example in Fig. 4.8, there are initial tokens added on
the dashed edges (v′

2, v
′
1) and (v′

5, v
′
3), so that actor v′

1 and v′
3 can start to fire. The

number of tokens that are consumed by actor v′
i in phase f ′ on edge e′s = (v′

j , v
′
i) ∈

E′
s, is computed by Eq. (4.16). If task u′

j is executed before task u′
i in schedule Sp,

then actor v′
i consumes one token from the edge e′s = (v′

j , v
′
i), else no tokens are

56 Analysing real-time performance

〈1, 1, 1〉〈1, 1〉

〈1, 1〉

〈1, 1, 1〉

〈1, 1, 1〉

3 2

23〈1, 1, 1〉 〈1, 1〉

〈1, 1〉2

2

〈1, 1〉

〈1, 1〉

1

1 11〈0, 1, 0〉 〈1, 0〉

〈0, 1〉

〈1, 0〉

〈1, 0, 1〉 〈1, 1〉

〈0, 1〉〈0, 0, 1〉

v′
1 v′

2 v′
3 v′

4 v′
5

Figure 4.8: CSDF graph G′ modelling the job in Fig. 4.7 with static-order sched-
ules Sp1 = (v1, v2, v2) and Sp2 = (v3, v3, v4, v5, v3, v5).

consumed.

γ(e′s, f
′) =

{

0 if s
(q−1)%N

6= uj

1 if s
(q−1)%N

= uj
(4.16)

The number of tokens that is produced by actor v′
i in phase f on edge e′s = (v′

i, v
′
j) ∈

E′
s, is computed by Eq. (4.17). If task u′

j is executed after task u′
i in schedule Sp, then

actor v′
i produces one token on the edge e′s = (v′

i, v
′
j), or else no tokens are produced.

π(e′s, f) =

{

0 if s
(q+1)%N

6= uj

1 if s
(q+1)%N

= uj
(4.17)

For our example in Fig. 4.8, the number of consumed and produced tokens are de-
picted at the head and tail of each edge.

4.4 Dataflow analysis techniques

A streaming job is executed on a platform and this implementation is modelled in
a dataflow graph. By analysing this graph with dataflow-analysis techniques, we
derive the job’s real-time behaviour. In this section, we describe such techniques
that are able to derive throughput, end-to-end latency, and buffer capacities from a
dataflow graph.

Many existing dataflow-analysis techniques are based on maximum-cycle-mean anal-
ysis. This analysis is done typically on a SRDF graph where every actor consumes
and produces per firing one token from every input and output edge, respectively.
The maximum cycle mean is related to the inverse of the job’s maximum achievable
throughput, i.e. it is related to the number of produced and consumed containers
per time interval for a source or sink task. This maximum achievable throughput is
reached during a self-timed execution of the dataflow graph. The Maximum Cycle
Mean MCM(G) for a SRDF graph G is defined by [76] as:

Definition 12.

MCM(G) = max
simple cycle o in G

(
∑

v is on o ρ(v)
∑

e is on o ζ(e)

)

(4.18)

Dataflow analysis techniques 57

where a simple cycle is defined as a cycle with no repeated actors (aside from the
start/end actor). CSDF graphs can be transformed into equivalent SRDF graphs [9],
from which the maximum cycle mean can be computed with Eq. (4.18). The number
of phases of each actor in combination with the number of tokens consumed and
produced in each phase, determines the number of actors in the equivalent SRDF
graph. Therefore, a CSDF graph with a few actors can result in a large equivalent
SRDF graph with many actors and edges, resulting in a much larger number of cycles
than in the original CSDF graph. So, computing the maximum cycle mean can be
computation intensive for such an equivalent SRDF graph. The end-to-end latency
can also be computed from the maximum cycle mean, after translating the end-to-
end latency requirement into a throughput requirement [61].

In [28] an alternative technique is proposed for deriving the maximum achievable
throughput of MRDF graphs. This technique is based on explicit state-space explo-
ration and, unlike the previous techniques, it can work directly on an MRDF graph,
avoiding a possible explosion of the equivalent SRDF graph. It is shown by [28]
that for every consistent and strongly-connected self-timed executed MRDF graph,
the state-space consists of a transient phase, followed by a periodic phase. The maxi-
mum cycle mean and maximum achievable throughput can be derived by examining
the periodic phase. The derivation of an upper-bound on the end-to-end latency, can
also be derived by examining the periodic phase [29]. This technique is also applied
on CSDF graphs [81]. The disadvantage is that it can take a long time before the
periodic phase is detected, due to a potentially long transient phase. Long transient
phases can occur if a consuming actor is slightly slower than a producing actor and
there is a backward edge (from the consuming actor to the producing actor) with
a large number of initial tokens. Although the transient state can be long, this ap-
proach is in practice typically faster than first transforming a MRDF graph into a
SRDF graph [28, 81]

FIFO buffer capacities are taken into account in our dataflow models. The maximum
cycle mean can only be computed after specifying all buffer capacities in the dataflow
model. Backtracking or heuristics can be used in defining the initial buffer capacities,
before computing the maximum cycle mean. An exact technique for determining all
trade-offs (Pareto points) between the throughput and buffer capacities, is described
in [79, 81]. This technique is based on iteratively computing the maximum cycle
mean via explicit state-space exploration and it is implemented in the tool SDF3 [80].
In case the runtime of this tool becomes problematic, an approximation technique
can be used. Such an approximation technique with a low computational complex-
ity is described in [91] and it is included in a tool called Hebe. The approximation
technique relies on the fact that container arrival times can be bounded from above,
because the corresponding CSDF graph has a monotonic temporal behaviour [91].
This means that we can construct a conservative schedule that satisfies the tempo-
ral constraints to derive buffer capacities. The production times of this schedule are
conservative compared to the container production times when executing the CSDF
graph. This means that buffer capacities, derived with the conservative schedule,
are sufficiently large. Therefore, this approximation technique trades off runtime for
accuracy.

58 Analysing real-time performance

4.5 Concluding remarks

At design time we need to guarantee that each job will meet its real-time require-
ments like throughput and end-to-end latency. This thesis uses dataflow-analysis
techniques, because they allow cyclic data dependencies that influence the job’s
temporal behaviour. This chapter described existing dataflow-analysis techniques
that compute throughput, end-to-end latency, and FIFO buffer capacities from these
dataflow models. Furthermore, we have shown how to construct a CSDF model
from a job that is mapped onto a predictable multiprocessor platform. After each
mapping step, additional constraints are added to the CSDF model. The final CSDF
model takes into account: computation of tasks, communication between these tasks,
FIFO buffer capacities, and static-order scheduling of tasks. We introduced an algo-
rithm for generating a CSDF model of tasks that are executed on a processor in a
static-order schedule. Furthermore, it is shown that these tasks, which are executed
in a static order, can be represented with one actor despite the absence of the firing
rule in the task’s implementation.

Chapter 5

Case study: comparison of
Æthereal network and
interconnects in SAF7780

In the automotive domain the platform area and system performance are important.
Therefore, when introducing a network-on-chip, the question becomes: What is the
impact on area and performance? This isn’t easy to quantify. In [52] a general (artifi-
cial) design example is used. In this thesis, we start from a real-life application to
compute the Æthereal-network cost for various network configurations and to com-
pare the network cost with the interconnects in SAF7780 (car-infotainment platform
generation three). An earlier version of this work was published in [60, 55].

First, in Section 5.1, we describe our reference design that is used for infotainment-
nucleus generation three. Our design flow that is used for dimensioning and gen-
erating the Æthereal network-on-chip, which will be described in Section 5.2. In
Section 5.3, the design flow is used to generate multiple network instances for com-
paring network costs in terms of area and latency. Finally, we summarise this chapter
with concluding remarks in Section 5.4.

5.1 Car-infotainment generation three

For our case study, we make use of the communication requirements from infotain-
ment-nucleus generation three, which is described in Section 2.4.1. First, we describe
the reference design SAF7780 in Section 5.1.1 and subsequently we elaborate on the
communication requirements in Section 5.1.2.

5.1.1 Reference design

Our reference design is the platform SAF7780 [88, 8], which is already introduced
in Section 1.3.1. This design contains four DSP tiles (tile 0 till 3), one Finite-Impulse-

60 Case study: comparison of Æthereal network and interconnects in SAF7780

tile 7

CRD
tile 5

CRD
tile 6

FIR
tile 4 IO

ITC

DIO

tile 0

DSP

tile 1

DSP DSP

tile 2

DSP

tile 3

AHB

µC

Figure 5.1: The communication infrastructure of our reference design.

Response (FIR) filter (tile 4), two Coordinate-Rotation-Digital (CRD) computing hard-
ware modules (tile 5 and 6), one micro-controller (µC) subsystem (tile 7), and a num-
ber of input and output peripherals, as depicted in Fig. 5.1. In this figure, the periph-
erals are represented by the input/output (IO) box to keep the figure simple.

The communication infrastructures between these tiles are also shown in Fig. 5.1.
The micro-controller subsystem makes use of a multi-layer bus (AHB) and this bus is
also used to communicate between the micro controller and DSP tiles. The DSP tiles
communicate via a fully connected crossbar switch, which we refer to as the Inter-
Time Communication (ITC) interconnect. Furthermore, the DSP tiles can read from
and write to the registers of the input/output peripherals and hardware accelerators,
by making use of a crossbar switch, which we refer to as the Digital Input/Output
(DIO) interconnect.

5.1.2 Communication requirements

To dimension our network, we make use of the communication requirements from
infotainment-nucleus generation three, which is described in Section 2.4.1. The map-
ping of tasks to tiles is done similarly as in SAF7780, to get a fair comparison. The
communication requirements as a number of inter-tile communication channels are
shown in Fig. 5.2. Communication channels 1 through 18 have a peripheral as a
source or sink task. In Fig. 5.2, these peripherals are represented by the input/output
(IO) box to keep the figure simple. Each peripheral and each processing tile is con-
nected to network-interface ports, as described by the multiprocessor architecture
template in Section 3.2. Furthermore, each network interface can contain multiple
network-interface ports, as described by the network architecture in Section 3.2.1.

The inter-tile communication channels are divided into two classes:

• Data channels (1-29): streaming communication channels that are represented
by the edges in the task graphs.

• Programming channels (30-33): connections used only at application startup to

Car-infotainment generation three 61

tile 7

tile 0

DSP

FIR CRD

2425 2726

tile 4 tile 5

9
19

20

tile 1

2829

CRD
tile 6

DSP DSP
21

DSP

tile 2 tile 322

13 1411-12 15-18

3332313010

1-8

23

IO

µC

Figure 5.2: Application requirements after mapping the audio application.

load the program memories and control registers of tiles and hardware IP mod-
ules.

For dimensioning the network we need: (i) communication-bandwidth requirements,
and (ii) communication-latency requirements for both classes of communication.

(i) Communication-bandwidth requirements: for data channels, these requirements are
derived from a container throughput (which is related to the sample frequency of
a periodic source or sink) and the container sizes. Audio streams have typically
low communication-bandwidth requirements and most of the communication bursts
(container sizes) are small. The sample frequency is 8 kHz for speech (e.g. telephone
and navigation), between 40 and 48 kHz for audio, and 325 kHz for a terrestrial ana-
log radio signal. Container sizes vary from one word for a mono sample, two words
for a stereo sample, up to 512 words for the input frame of the MP3 decoder task.
The average communication-bandwidth requirements for communication channels
are between 40 KByte/sec, for compressed audio, and 2 MByte/sec, for terrestrial ana-
log radio. The required average communication bandwidth is typically higher be-
tween a processor and a hardware accelerator. For example, for an analog-radio
demodulation job, the average communication-bandwidth requirement is approxi-
mately 44 MByte/sec between the DSP processor and CRD hardware accelerator. Such a
communication-bandwidth requirement can be accommodated by the network. The
amount of bandwidth assigned to programming channels affects only the startup
time of a job, which is not time critical. Therefore, these communication-bandwidth
requirements are relaxed.

(ii) Communication-latency requirements: These requirements are caused by both: to-
tal time containers take to ripple through the task graph, and the job’s throughput
requirements if a task graph contains loops due to feedback or control. The time
it takes before data is rippled through the task graph is referred to as end-to-end
latency. For most streaming jobs, end-to-end latency is not critical, as described in
Section 2.2. The communication-latency requirements can also be caused by a job’s

62 Case study: comparison of Æthereal network and interconnects in SAF7780

throughput requirement, in case its task graph contains feedback loops. For exam-
ple, if such a feedback loop contains inter-tile communication while it determines
the lower bound on a job’s throughput, then an increase in communication latency
will increase the loop time and decreases this lower bound on the job’s throughput.
Therefore, such feedback loops limit the possibility of pipelining and algorithmic
transformations are needed to increase the performance of these jobs. The analog
terrestrial-radio demodulation and channel-equalisation jobs, for example, contain
adaptive filters with such feedback loops. In case of channel equalisation, new filter
coefficients are calculated and updated every sample, as we will see in the next chap-
ter. The filter coefficients are computed on the DSP processor in cooperation with the
CRD hardware accelerator. Therefore, the round-trip latency between the DSP and
CRD can limit the lower bound on the job’s throughput. The round-trip latency is
composed of communication latency and computation latency. The SAF7780 is im-
plemented in 0.18 µm technology. The DSP processor and CRD hardware accelerator
share the same clock, running at a clock frequency of 125 MHz. The DSP processor
has one-cycle access to the input and output registers of the CRD hardware accel-
erator. Therefore, the round-trip latency is determined by the computation latency
of the task executed on the CRD. The computation latency of the CRD is 36 clock
cycles at a clock frequency of 125 MHz. That means, the round-trip latency is equal
to 36/125·106 which is 288 ns. The algorithms of the analog terrestrial-radio jobs are
potentially upwards compatible if the round-trip latency is not increased after re-
placing the traditional interconnects with a network.

5.2 Design flow and tools

In this thesis, we use a design flow with a number of tools for generating our multi-
processor platform. In our design flow, most of our tools communicate using XML
formats. The design flow is composed of the following steps: (i) deriving inter-tile
communication requirements, (ii) generating a network instance that meets the com-
munication requirements, and (iii) computing sufficiently large network-interface
buffer capacities.

(i) Inter-tile communication requirements are derived manually in our case study.
Each job consists of a number of tasks and is represented as a task graph. Accesses
to shared variables (communication) are made explicit in the task graph. Charac-
teristics, like number of consumed and produced containers per task execution, and
upper bounds on container sizes are derived from the application domain and from
static-program analysis. In general, it is not always possible to obtain these char-
acteristics, but in our case tasks have bounded loop iterations. Bounds on commu-
nication requirements are derived from the job’s throughput requirement and the
task graph for each job. Tasks are mapped to tiles, so that we can derive bounds
on the inter-tile communication requirements (minimum throughput and maximum
latency). The communication requirements are specified per use case, because mul-
tiple jobs can be active per use case. The communication requirements that are used
in our case-study, are already described in the previous section. These requirements
are stored in the communication.xml file, as depicted in Fig. 5.3.

(ii) The network is generated with the automated tool chain of Æthereal [32]. To

Design flow and tools 63

xml

xml xml

xml

c

xml
mapping

tasks to tiles

tiles

communication

n
et

w
o

rk

architecture

computing
buffer sizes

constraints

g
en

er
at

in
g

partitioning

job

taskgraph
into tasks

Figure 5.3: Design flow for generating a multiprocessor platform.

generate a network instance, we feed the network generation tool [38]: constraints
of the network as a whole (constraints.xml), specification of the tiles (tiles.xml), and
specification of the communication requirements of network connections (communi-
cation.xml). The file constraints.xml contains, for example, topology template (mesh,
in our case), clock frequency of the network (500 MHz, in our case), and link width
(32 bits, in our case). The tiles are specified in the file tiles.xml. The file communica-
tion.xml specifies the minimum communication bandwidth, maximum communica-
tion latency, and maximum burst size for each network connection. With these three
XML files as an input, the network generation tool is able to automatically map tiles
to network interfaces, compute routing paths, and compute a slot allocation for the
slot tables in each network interface [38]. The network architecture is written in the
file architecture.xml.

(iii) Sufficiently large network-interface buffer capacities are computed for all gua-
ranteed-throughput connections. The best-effort connections have network-interface
buffers with a fixed size, which is specified upfront. A guaranteed-throughput con-
nection is represented in a dataflow model of a network connection [59]. From such a
dataflow model, we can derive sufficient large network-interface buffers for a given
throughput constraint [39]. For the case study in this chapter, we make use of the
dataflow-analysis technique [91] for computing network-interface buffer capacities
of guaranteed-throughput connections. Section 4.4 described this dataflow-analysis
technique.

5.2.1 Estimating the network area

In this chapter, we compare the cell area between different network instances and
between a network instance and a traditional interconnect. Therefore, we have to
estimate the network area for the generated network instances. The network area is
composed of: (i) network-interfaces area and (ii) routers area.

(i) Network-interfaces area: depends on the number of network interfaces, the num-
ber of connections and the total buffer capacity. As mentioned before, the buffers
decouple the tile communication behaviour from the network behaviour. A larger

64 Case study: comparison of Æthereal network and interconnects in SAF7780

transaction burst size means more bursty traffic, hence a larger buffer is required to
decouple the tile and the network. The buffers must also be sufficiently large to en-
able the hiding of the round-trip latency of end-to-end flow-control credits. There-
fore, the size of network-interface buffers depends on the connection’s transaction
burst size and round-trip latency, which in its turn depends on the network topol-
ogy, the binding of tiles to network-interface ports, the routing, the number of slots in
the slot table, and the slot allocation. These parameters are mutually dependent. The
slot-table size and slot allocation are determined by the usage of the network links.
Time-division-multiplex scheduling serves two purposes. First, to allocate and en-
force different bandwidths to different connections. Second, to avoid contention, as
described before. Contention occurs within the router network, but also at the links
between routers and network interfaces. Especially the latter depends very much on
the mapping of tiles to network-interface ports. If many connections use the same
network-interface-router link, a large slot table is required. The slot table can also be
large in case there is a connection which requires significantly more bandwidth than
another connection and if it is required to divide the bandwidth in a fine granularity.
The contention that occurs within the router network, depends mostly on the topol-
ogy. A star topology, for example, funnels all connections to a single bottleneck, and
requires a large slot table. A highly connected topology has less contention because
links are less used, and because alternative paths may be available to route around
congested areas. Thus, the slot-table size, and the slot allocation are determined by
the quality of the mapping, routing, and slot allocation algorithms.

(ii) Routers area: depends on the number of routers, their degree (number of inputs
and outputs) and the type of router, because the guaranteed-throughput and best-
effort buffers in the routers have a fixed size. The number of routers and their de-
gree is determined by the topology. There are two types of routers, one supports both
guaranteed-throughput and best-effort connections (GT+BE), and the other supports
only guaranteed-throughput connections (GT-only). The GT+BE router contains
guaranteed-throughput and best-effort buffers whereas the GT-only router contains
only guaranteed-throughput buffers. Furthermore, the GT+BE router requires addi-
tional hardware for a run-time scheduler to schedule best-effort packets. Therefore,
the area cost of a GT-only router is smaller than a GT+BE router. For example, a 6x6
GT+BE router occupies 0.175 mm2 and a 6x6 GT-only router occupies 0.033 mm2 [33]
in 0.13 µm process technology.

Reducing the area of the network requires a trade-off between minimising the num-
ber of routers and network interfaces, and minimising contention. In [31] the area for
a single network-interface and single router, are estimated by Eq. (5.1) and Eq. (5.2),
respectively, assuming GT+BE routers, 500 MHz operation, testable, with worst-case
military back-annotated lay-out timing, in Philips’s 0.13 µm process technology. In
these equations p denotes the number of ports, c denotes the number of connections
per port, q denotes the average buffer depth in the number of words, and a denotes
the router degree. For the network-interface and router buffers, Eq. (5.1) and Eq. (5.2)
count for hardware ripple-through FIFO buffers [90] that are faster and smaller than
flip-flop-based FIFO buffers.

ANI(p, c, q) = (19.6pc + 0.72pcq + 4.8) · 10−3 mm2 (5.1)

AR(a) = (0.808a2 + 23a) · 10−3 mm2 (5.2)

Comparison design-space exploration and reference design 65

The network tool chain can generate RTL VHDL for gate-level synthesis [32] to de-
rive more accurate area-cost estimates, but this is beyond the scope of this thesis.

5.3 Comparison design-space exploration and reference

design

The network cost is now investigated in terms of network cell area and communica-
tion latency.

5.3.1 Network cell area

In this section, we assess the impact of (i) the network topology, (ii) the use of GT+BE
versus GT-only routers, and (iii) the number of connections in the design.

(i) Network topology: to explore the impact of network topology on network area we
implemented different networks without further optimisations. Table 5.1 contains
the estimated area results. The cell areas of the network-interfaces and routers are
estimated by the automated tool chain, using Eq. (5.1) and Eq. (5.2), respectively. The
total estimated network cell area is shown in the row labelled total est. cell area. The
designs gen3 1-gen3 4 contain all mesh topologies, but with different sizes, from a
1x1 up to a 2x2 mesh. Design gen3 1 and gen3 2 contain six network interfaces and
design gen3 3 and gen3 4 contain eight network interfaces. All designs are based on
29 guaranteed-throughput and four best-effort connections, as described in the pre-
vious section. The connections have low communication-bandwidth requirements
that can be accommodated by the network. The host micro controller (µC) uses only
one connection to program the network, therefore, occupying only one slot in the slot
table. Recall that each network connection occupies four network-interface buffers
and that each network interface has an additional configuration port that occupies
two buffers. Therefore, a network instance with six network interfaces consists of
144 buffers and one with eight network interfaces consist of 148 buffers. The buffer
sizes of guaranteed-throughput connections are computed by the automated design
flow and buffers of size eight words are used for the best-effort connections.

Recall that the slot-table size is affected by the number of connections that occupy
the link between a network interface and router (depending mainly on the mapping),
and the contention on links in the routing network (depending on routing and slot
allocation). The design gen3 1 consists of a 1x1 mesh and has only network interface-
router contention, leading to a slot-table size of 14 slots. The design gen3 2 consists of
a 1x2 mesh and additionally suffers from contention in the network, but the slot table
contains still 14 slots due to the network interface-router contentions that are domi-
nant. The network interface-router contention is reduced in the designs gen3 3 and
gen3 4, because they contain eight network interfaces instead of six. The 2x2 mesh
offers more freedom to the routing algorithm, but for both designs the slot-table sizes
are equal to 12 slots due to the network interface-router contentions that are dom-
inant. Although the slot-table size impacts the network-interface buffering cost of
high-bandwidth connections, the large number of low-bandwidth connections min-
imises the impact on the network-interface area. The difference in the number of

66 Case study: comparison of Æthereal network and interconnects in SAF7780

design gen3 1 gen3 2 gen3 3 gen3 4
mesh 1x1 1x2 1x2 2x2
routers (and degree) 1(6) 2(4) 2(5) 4(4)
network interfaces 6 6 8 8
slot-table size (slots) 14 14 12 12
buffers 144 144 148 148
avg. buffer size (words) 4.5 4.5 4.6 4.6
est. cell area NI (mm2) 1.91 1.91 1.98 1.98
est. cell area R (mm2) 0.17 0.21 0.27 0.42
total est. cell area (mm2) 2.07 2.12 2.25 2.40

Table 5.1: Effects of topology scaling on network area.

design gen3 1gt gen3 2gt gen3 3gt gen3 3gt
mesh 1x1 1x2 1x2 2x2
routers and degree 1(6) 2(4) 2(5) 4(4)
network interfaces 6 6 8 8
slot-table size 14 14 12 12
buffers 144 144 148 148
avg. buffer size (words) 4.1 4.1 4.1 4.1
est. cell area NI (mm2) 1.86 1.86 1.93 1.93
est. cell area R (mm2) 0.03 0.04 0.06 0.09
total est. cell area (mm2) 1.89 1.90 1.98 2.02
difference with BE+GT -9 % -10 % -12 % -16 %

Table 5.2: Network cell area estimation of GT-only optimisation.

network interfaces and the difference in the router area has the most impact on the
total network area.

(ii) GT+BE versus GT-only routers: the area of the network can be reduced by using
GT-only routers, because the 6x6 GT+BE router occupies 0.175 mm2, and a 6x6 GT-
only router 0.033 mm2 [33] (roughly decreased by a factor five). The four program-
ming connections, which were best-effort connections, are converted to guaranteed-
throughput connections. As a result, the unified mapping, routing and slot-allocation
algorithm finds a different tile-to-network interface mapping so that the slot-table
size does not increase, as shown in Table 5.2. Formerly, buffer capacities of eight
words were used for best-effort connections. Now all buffer sizes are computed by
the automated design flow. Therefore, for all the designs, the average buffer sizes are
reduced slightly, because the programming connections have small bursts and low
bandwidth requirements. The reduction in buffer capacities has a small impact on
the network-interface area. The router areas are reduced with roughly a factor five.
Therefore, the total estimated network cell area is reduced between 9 % and 16 %,
as shown in Table 5.2. Furthermore, the former best-effort connections now have a
guaranteed throughput and a bounded communication latency.

The previous designs demonstrate that the network cell area is mainly determined

Comparison design-space exploration and reference design 67

design gen3 3 gen3 3gt gen3 3gt opt
mesh 1x2 1x2 1x2
routers and degree 2(5) 2(5) 2(5)
network interfaces 8 8 8
slot-table size 12 12 8
buffers 148 148 104
avg. buffer size (words) 4.6 4.1 4.6
est. cell area NI (mm2) 1.98 1.93 1.40
est. cell area R (mm2) 0.27 0.06 0.06
total est. cell area (mm2) 2.25 1.98 1.46
difference with gen3 3 ref -12 % -35 %

Table 5.3: Area results of the 1x2 mesh networks with eight network interfaces.

by the number of connections (i.e. number of buffers). When there are also high-
bandwidth connections, the network area is also affected by the contention in the
network (affecting the slot-table size and buffer capacities). We have illustrated that
converting best-effort connections to guaranteed-throughput connections reduces
the network area. The slot-table size can be reduced even further by making use of
a technique called channel trees [35] that enables slot sharing between low-latency
connections. In our designs, sharing slots has a small impact on the network area,
because our buffers are already very small. The number of network-interface buffers
could be reduced by reconfiguring network connections between use cases [36], in-
stead of dimensioning the network for the union of use cases. In our case study,
reconfiguration could save only a few buffers at the network interface that is con-
nected to DSP tile 2, because some audio streams from input peripherals are mutual
exclusive.

(iii) number of connections: the following designs use specific optimisations that are
design dependent, unlike the previous trade-offs that could all be automatically
generated by the design flow. In design gen3 3gt opt the number of guaranteed-
throughput connections is reduced from 33 to 22 for determining the impact on the
number of connections. This reduction of connections in the network is achieved
by sharing the low-bandwidth connections from and to peripherals, by means of
combining them in one tile, similarly as tile IO in Fig. 5.2. The communication to
the peripherals can, for example, be implemented as address-based communication.
The number of network-interface buffers is reduced from 148 to 104, as shown in
Table 5.3. Although the slot-table size is reduced (from 12 to 8), the average buffer
depth is slightly increased (from 4.1 to 4.6), because we remove mainly small buffers.
The total estimated network area is 35 % lower than the original design gen3 3, and
it is 26 % lower than the design gen3 3gt. When comparing the design gen3 3gt opt
with the traditional interconnect in SAF7780, the area increase is only a few percent
on total chip area.

68 Case study: comparison of Æthereal network and interconnects in SAF7780

sh
el

l

kernel kernel

router

500MHz

NINI
DSP

125MHz

sh
el

l

250MHz

CRD

Figure 5.4: Round-trip latency from DSP to CRD and back to the DSP.

5.3.2 Network communication latency

Analog terrestrial-radio demodulation and channel-equalisation jobs contain feed-
back loops that lead to tight latency constraints in the communication between a
DSP processor and CRD hardware accelerator. In the SAF7780 design, this round-
trip latency is 288 ns, as described in Section 5.1.2. In a network-based architecture,
the DSP and CRD are attached to two different network interfaces. Clock domain
crossings in network-interface kernels enable the CRD and the network to process at
a higher clock frequency than the 125 MHz clock frequency of the DSP processor. As
mentioned before, the round-trip latency is composed of interconnect latency and
computation latency. A higher CRD clock frequency results in a lower computation
latency (execution time) and, therefore, more relaxed constraint for the communica-
tion latency.

The round-trip latency from the DSP to the CRD and back to the DSP is illustrated
with the dashed arrow in Fig. 5.4. For the purpose of analysing the round-trip la-
tency we assume an implementation in 0.13 µm technology. The clock frequency of
the EPICS is assumed to be 125 MHz, which is the same as in the SAF7780. The
network can run at a clock frequency of 500 MHz in 0.13 µm technology. In this tech-
nology it is expected that the CRD can run at a clock frequency of 250 MHz. There
is a connection from the DSP to the CRD and there is a connection from the CRD
to the DSP. Both connections are configured as guaranteed-throughput connections.
The end-to-end flow control credits of one connection are piggy-backed on messages
send over the other connection, as illustrated with the dotted arrows in Fig. 5.4.

The CRD is running at a clock frequency of 250 MHz, therefore, the task executed
on the CRD has a computation latency (execution time) of 144 ns (36 clock cycles
at 250 MHz, i.e. 36/250·106). The communication latency depends on the length of
the message and the allocation of slots in the slot table. The CRD reads four words
from the input connection and writes two words to the output connection. In the
case address-less inter-tile communication is used, no extra data (e.g. control and
address) is added to a message. Low latency results can be achieved by reserving
multiple slots spread over the slot table, so that the distance between two allocated
slots is small. For example, reserving one slot out of every two consecutive slots re-
sults in a 50 % bandwidth allocation and an upper bound on the network-interface
latency of 108 ns (including the scheduling latency). The latency introduced by the

Concluding remarks 69

clock-domain boundaries and by the router is 32 ns and 12 ns, respectively. There-
fore, the total round-trip latency is 144 + 108 + 32 + 12 = 296 ns. This round-trip
latency is 2.7 % higher than the round-trip latency in the SAF7780 (which is 288 ns).

5.4 Concluding remarks

To investigate the impact on area and performance, we presented an interconnect
comparison for the communication requirements of infotainment-nucleus genera-
tion three. We conclude that it is feasible to replace the traditional interconnects in
the platform SAF7780 by an Æthereal network and still meet the communication
bandwidth and latency requirements.

The experiments in this thesis have shown that it is worthwhile to trade-off gua-
ranteed-throughput and best-effort connections (using BE connections and GT+BE
routers, or only GT connections and GT-only routers). For our 2x2 mesh network,
this lead to an area reduction of 16%. The network designs demonstrate that the
network-area cost is mainly determined by the number of connections (translating
to a number of buffers) and the network topology (affecting the number of routers,
the slot table and the sizes of the buffers). The large number of low-bandwidth
peripheral connections need special attention. Essentially it is their number rather
than their low-bandwidth that causes most cost. After reducing the number of low-
bandwidth peripheral connections from 33 to 22 (e.g. by using address-based com-
munication instead of address-less communication), the area is reduced by 35 % (for
the 1x2 mesh with eight network interfaces). The network is competitive in terms of
area with the current dedicated interconnects in the platform SAF7780, i.e. the area
increase was only a few percent on the total chip area.

Communication-latency requirements are typically harder to meet than communica-
tion-bandwidth requirements. In case of the Æthereal network, the communication
latency is reduced by over-allocating slots and to spread them over the slot table,
which is at the cost of bandwidth efficiency. Over-allocating slots and to spreading
them over the slot table, reduces the distance between two allocated slots (reducing
the time before a container is scheduled) and it reduces the number of slot-table rota-
tions. Furthermore, the tiles are able to run at its own clock frequency, which allows
lower execution times of tasks and more relaxed communication requirements. The
round-trip latency between the DSP and CRD is only 2.7 % higher than the round-
trip latency in the SAF7780. From a predictability perspective, the guaranteed com-
munication services, offered by the Æthereal network [33], are a step forward in
mastering the programming effort (i.e. we can guarantee that data is delivered in
order and in time). Furthermore, it is shown that a predictable design does not have,
per definition, a large increase in cost.

70 Case study: comparison of Æthereal network and interconnects in SAF7780

Chapter 6

Case study: analysing real-time
performance of a channel
equaliser

For the case study in the previous chapter, we generated multiple network instances
for given communication requirements. In this chapter, we describe an industrial
case study in which we map a channel-equaliser job to a platform instance. For
this mapping, we compute a conservatively-estimated lower bound on the channel-
equaliser’s throughput, by means of dataflow modelling and analysis techniques, as
described in Chapter 4. Furthermore, we compared this conservatively-estimated
lower bound with an optimistically-estimated lower bound that is measured with a
cycle-accurate simulator. This allows us to reason about the accuracy of the conser-
vatively-estimated lower bound on the throughput. This case study is also published
in [57].

The outline of this chapter is as follows. First, in Section 6.1, we introduce the
channel-equaliser job and the platform on which this job is executed. Section 6.2
models the channel equaliser in a dataflow model and derives a conservatively-
estimated lower bound on the throughput. In Section 6.3, this lower bound is com-
pared with the throughput measured in a cycle-accurate simulation environment of
the implementation. Section 6.4 elaborates on the comparison by identifying three
causes for the differences between the computed and measured throughput. Finally,
we conclude our case study in Section 6.5.

6.1 Channel equaliser implementation

Channel equalisation is used to reduce multipath distortion in an FM signal, as is
illustrated by Fig. 6.1. Houses, cars, and hills reflect FM signals and these reflections
cause variations in the magnitude and phase of the FM signal. Multipath can be de-
scribed as a complex digital transversal filter C(Z) because there is a delay between

72 Case study: analysing real-time performance of a channel equaliser

channel

equalizer

e−j2πfc(t)

low-pass

filter

FM-radio

demod

Figure 6.1: Channel equalisation is used to compensate for multipath distortion in
an FM-signal.

different paths and each path has a different phase and magnitude.

C(Z) = a + b · Z−∆1 + c · Z−∆2 + d · Z−∆3 + ... (6.1)

To correct for multipath distortion, a complex digital filter can be made which ap-
proximates the inverse of the multipath filter. The channel equaliser should be adap-
tive in car radios, because the channel characteristics vary over time.

The channel-equaliser job is specified in a sequential (executable) C-code, which we
refer to as the reference code. The reference code is manually rewritten, so that task
level parallelism is explicit. After partitioning the job into tasks, each task is repre-
sented with its own executable C-code that is derived from the reference code. Ac-
cesses to shared variables (communication) are made explicit in the C-code of each
task. The tasks and the communication between tasks is represented by a task graph
that represents the channel-equaliser job. Characteristics, like container sizes, num-
ber of consumed and produced containers per task execution, are derived from static
code analysis.

The job’s tasks are executed on the multiprocessor platform that is depicted in Fig. 6.2.
This platform consists of hardware accelerator (ACC) tiles, peripheral (PER) tiles,
and digital-signal-processor (DSP) tiles. The DSP tiles contain an EPICS proces-
sor [72] which has a dual-Harvard architecture with three memories (M), one mem-
ory for instructions and two memories for data. The EPICS processor comes with
a tool suit that consists of a C-compiler and a worst-case execution-time analysis
tool. In our case-study, this tool is used for deriving, from the compiled C-code,
a conservatively-estimated upper bound on the execution time of a task. The tiles
communicate via the Æthereal network. The design flow, which is described in Sec-
tion 5.2, is also able to generate a SystemC [44] simulator of the generated multipro-
cessor platform. The simulator is automatically generated from the SystemC models
of tiles, network interfaces and routers. The network interfaces and routers make use
of flit-accurate models in SystemC, because the network packets have a granularity
of a flit (three words). The tiles make use of cycle-accurate [21] models in SystemC.
The DSP tile makes use of an instruction set simulator to model the EPICS processor.
The processor tiles contain also local memories, the size and the initial content of
these memories are configured at the start of the simulation.

The channel-equaliser job is mapped to the hatched tiles in Fig. 6.2. The analog-to-
digital converter (ADC) peripheral is the input of our channel equaliser. We make
use of one CRD and one FIR hardware accelerator for performance and cost reasons.

Performance analysis via a dataflow model 73

NI

M

M

M

M

M

M

M

M

M

NININININININININI

NI NI NI

DSPDSPDSPDSP

R R R R

M

M

M

ADC FIR CRD PER PERACC PER PERACC

Figure 6.2: Heterogeneous multiprocessor system.

Furthermore, the channel-equaliser job makes use of one DSP processor. The output
of the channel equaliser is sent to the input of the FM-radio demodulation job, which
is mapped on the remaining (not hatched) tiles in Fig. 6.2. The channel equaliser’s
real-time performance can be derived independent from the demodulation job, be-
cause the DSP processors have private local memories and the network connections
have guaranteed-throughput services, as described in Chapter 3.

6.2 Performance analysis via a dataflow model

For our case study, we are interested in the throughput of the channel equaliser job.
In this section, first we model the channel equaliser in a CSDF graph and, subse-
quently, we compute the maximum achievable throughput of the CSDF graph. The
computed throughput represents a conservatively-estimated lower bound on the ac-
tual throughput in the implementation.

The task graph of the channel-equaliser job is modelled in the CSDF graph that is
shown in Fig. 6.3. Actor adc is modelling the strictly-periodic analog-to-digital con-
vertor and actor rad is modelling the strictly-periodic input of the FM-radio receiver.
The production and consumption rates that are equal to one in every phase, are not
depicted in Fig. 6.3 in order to keep the figure conveniently. The production and con-
sumption rates specified by the symbol y, are equal to 〈1, 0, 0, 0, 0, 0, 0, 0〉. Therefore,
the number of firings of actor absx and log is eight times lower than the number of
firings of the other actors.

The channel-equaliser job is mapped onto our multiprocessor platform. After each
mapping decision we add constraints to the CSDF graph and compute an estimated
throughput with maximum-cycle-mean analysis, allowing early feedback and short
design iterations. Once all mapping steps are taken into account in the CSDF model,
the computed throughput is a conservatively-estimate lower bound compared to the
actual throughput in the implementation. The channel-equaliser mapping is com-

74 Case study: analysing real-time performance of a channel equaliser

y = 〈1, 0, 0, 0, 0, 0, 0, 0〉

lvl

y

adc

absx

load

avg

log norm

cu

fir

cf

radabsy

y

y

y

Figure 6.3: CSDF graph modelling of the channel equaliser job.

posed of three steps: (i) binding tasks to tiles, (ii) mapping inter-task communication
channels, and (iii) determining static-order schedules.

(i) Binding tasks to tiles: Our application consists of twelve tasks. The actors adc and
rad are strictly periodic with the period 1/fs, where fs is the sample frequency. We
offload the DSP by binding task fir to tile FIR and tasks absx, absy, and log to tile CRD.
One execution of the CRD hardware accelerator takes 34 clock-cycles and the CRD is
executed with a clock frequency of 250 MHz. Therefore, the execution time is 144 ns
for the tasks absx, absy, and log, as shown in Table 6.1. The remaining tasks are exe-
cuted on the DSP tile. The execution times can be bound from above, because all data
depended loops can be bounded. The notation 8x224, in Table 6.1, is a short-hand no-
tation for a cyclo-static execution time of 224,224,224,224,224,224,224,224 with eight
phases. The conservatively-estimated upper bounds on the execution times are an-
notated to the execution times of the corresponding actors in the CSDF graph in
Fig. 6.3. For early feedback, we already compute the maximum cycle mean of the
current CSDF graph. This maximum cycle mean is 49248 ns. During this maximum-
cycle-mean period, 8 samples are read from actor adc and 8 samples are written to
actor rad. This results in an estimated throughput of fs = 8/(49248·10−9) =162 kHz.
This estimate does not include the impact of communication latencies and static-
order scheduling of tasks.

(ii) Mapping inter-task communication channels: The next step is to set up point-to-point
network connections for inter-task communication and to model these network con-
nections in the CSDF graph. Our binding of tasks to tiles requires five connections in
the network, namely from tile ADC to DSP, from DSP to FIR, from FIR to DSP, from
DSP to CRD, from CRD to DSP, and from DSP to the input of the radio demodula-
tion. The remaining inter-task communication channels are implemented with circu-
lar buffers in the local private memory of the DSP processor. The tool that comes with
the network [38] is able to generate a configuration for the network, in such a way
that all network connections have a guaranteed-throughput service. We compute an
upper bound on the communication latency for each point-to-point connection. No-
tice that multiple communication channels use one single network connection. For

Performance analysis via a dataflow model 75

Task ux Tile τ̂(ux) [ns]
adc ADC 1/fs

load DSP 8x224
absx CRD 144
avg DSP 704, 7x416
log CRD 144
lvl DSP 440, 7x24
norm DSP 328
cu DSP 4944, 7648, 6x4944
fir FIR 144
cf DSP 328
absy CRD 144
rad - 1/fs

Table 6.1: The binding of tasks to tiles and their corresponding cyclo-static
conservatively-estimated upper bounds on the execution times.

example the channels (norm,fir) and (cu,fir) are both mapped on the connection from
DSP to FIR tile. Sharing a network connection can result in a higher communication
latency. However, in our implementation we know that their communication is mu-
tually exclusive, because of the static-order schedule of tasks. In Fig. 6.4 the commu-
nication latencies are represented by actors c1 through c11. The FIFO buffers in the
network interfaces are modelled with a forward and backward edge and the number
of initial tokens on the backward edge are representing the FIFO buffer capacities.
In our multiprocessor platform the capacity of each network-interface buffer is 32
words, which is sufficiently large. For the current CSDF graph, in which the compu-
tation of tasks and communication latencies are modelled, the maximum cycle mean
is 51940 ns and the estimated throughput is fs = 8/(51940·10−9) =154 kHz.

(iii) Determining static-order schedules: Six tasks are executed on the DSP tile and three
tasks are executed on the CRD tile. The static-order schedule on the DSP processor
is (cu, load, avg, lvl, cf, norm). We came to this static-order schedule by optimising the
processor utilisation, i.e. task fir can be executed in parallel with the tasks that are
executed on the DSP processor. In other words, in this static-order schedule, the pro-
cessor does not have to wait until task fir finished its execution. Additional edges are
added to the CSDF graph, so that the static-order schedule dependencies are mod-
elled, as shown in Fig. 6.5. The preamble to this fixed order schedule is the execution
of tasks (load, absx, avg, log, lvl, norm). The preamble is modelled by the placement
of the initial tokens in the CSDF graph. Strictly speaking the tile CRD contains a
first-come first-serve scheduling mechanism, but the tasks absx, absy, and log are
mutual exclusive due to the static-order schedule of the DSP processor. Therefore,
no additional edges are added to these tasks. In the final CSDF graph that mod-
els the computation of tasks, communication latencies, and static-order schedule of
tasks, the maximum cycle mean is 54616 ns. Therefore, the throughput estimate is
fs = 8/(54616·10−9) =146.4 kHz. This throughput is a conservatively-estimated lower
bound on the throughput of the channel equaliser, because the temporal behaviour
of the CSDF graph is conservative with respect to the temporal behaviour of the

76 Case study: analysing real-time performance of a channel equaliser

actor communication channel container size communication latency
[words] [ns]

c1 (adc,load) 2 66
c2 (load,absx) 4 114
c3 (absx,avg) 4 114
c4 (avg,log) 4 114
c5 (log,lvl) 4 114
c6 (cf,absy) 4 114
c7 (absy,cu) 4 114
c8 (norm,fir) 3 66
c9 (cu,fir) 17 162

c10 (fir,cf) 4 114
c11 (cf,rad) 2 66

Table 6.2: Actor c1 through c11 model the communication latency of a container,
with a certain size, that is sent over a communication channel.

implementation.

6.3 Performance comparison with simulation

The throughput of the channel-equaliser implementation is measured by means of
cycle-accurate simulation. From this measurement, we can derive an optimistically-
estimated lower bound on the throughput that we can compare with the conser-
vatively-estimated lower bound on the throughput, which is derived in previous
section.

To be able to measure the channel-equaliser’s throughput, we need an implemen-
tation of the platform and we need to run the channel-equaliser software on this
platform. It takes a significant effort to build such a system implementation. Fur-
thermore, if we conclude that the implementation does not meet its requirements,
we need to change the platform or the software. These changes can take a large
effort, resulting in time-consuming design iterations.

For this thesis, we took this effort and built a cycle-accurate SystemC implemen-
tation, so that we can analyse the tightness of the conservatively-estimated lower
bound on the throughput, which is computed in previous section. This throughput
is derived from the maximum cycle mean, which is 54616 ns. During one maximum-
cycle-mean period actor adc produced eight tokens and actor rad consumes eight
tokens. Let ai(m, j) be the arrival time of container j at the input channel m of the
radio demodulation task in the implementation. The execution period P in the im-
plementation is defined as P = ai(m, j)−ai(m, j−8). With cycle-accurate simulation
and after assuring that the task ADC and radio demodulation do not determine the
throughput, we have measured a maximum P of 49080 ns, an average P of 48609 ns
and a minimum P of 48366 ns. The difference between the measured maximum pe-
riod P and the computed maximum-cycle-mean period is 54616 − 49080 =5536 ns,
which is 10.1 % compared to the maximum cycle mean. We don’t know the actual

Performance comparison with simulation 77

y

adc

y

2

absx

y

2

y

y y y

y

avg lvl

log norm fir

cu cf

absy rad

load

y = 〈1, 0, 0, 0, 0, 0, 0, 0〉

c11

c3

c9c4 c10

c7

c5

c1 c8

c6

c2

Figure 6.4: CSDF graph in which the inter-task communication is modelled.

adc

y

2

absx

y

2

y

y y y

y

y

avg lvl

log norm fir

cu cf

absy rad

load

y = 〈1, 0, 0, 0, 0, 0, 0, 0〉

c11

c3

c9c4 c10

c7

c5

c1 c8

c6

c2

Figure 6.5: CSDF graph in which communication latencies and static-order schedule
of tasks are modelled.

78 Case study: analysing real-time performance of a channel equaliser

minimum throughput of the channel equaliser, but it is sure that the difference be-
tween the conservatively-estimated lower bound on the throughput and the actual
minimum throughput is less than 10.1 %.

6.4 Sources of inaccuracy

In this section, we identify three causes for the difference between the computed
and measured lower bound on the throughput. These causes are: (i) overestimated
upper bounds on execution times, (ii) earlier production and consumption of data,
and (iii) unknown state of the time-division-multiplex schedule in the network. A
trace gives a good impression about the contribution of these sources on the total
inaccuracy. A 10 µs trace from the DSP, CRD and FIR tile is shown in Fig. 6.6 and
Fig. 6.7 for the CSDF graph and implementation, respectively.

(i) Overestimated upper bounds on execution times: The execution time of an actor is a
compile-time conservatively-estimated upper bound on the execution time. Conser-
vatively-estimated upper bounds on execution-times (worst-case execution times)
have been actively investigated in the real-time system design community [95]. Vari-
ation on the execution time is, for example, a consequence of conditional branches,
data dependent loops, and varying memory access latencies. For our channel-equa-
liser implementation, all tasks executed on the processor are part of the critical cy-
cle that determines the maximum cycle mean. Therefore, variation in the execu-
tion times of tasks is affecting the throughput linearly. The sum of conservatively-
estimated upper bounds on execution times is 53520 ns in one maximum-cycle-mean
period. The maximum of the sum of measured execution times is 48700 ns in one
period P . The difference between the sum of upper bounds on execution times and
measured execution times is 53520−48700 =4820 ns, which is 8.8 % of the maximum-
cycle-mean period. In our case study, this cause has the biggest impact on the dif-
ference between the computed and measured throughput, because it is affecting
the throughput linearly and the maximum difference is 10.1 %. The conservatively-
estimated upper bounds on execution times are tight (within 8.8 %), because the DSP
processor has local memories that are not shared with other processors. A processor
with a shared local memory or with a cached memory would potentially increase the
inaccuracy in conservatively-estimating the upper bounds on execution times.

(ii) Earlier production and consumption of data: In a static-order schedule, a task can
consume and produce containers earlier than an actor can consume and produce the
corresponding tokens, because a task is started after the previous task in the static-
order schedule is finished whereas an actor is enabled if sufficient tokens are avail-
able on every input edge (firing rule), as explained in Section 4.3.1. In our case study,
the processor is not stalled between execution of tasks load and avg (as depicted in
Fig. 6.7), whereas the processor is idle between execution of actors load and avg (as
depicted in Fig. 6.6). The impact of this cause is at most 994 ns on one maximum-
cycle-mean period. This 944 ns is 1.8 % of the maximum cycle mean, therefore, this
cause has a small impact on the lower bound on the throughput. The impact of this
cause depends on the critical cycle, which in its turn depends, among other things,
on the topology of the CSDF graph. Furthermore, when modelling the implementa-
tion in a CSDF graph, a trade-off is made between accuracy and complexity of the

Sources of inaccuracy 79

Figure 6.6: A 10 µs trace computed from the CSDF model.

Figure 6.7: A 10 µs trace measured with cycle-accurate simulation.

model. On one hand, an increase in the number of phases of an actor enables a more
accurate modelling of input and output behaviour. On the other hand, a higher num-
ber of phases results in a more complex model, an increase of the modelling effort,
and an increase in runtime to analyse the model.

(iii) Unknown state of the time-division-multiplex schedulers: Even when we run our sys-
tem with identical input data multiple times, the temporal behaviour of each run
can vary. This variation can be caused by a run-time scheduler that has to grant per-
mission in accessing a shared resource, while its behaviour (e.g. state) is not known
at design time. In our multiprocessor architecture the network uses time-division-
multiplex scheduling. In calculating an upper bound on communication-latency, we
assume the worst-case initial state of the slot table. The maximum impact of the un-
known state of this slot table is investigated by comparing the original CSDF model
with a model that takes the best-case initial state of the slot table into account in-
stead of the worst case. The difference is 544 ns between the maximum cycle means
of these two CSDF graphs. Therefore the impact of this cause is at most 1 % on the
maximum cycle mean of the original CSDF graph. This impact is small because the
slot table in the network is small (only 8 slots). A larger slot table would potentially
increase the impact of this cause on the maximum cycle mean.

The difference is 10.1 % between the conservatively-estimated and the optimistically-
estimated lower bound on the throughput. This is caused by the combination of the
above three causes. In our case study, the first cause effects the throughput linearly,
therefore, this cause has an impact of 8.8 % on the throughput. The impact of the
second and third causes are not independent, but we know that both causes have
together an impact of 1.3 % on the throughput.

80 Case study: analysing real-time performance of a channel equaliser

6.5 Concluding remarks

In this chapter, we mapped a channel-equaliser job onto our multiprocessor plat-
form. A conservatively-estimated lower bound on the channel-equaliser’s through-
put is derived by means of dataflow modelling and analysis. An optimistically-
estimated lower bound on the throughput is derived with cycle-accurate simulation
of the implementation in SystemC. The comparison allowed us to reason about the
tightness of the dataflow model compared to the implementation. For our channel-
equaliser case study, there is only 10.1 % difference between the conservatively-esti-
mated and optimistically-estimated lower bound on the throughput. The difference
is small because of tight conservatively-estimated upper bound on execution times
(each processor has a private local memory) and tight upper bounds on the com-
munication latencies (due to a small slot table in the network). With our predictable
architecture in combination with the dataflow modelling and analysis techniques,
we are able to give tight estimates on the lower bound on the throughput, so that we
can come to a cost efficient implementation.

Part II: Multiprocessor
architecture extensions

82 Case study: analysing real-time performance of a channel equaliser

Chapter 7

Shared memory architecture and
remote write accesses

In infotainment-nucleus generation one and two the container sizes are small, e.g.
one word for a mono sample and two words for a stereo sample. However, in
generation three and four the container sizes exceed the network-interface buffer
capacities, so the multiprocessor architecture of Chapter 3 does not suffice. Further-
more, the maximum number of supported communication channels is fixed at de-
sign time. Therefore, in this section, we will extend the multiprocessor architecture
in such a way that the number of communication channels and their capacities are
programmable at run time.

The outline of this chapter is as follows. First, we describe an architecture where
tiles communicate via shared memories. In such an implementation processors can
suffer from stall cycles when accessing a shared memory. An upper bound on the
number of processor stall cycles can be derived, as will be described in Section 7.2.
Section 7.3 shows that the multiprocessor architecture enables the use of run-time
scheduling mechanisms. Therefore, multiple tasks from multiple jobs can be exe-
cuted on the same processor. Section 7.4 describes how we can construct a dataflow
model of a job that is mapped to the architecture with shared memories and run-
time schedulers. The dataflow’s temporal behaviour is conservative with respect to
the temporal behaviour of the implementation, so that we can derive guarantees on
the job’s throughput and end-to-end latency by making use of existing dataflow-
analysis techniques. The presented techniques are applied on our MP3 case study, in
Section 7.5. Finally, we conclude in Section 7.6.

7.1 Inter-tile communication via a shared memory

In Chapter 3, we described a multiprocessor architecture where the processing tiles
contain local memories, the tile’s processor is the only master who is accessing its
local memory, and tiles communicate via network connections and make use of
address-less communication. The main advantage of this architecture is predictabil-

84 Shared memory architecture and remote write accesses

ity due to limited resource sharing, i.e. local private memories and a network con-
nection for every communication channel.

The communication between tiles was implemented with address-less communica-
tion. In this section, we describe an architecture where processors can access their
local memory as well as the memories in other tiles via address-based communi-
cation. Therefore, this architecture allows inter-tile communication via shared local
memories where buffers are implemented in software. The main advantage of com-
munication via a shared memory is flexibility, but this is at the cost of an increase of
uncertainty in the temporal behaviour.

7.1.1 Address-less versus address-based communication

An example of address-less communication is Device Transaction Level (DTL) Peer-
to-Peer Streaming Data [65]. In case of address-less communication, only data is
transferred over a network connection and no additional information (e.g. address)
is sent along with the data. This has the advantages that it requires less communica-
tion bandwidth than in case when addresses are sent along with the data. However,
it requires the allocation of a network connection for every inter-tile communication
channel to distinguish data between communication channels, as no additional in-
formation is sent next to the data. The number of supported buffers per network
interface is chosen at design time. Therefore, the supported number of inter-tile
communication channels between two tiles is fixed at design time. The data con-
tainers that are sent over an inter-tile communication channel are stored in network-
interface buffers. These buffers are implemented in hardware and their buffer capac-
ities are chosen at design time. Therefore, the maximum number of data containers
that can be stored is fixed at design time. One of the platform requirements, which is
introduced in Chapter 1, is flexibility. An architecture that supports a fixed number
of inter-tile communication channels and where the communication channels can
store a fixed amount of data containers has a limited flexibility.

There are three important reasons why the system designer wants to store data con-
tainers in memory instead of hardware buffers. First, the data containers produced
by the processor can exceed the capacity of a hardware buffer. Second, it is desir-
able that the buffer capacity can be changed by adapting the software, because the
required buffer capacity is job dependent. Third, storing data containers in memory
is cheaper, in terms of silicon area, than storing them in hardware buffers, because
the local memories are already present in a tile.

In contrast with the previous architecture, this one supports address-based commu-
nication. When inter-tile communication is implemented with address-based com-
munication, the data containers are stored in a shared memory. Both the producing
and consuming processors can access this memory via address-based communica-
tion. Between the processors we create a circular buffer [26] to solve the synchroni-
sation between the producing and consuming processor.

Examples of address-based communication are DTL’s Memory-Mapped Input Out-
put (MMIO) and Memory-Mapped Block Data (MMBD) [65]. With address-based
communication, a processor is able to access the memory in its own tile as well as
the memory in another tile. Of course there should be a network connection between

Inter-tile communication via a shared memory 85

tile

NI
Ma

M

P

Sl

tile

NI

router network

Ma

M

P

Sl

tile

Figure 7.1: Multiprocessor architecture with shared memories.

these tiles. In order to access the memory, a memory address from the memory lo-
cation has to be sent along with the data. In case of MMIO, a memory address is
sent along with every data word. In case of MMBD, one memory address is sent
along with every block of data. A block can contain a number of data words and
this number is defined in a command that is also sent along with the data. An exam-
ple of streaming communication implemented with address-based communication
is the Sea-of-DSP architecture that is presented in [88]. This architecture is used for
the platform SAF7780 (the platform of infotainment-nucleus generation three). This
platform contains an Inter-Tile-Communication (ITC) crossbar switch between the
DSP tiles. Each DSP can access its local memory and it can write to the memory in
another DSP tile, via address-based communication.

With address-based communication additional information is sent with to the data,
like the command and address. Therefore, in contrast to address-less communica-
tion, a higher communication bandwidth is required to transfer the same amount
of data. However, up to infotainment-nucleus generation four, the inter-tile com-
munication bandwidth requirements can be accommodated by our network. An
advantage is that the number of inter-tile communication channels is not limited by
the number of supported network connections, because the circular buffers and the
buffer administrations are stored in memory. Of course there should be sufficient
memory space available to store all the circular buffers and buffer administrations.
Furthermore, the required number of network connections can be lower than in case
of address-less communication, because the data containers from multiple commu-
nication channels can be transferred via the same network connection.

Note that address-based communication increases the uncertainty in temporal be-
haviour of a job, because of arbitration at local memories and sharing of network
connections between communication channels.

7.1.2 Implementation of inter-tile communication

The architecture that is considered in this chapter, is illustrated in Fig 7.1. It is a tiled
architecture where tiles communicate via a network. Compared to the architecture

86 Shared memory architecture and remote write accesses

sh
el

l
sh

el
l

sh
el

l
sh

el
l

M
a

S
l

M
a

S
l

kernel kernel

NI NI

router
network

tile i tile j

request connection i, j

response connection i, j

request connection j, i

response connection j, i

Figure 7.2: Network-interface architecture and network-connection implementation.

in Chapter 3, we now consider shared local memories instead of private local memo-
ries. Therefore, a processor can access its own local memory as well as the memories
in another tile, as long as there is a network connection between these tiles. A pro-
cessor has low access latency to its own local memory and a higher access latency to
a remote memory.

A tile is connected to a network interface via network-interface ports that can be
either master (Ma) or slave (Sl). Master and slave ports are connected to a network-
interface kernel via network-interface shells, as shown in Fig. 7.2.

Transaction requests, like read and write, are issued via the master port. The IP
module that is connected to the slave port will execute these requests. Typically, a
tile is connected to both a master as well as a slave port. The master port allows
the tile to sent data to other tiles, and the slave port allows other tiles to sent data
to this tile. A shell converts the transaction requests of a particular IP protocol (e.g.
DTL [65] or AXI [2]), into transport-layer messages. The transport-layer message
contains the transaction’s command (cmd), address (addr) and data information,
as depicted in Fig. 7.3. In traditional address-based interconnects (e.g. busses) the
processor can address each IP module. In our architecture, the shells transparently
deliver transport-layer messages to network connections for backward compatibil-
ity. Naturally, there should be a network connection between the processor tile and
the tiles of each IP module that the processor wants to address. The shell knows to
which network connection the messages should be delivered based on the address
that is specified in the transaction. The kernel converts the generic transport-layer
messages into network-layer guaranteed-throughput or best-effort packets, this con-
version is referred to as packetisation. These packets contain payload (i.e. transport-
layer messages) with additional headers that contain the routing path information,
as is described in Section 3.2.1.

An address-based network connection is composed of a request and response con-
nection for every master-slave port pair, with two network-interface buffers in each
connection, as shown in Fig 7.2. For each connection in the network, flow control is
used to prevent data loss caused by buffer overflow and to prevent deadlock. Flow
control is implemented using credits, similar as in case of address-less communi-
cation that is described in Section 3.2.1. The command, address, and data (in case

Inter-tile communication via a shared memory 87

cmdaddrdata

payload headerpayload headernetwork-layer packets

transport-layer message

Figure 7.3: Example of a transport-layer message that is transmitted by two network-
layer packets.

of a write command) are sent over one connection and the read data (in case of a
read command) is sent back over another connection. Therefore, two address-based
network connections are required to implement an inter-tile communication chan-
nel between two tasks, as we will describe later in this section. One connection from
tile i to tile j and one connection from tile j to tile i, as depicted in Fig 7.2. However,
these two address-based network connections can be used to transport the data from
multiple inter-tile communication channels between tasks that are executed on tile i
and tile j.

In this chapter, processors make use of posted-write transactions to send data to
a memory in another tile. In case of posted write, the transaction is stored in the
network-interface buffer and the processor does not have to wait for an acknowl-
edge, but it can continue doing useful work while the transaction is transported
over the network and the data is written at the destination. If there are posted write
transactions pending in the network and the network-interface buffers are full, then
the processor suffers from stall cycles until the posted write transaction is accepted
by the network-interface shell.

In address-based communication, data containers are stored in circular buffers [26]
that are located in memories. The implementation of a circular buffer requires four
administration registers, namely base address, size, write pointer (WP), and read pointer
(RP). Before a task can write data into the buffer, it has to verify that an empty con-
tainer is available in this buffer. If a task wants to read data from the buffer, it has
to verify that a full container is available in this buffer. This verification is done
by examining the buffer’s administration registers. The task that writes data into a
circular buffer, updates the write pointer after it completes writing the data in a con-
tainer. The task that reads data from a circular buffer, updates the read pointer after it
completes reading the data from a container. This implementation guarantees mem-
ory consistency, because the read pointer is updated by only one task and the write
pointer is updated by only one task. Furthermore, data containers are produced and
consumed in a FIFO order. A task can have random access within a container, de-
spite the FIFO order between containers. We duplicate the administration registers
so that they are stored in the local memory of both processers. Therefore, verifica-
tion of space and data in a circular buffer, can be done by fetching the administration
values from local memory. Updating the read and write pointers has to be done by
writing the new pointer value to the administration in a local and remote memory,
as will be described below.

A general producer-consumer job is taken as an example in explaining the imple-
mentation of the streaming-communication protocol. This protocol is build on top

88 Shared memory architecture and remote write accesses

1 3 4 2

network 5

10

u1
1

tile i

6 78 9

tile j

1
u2

c1

MM

P P

FIFO

WP
RP

RP
WP

Figure 7.4: Inter-tile communication implemented via shared memories.

of the network services, therefore, it is a higher level protocol compared to the net-
work protocol. Task u1 is executed on the processor in tile i and task u2 is executed
on the processor in tile j, as depicted in Fig. 7.4. Task u1 produces containers of data
that are stored in the circular buffer (FIFO) that is located in the memory of tile j.
These containers are stored in the local memory of the processor in tile j, so that
task u2 has low access latency when consuming them. The processor in tile i has a
higher access latency to the memory in tile j, but it generates posted write accesses.
Therefore, it can continue processing task u1 while its output data is transferred over
the network and it is written into the memory of tile j. Suppose that the data con-
tainers would be stored in the memory of tile i instead of tile j. Then task u2 would
have a higher access latency in consuming its input data and after each read access
it has to wait until data returns. Therefore, storing the data containers in the local
memory of the processor on which the consuming task is executed, is the preferred
solution.

The protocol of streaming communication between task u1 and u2 will be described
in ten steps. These steps are also depicted in Fig 7.4. In spite of the fact that we
describe the steps sequentially, the processors and the network will perform these
steps concurrently. In case the circular buffer is able to store two or more data con-
tainers, the processor in tile i is able to store data containers at the same time as the
processor in tile j can read data containers that were already written. The ten steps
are as follows:

1. The processor, on which task u1 is executed, reads the circular-buffer’s admin-
istration values from its local memory (i.e. read and write pointers) to see if
there is space available to store a data container.

2. In case there is space available, task u1 produces output data and the processor

Inter-tile communication via a shared memory 89

stores it in the circular buffer by generating posted write transactions to the
memory in tile j.

3. After the posted write transactions are accepted by the network interface in
tile i, the processor updates the write pointer in the buffer administration that
is located in its local memory.

4. Finally, the processor in tile i updates the write pointer in the buffer admin-
istration that is located in the memory of tile j. This is done by generating a
posted write transactions to this memory.

5. The output data and write pointer will be transferred from tile i to tile j by the
network. The network-interface shell in tile j will do the actual writing of the
output data and write pointer to the memory in tile j.

6. The processor, on which task u2 is executed, reads the circular-buffer’s admin-
istration values from its local memory (i.e. read and write pointers) to see if
there is a data container available in the circular buffer.

7. In case there is a data container available, the processor in tile j reads the data
container from its local memory.

8. After the processor has finished reading the data, the processor in tile j updates
the read pointer in the buffer administration that is located in its local memory.

9. Finally, the processor in tile j updates the read pointer in the buffer administra-
tion that is located in the memory of tile i. This is done by generating a posted
write transactions to this memory.

10. The read pointer will be transferred from tile j to tile i by the network. The
network-interface shell in tile i will do the actual writing of the read pointer to
the memory in tile i.

In case of a remote memory access, the network-interface shell in a tile will do the
actual memory access. Therefore, in a tile, an arbiter has to grant the processor or
the network-interface shell access to the memory. As a result the processor can suf-
fer from stall cycles when accessing its local memory. The maximum number of
processor stall cycles during the execution of a task can be limited by selecting an
appropriate arbitration scheme. The arbitration scheme of the arbiter in the tile must
have three characteristics. First, a low latency for the local memory accesses of the
processor, because a lower latency results in fewer stall cycles for the processor. Sec-
ond, a guaranteed throughput for the network-interface shell to access the memory,
because we should be able to derive an upper bound on the communication latency.
Third, it must be simple and cost efficient, so that it can be realised in dedicated
hardware. Hosseine-Khayat and Bovopoulos [43] proposed a bus arbitration scheme
that satisfies these three requirements. The arbitration has a period, which is called
the service-cycle time. Each service cycle is divided into a fixed number of time slots.
A portion of the time slots is reserved for the network-interface shell slave port to
store the incoming data into the shared local memory. This ensures that memory
bandwidth for incoming data is guaranteed. In this chapter, the reserved time for
incoming data is one time slot. In which slot the slave port can access the memory
depends on the memory accesses requested by the processor, but it is guaranteed
that it can access the memory during one time slot within the service-cycle time.

90 Shared memory architecture and remote write accesses

7.2 Upper bound on processor stall cycles

A processor can suffer from stall cycles when accessing a shared memory during
the execution of a task. The execution time of a task is defined by Definition 5 in
Chapter 2.1. This execution time does not include processor stall cycles caused by
accessing a shared local memory. In order to verify that end-to-end performance
requirements are met, we need to derive an upper bound on the number of processor
stall cycles during the execution of a task.

When a processor is writing to a circular buffer in a remote memory, it can expe-
rience stall cycles due to occupied network-interface buffers and a limited band-
width allocation in accessing a remote memory. Predicting the number of processor
stall cycles can be difficult, because this depends on the traffic pattern generated by
the processor (which is often input data dependent) and the availability of space in
the network-interface buffers (which depends on allocated bandwidth and the state
of the network). However, it is possible to derive an upper bound on the number
of processor stall cycles, because in our multiprocessor system we use guaranteed-
throughput services in the network and at the memory-port arbiters.

Apart from accessing a remote memory, the processor can also suffer from stall cycles
when it accesses its own local memory. This can happen if both the processor and
the network-interface shell access the local memory at the same time. During one
execution of a task the worst-case number of memory accesses from the network-
interface shell to the local memory can be large, due to three reasons. First, the actual
execution time of a producing task can be smaller than the worst-case execution time.
In this case the producing task can execute a number of times during one execution
of a consuming task, i.e. if there is sufficient space in the FIFO buffer between the
producing and consuming task. Second, the number of containers that are produced
by the producing task, can be large compared to the number of containers that are
consumed by the consuming task. Third, a number of tasks can be mapped onto
the same processor and a large container of one task can arrive during the execution
of another smaller task. However, it is possible to derive an upper bound on the
number of processor stall cycles, because the processor has a guaranteed throughput
to its local memory.

Predicting a tight upper bound on the number of processor stall cycles is difficult.
Therefore, it is desirable that the multiprocessor architecture enables the derivation
of a tight upper bound on the processor stall cycles. Since a too conservative upper
bound can result in a significantly over-dimensioned system.

7.2.1 Processor stall cycles due to remote write accesses

In address-based communication, a processor generates posted write transactions to
a memory in another tile. If the processor issues such a transaction and the network
interface does not immediately accepts it, then the processor experiences stall cycles.

To derive an upper bound on the number of processor stall cycles, we use the fol-
lowing terminology. The maximum time until the network interface accepts a posted
write transaction, is M processor cycles, with M ∈ N. Note that M depends on the

Upper bound on processor stall cycles 91

allocated bandwidth to the network connection from a source to destination tile and
in the destination tile on the allocated bandwidth from the network connection to the
memory. Furthermore, ̺(ux) is defined as a conservatively-estimated upper bound
on the number of posted write accesses of task ux.

In this thesis, we assume that it takes one processor cycle for the processor to ac-
cess its local memory, assuming that the processor is the only master who is access-
ing this memory. This memory-access latency is already taken into account in the
conservatively-estimated execution time of a task τ̂(ux). Therefore, one remote-write
access results in at most (M − 1) number of processor stall cycles. An upper bound
on the number of processor stall cycles σ1(ux), during one execution of task ux, can
be computed as follows:

σ1(ux) = (M − 1) · ̺(ux) (7.1)

From Eq. (7.1) it follows that the upper bound on the number of processor stall cycles
depends on the number of posted write accesses to a remote memory. The upper
bound on the number of stall cycles can be expressed with the task’s ratio between
communication and computation, to see the impact on the number of stall cycles. We
define the communication-computation ratio ρ(ux) as the number of posted write
accesses to a remote memory divided by the upper bound on the execution time
for a task ux. In our architecture the communication-computation ratio of task ux is
given by:

ρ(ux) =
̺(ux)

τ̂(ux)
, 0 ≤ ρ(ux) ≤ 1 (7.2)

The value of the communication-computation ratio ρ(ux) is zero if every cycle on
the processor is spent on computation and ρ(ux) is one if every processor cycle is
spent on communication. Equation (7.2) can be substituted in Eq. (7.1). Therefore,
the upper bound on the number of processor stall cycles due to remote write accesses
equals:

σ1(ux) = (M − 1) · τ̂(ux) · ρ(ux) (7.3)

From Eq. (7.3), we conclude that the number of processor stall cycles is large if the
communication-computation ratio ρ(ux) of task ux is large.

The upper bound from Eq. (7.3) can be reduced to zero, by adding a communica-
tion assist [18] next to the processor [56]. A communication assist is an autonomous
DMA controller that offloads the processing core with communication tasks, like
sending posted write transaction to the network interface. Instead of the processor,
the communication assist is stalled when sending posted write transactions. A tile
with a communication assist allows a high bandwidth allocation for the processor
to access its local memory, while it only requires an average bandwidth allocation
in the network. Therefore, it decouples computation and communication and still
allows flexible allocation of buffers in the local memory of a processor. However,
in infotainment-nucleus generation three and four, the communication-computation
ratios of a task are typically small (e.g. 0.5 % for an MP3 decoder [56]). Therefore, the
impact of a communication assist on the processor performance is also small (e.g.
4 % for the MP3 decoder [56]).

92 Shared memory architecture and remote write accesses

7.2.2 Processor stall cycles due to local memory sharing

A processor can also suffer from stall cycles when accessing its local memory, be-
cause other processors can also access this memory. An upper bound on the number
of stall cycles can be derived from the number of memory accesses from the proces-
sor and network-interface shell within a time interval. However, during one execu-
tion of a task, the number of memory accesses from the network-interface shell to
the local memory can be large, as described at the beginning of Section 7.2. There-
fore, in deriving an upper bound on the number of processor stall cycles, we assume
that the network-interface shell wants to access the local memory. As a result of this
assumption, we will derive a conservatively-estimated upper bound on the number
of processor stall cycles.

The maximum number of processor stall cycles during the execution of a task is
bounded as a result of the chosen arbitration scheme [43] at the memory port. In
this chapter, the reserved time for the network-interface shell to access the memory
is one time slot. One time slot is equal to one processor cycle and the service-cycle
time equals to N processor cycles, with N ∈ N. If the service-cycle time N equals
four, it is guaranteed that the network-interface shell can access the memory at least
once every four processor cycles. In which slot it can access the memory depends on
the memory accesses requested by the processor.

Given this arbitration scheme, we can derive conservatively-estimated upper bounds
on the number of processor stall cycles at multiple levels of abstraction. The more
information there is available about the memory-access behaviour of a processor,
the more accurate upper bound we can derive for the processor stall cycles. In this
section, we distinguish three levels of abstraction: (i) we only know the worst-case
execution time of a task, (ii) we know an upper bound on the worst-case number of
local memory accesses of a task, and (iii) we know the memory-access burst lengths
of the individual bursts of a task. For all these abstraction levels we assume an un-
known number of memory accesses from the network-interface shell. Now we will
derive conservatively-estimated upper bounds on the number of processor stall cy-
cles for these levels of abstraction:

Abstraction level (i): The worst-case execution time of a task is known and the
worst-case number of local memory accesses are unknown. Therefore, we assume
that the processor is accessing its local memory every cycle, in order to derive a
conservatively-estimated upper bound. Given the memory-port arbitration scheme,
the processor can access the memory at least (N − 1) times within the service-cycle
time N . When the processor wants to accesses the memory more than (N − 1) times,
it can suffer from stall cycles, as depicted in Fig. 7.5. In deriving a conservatively-
estimated upper bound, we assuming that the network-interface is backlogged. This
means that the network interface has a number of memory-access requests pend-
ing in its network-interface buffers. In computing a conservatively-estimated upper
bound on the processor stall cycles, we assume that the processor has a stall cycle
at its first memory access, because the processor can already have spend its budget
in accessing its local memory. After the processor has suffered from the stall cycle,
it will receive again budget to access the memory (N − 1) times. If the number of
memory accesses are below or equal to (N − 1), then there are no additional stall
cycles for the processor. If the number of memory accesses are above (N − 1), then

Upper bound on processor stall cycles 93

processor

network interface

N − 1

time

processor stall cycle
memory access

Figure 7.5: Processor stall cycles due to arbitration at the memory port.

the processor will suffer from a stall cycle every (N − 1) memory accesses. There-
fore, the conservatively-estimated upper bound on the number of processor stall
cycles σ2(ux) during one execution of task ux, is given by:

σ2(ux) ≤ 1 +

⌊

τ(ux) − 1

N − 1

⌋

(7.4)

Assume that the worst-case execution time τ(ux) equals N − 1, then there is only a
processor stall cycle during the first memory access. This matches with the result
from Eq. (7.4), because the result of the floor function is zero. When the worst-case
execution time τ(ux) equals N , then there are two processor stall cycles (one during
the first memory access and one at the N th memory access). Again, this matches
with the result from Eq. (7.4).

Abstraction level (ii): If an upper bound on the number of local memory accesses of
a task is known, we can derive a tighter upper bound on the number of processor
stall cycles. We define α(ux) as the conservatively-estimated upper bound on the
number of local memory accesses of the processor during one execution of task ux.
Given the arbitration scheme, the processor can access the memory (N − 1) times
within the service-cycle time N . Compared to the previous computed bound, we
now have a more accurate estimate on the number of memory accesses and do not
need to assume that the processor accesses its memory every cycle. However, it is
unknown when the processor accesses its local memory. Therefore, we assume that
the processor will access the memory in one burst of α(ux) memory accesses, since
this will result in the highest number of processor stall cycles. So the conservatively-
estimated upper bound on the number of processor stall cycles σ2(ux) for task ux, is
given by:

σ2(ux) ≤ 1 +

⌊

α(ux) − 1

N − 1

⌋

(7.5)

The difference between the upper bounds on the number of processor stall cycles of
Eq. (7.4) and Eq. (7.5), depends on the difference between α(ux) and τ(ux). When a
processor generates a local memory access almost every cycle (i.e. α(ux) is close to
τ(ux)), then the difference between Eq. (7.4) and (7.5) is small. When the processor
does not often access its local memory (i.e. α(ux) is close to zero), then there is a
significant difference between Eq. (7.4) and (7.5). In general, the α(ux) is lower than
τ(ux). In [42], they measured the average number of load and store instructions for
an Intel 80x86 processor and a TMS320C540x digital signal processor. After execut-
ing a collection of integer programs (SPECint92), the average number of instructions

94 Shared memory architecture and remote write accesses

that access the memory, were 34 % and 76 % for the 80x86 and TMS320C540, respec-
tively. Therefore, it is worthwhile to investigate an upper bound on the number of
local memory accesses during the execution of a task.

Abstraction level (iii): We can increase the accuracy on the number of processor stall
cycles even further, by taking into account the memory-access bursts in which the
processor accesses its local memory. Notice that this is not possible in general, be-
cause the memory-access bursts can be input data dependent. To compute an up-
per bound on the number of processor stall cycles, we define b as the length of a
memory-access burst and Bx as the set of memory-access bursts that are generated
by the processor when executing task ux. Now the upper bound on the number of
processor stall cycles can be computed as follows:

σ2(ux) ≤ 1 +
∑

b∈Bx

⌊

b − 1

N − 1

⌋

(7.6)

This upper bound on the number of stall cycles is a summation of Eq. (7.5) for each
burst b, where one stall cycle is added for taking into account that the processor
does not have any budget when it starts to execute task ux. The difference between
the upper bounds on the number of processor stall cycles of Eq. (7.5) and Eq. (7.6),
depends on the number of bursts (i.e. size of Bx) and the size of the individual
bursts (i.e. size of b ∈ Bx). When the individual bursts b are smaller than (N − 1),
the difference between Eq. (7.5) and (7.6) is large. When there are only a few bursts
(i.e. Bx is small) and the individual bursts b ∈ Bx are larger than (N − 1), then the
difference is smaller.

Dependent on where the bottleneck is in the system, more effort can be spend on
making the conservatively-estimated upper bounds more tight.

7.3 Run-time scheduling of task executions

Run-time schedulers are essential in case multiple tasks run at independent rates
while they are executed on the same processor, or in case jobs can be started and
stopped at run-time while they share a processor with another job that is already
running. Typically, tasks from different jobs are running at independent rates. In
case of variable consumption or production behaviour of containers (i.e. if the job
is represented in a VRDF graph [93]), then tasks from the same job can also run at
independent rates. Furthermore, for run-time scheduling, we do not need to store a
schedule for each use case, as in case of static-order scheduling.

An example of independent rates between jobs is when the sample rate of one job
is locked to an external input while the sample rate of another job is locked to an
internal clock. In this case, at design time, it is unknown what the relation is between
the number of firings of a task from one job compared to the number of firings of a
task from the other job. Only at run time we know if a task is allowed to execute, i.e.
at run time we can check whether a task is enabled. Therefore, in run-time schedules,
a task executes only when it is enabled to execute. A task is enabled if sufficient data
is available at each input and sufficient space is available at each output. Once a
task is enabled, it is guaranteed that it can finish after it is started. Circular buffers

Run-time scheduling of task executions 95

support checking for sufficient input data and output space by examining the buffer
administrations of the input and output buffers. This allows a scheduler to check
whether a task is enabled to execute. Therefore, our architecture supports the use of
run-time scheduling of tasks.

A run-time scheduler is predictable if we can derive an upper bound between the
time a tasks is enabled to execute and the time this task finished its execution. There-
fore, for a predictable run-time scheduler, we should be able to bound the interfer-
ence caused by scheduling other tasks before or while scheduling the task of interest.
We defined response time as follows:

Definition 13. The response time of a task is the time between the task is enabled to
executed and the time it finished its execution. A task is enabled if sufficient data is
available at each input and sufficient space is available at each output.

Examples of predictable run-time scheduling mechanisms are: round robin and time
division multiplex. In case of round robin, which is a non-preemptive scheduling
mechanism, each task, in the round-robin list, must have a bounded execution time
to be able to derive an upper bound on the response time for a task. If the execution
time of a task exceeds its execution-time upper bound, all tasks, in the round-robin
list, potentially exceed their response-time upper bound. The advantage of a round-
robin scheduler is that it is work conserving, because if one task is unable to execute,
the resource budgets can be used by another task. In case of a time division mul-
tiplex, which is a preemptive scheduling mechanism, for each task a fixed amount
of resource budgets are allocated. Therefore, if the execution time of a task exceeds
its execution-time bound, the temporal behaviour of another task is not affected, be-
cause these tasks are preempted. It is also non work conserving between tasks, be-
cause if resources are not used by one task, these resources cannot be used by other
tasks and they are waisted. However, time-division-multiplex scheduling is work
conserving within a task, because if a task finished its execution before it finished its
allocated budget, then it can already start executing its next execution. Naturally the
task should be enabled before it can start executing again.

All schedulers that are predictable (i.e. that are starvation-free so that we can derive
upper bounds on the response time) belong to the latency-rate server class. Latency-
rate servers [77] were originally proposed as a modelling paradigm to model the
effect of scheduling on traffic passing through a chain of heterogeneous routers in a
packet-switched network. The behaviour of a latency-rate server is determined by
two parameters: the latency and allocated rate [77]. A busy period is defined in [77] as a
maximum interval of time (s,t] during which the server is never idle. The latency Θ
and rate ρ parameters define an envelope to bound the minimum service offered
during a busy period, as illustrated in Fig. 7.6. The latency Θ of an latency-rate server
may be seen as the worst-case delay which is seen by the first container of the busy
period. After this latency, the offered service is guaranteed to be at a constant rate ρ.
The round-robin and time-division-multiplex schedulers fall in the class of latency-
rate servers, this is shown for round robin in [77] and for time division multiplex
in [92].

The parameters Θ and ρ depend on the run-time scheduling mechanism, the allo-
cated processor resources, and the resource requirements of a task. A processor can
suffer from stall cycles due to sharing its local memory or when writing to a remote

96 Shared memory architecture and remote write accesses

ρ

co
n

ta
in

er
s arrival input

arrival output
arrival bound input

arrival bound output

s
t

Θ

Figure 7.6: Definition of Θ and ρ.

memory, as described in previous section. Therefore, the upper bound on the exe-
cution time of a task as well as the upper bound on the number of processor stall
cycles are taken into account in computing the latency Θ and rate ρ parameters for
representing the run-time scheduling of the task.

7.4 Dataflow model construction

Previous sections introduced two extensions to our predictable multiprocessor archi-
tecture, namely inter-tile communication via a shared memory and run-time schedul-
ing of tasks on a processor. In this section, we elaborate on the representation of these
extensions in a dataflow model, so that we can use existing dataflow-analysis tech-
niques to compute a lower bound on the throughput and an upper bound on the
end-to-end latency of a job. First, we describe the dataflow model representation of
tasks that are scheduled using a run-time scheduling mechanism. Second, we model
inter-tile communication latencies with additional actors in the dataflow model and
we will show how to compute upper bounds on these communication latencies.

7.4.1 Modelling run-time scheduling of tasks

In [54, 4, 94] it is shown that the effects of run-time schedulers, like round-robin and
time division multiples, can be taken into account in a dataflow model. This result is
refined and generalised in [92] were it is shown that all schedulers that belong to the
latency-rate server [77] class can be applied in combination with dataflow analysis.

In [92] it is proven that the dataflow construct in Fig. 7.7 models a task ux that exe-
cutes on a latency-rate server with latency Θx and allocated rate ρx. The temporal
behaviour of the latency-rate server is captured by this dataflow model. Note that,
in this model, we distinguish actors with and without a self edge. When the execu-
tion time of actor vy is equal to Θx and the execution time of actor vz is equal to 1/ρx,
then it is proven in [92] that the arrival times of tokens in the dataflow model are
conservative with respect to the arrival times of the corresponding containers in the

Dataflow model construction 97

1 1
vzvy

1 1

ρ(vy) = Θx ρ(vz) = 1/ρx

Figure 7.7: Dataflow model representation of a latency-rate server with latency Θx

and allocated rate ρx.

v2v1
1 1 1

v4
1 1 11 1

v3

d(c1)

modelling task u1 modelling task u2

Figure 7.8: Dataflow model of a producer-consumer job from which both tasks are
modelled with a latency-rate server component.

implementation.

Traditionally, every task in the implementation is modelled with one actor in the
dataflow model. This is similar as we did in Chapter 4, when modelling tasks that
are execute in a static-order schedule. However, in modelling run-time schedules
that fall in the class latency-rate server, a task is more accurately modelled with a
component that consists of two actors. It is shown in [92, 54] that the execution of
one task can be represented by a component which can be a collection of dataflow
actors, as long as the temporal behaviour of the component is conservative with
respect to the temporal behaviour of the task. Therefore, for the dataflow graph
of a producer-consumer job in Fig. 7.8, the tasks u1 and u2 are represented with a
latency-rate server component.

In this section, we assume that both tasks u1 and u2 are executed on the same pro-
cessor. Therefore, the communication between the tasks is via a circular buffer that
is located in the local memory of the processor. This buffer is represented with the
forward edge (v2, v3) and backward edge (v4, v1) in the dataflow model, similar as
in Chapter 4.3. The number of initial tokens on edge (v4, v1) in Fig. 7.9, represent the
number of empty data containers in the circular buffer between task u1 and u2. That
means the capacity d(c1) of the communication channel c1 = (u1, u2)

7.4.2 Modelling inter-tile communication

In this section, we assume that task u1 and u2 are executed on different processors
and they communicate via a shared memory, as depicted in Fig. 7.4. The processor
on which task u1 is executed, will sent posted write transactions to the memory in
tile j. When the posted write transactions are accepted by the network interface,

98 Shared memory architecture and remote write accesses

v2 v3v1 v4

11

1 11 1 1 1 1 11 1

d(c1)

v5

v6

modelling task u1 modelling task u2

Figure 7.9: Dataflow model of a producer-consumer job from which both tasks are
mapped to separate tiles.

the processor can already continue with executing its tasks. However, when the net-
work interface has accepted the posted write transaction, the data and write pointer
update are not yet arrived at the memory in tile j because it takes time for the net-
work to deliver this data to the memory. A similar reasoning holds for task u2. After
updating the read pointer in the memory of tile i, it takes time for the network to
deliver this data to the memory. These communication latencies have to be taken
into account in the dataflow model in order to make the temporal behaviour of the
dataflow model conservative with respect to the temporal behaviour of the imple-
mentation.

Fig. 7.9 shows a dataflow model of the producer-consumer job from which both tasks
are mapped onto separate tiles and the communication between the tasks is realised
via address-based communication over the network. Tasks u1 and u2 are executed on
processors that make use of a run-time scheduling mechanism that falls in the class
of a latency-rate server. Therefore, these tasks are both modelled with the dataflow
model representation of a latency-rate server, as described in previous section. Com-
pared to the previous section, tasks u1 and u2 are mapped to different tiles instead
of one tile. When task u1 has written its output data and updated the write pointer
in the remote memory, the data and write pointer are written in the memory of tile j
after a certain communication latency. This communication latency is modelled with
actor v5, where the execution time of this actor is equal to the communication latency
between tile i and tile j. When task u2 has read its input data from its local memory,
it will update the read pointer in its local memory and in the memory of tile i. It
takes a certain communication latency before the read pointer is written in the mem-
ory. This communication latency is modelled with actor v6, where the execution time
of this actor is equal to the communication latency between tile j and tile i. The data
containers that are transferred between task u1 and u2 are stored in a circular buffer
that is located in the memory of tile j. The buffer capacity is modelled with the ini-
tial tokens on edge (v6, v1) in Fig. 7.9. The number of initial tokens represents the
number of empty data containers in the circular buffer. The initial tokens are located
on this edge because task u1 can derive the status of the circular buffer at the start of
the job, by investigating the buffer’s administration from which a copy is stored in
its local memory.

Upper bounds on communication latencies can be computed, because of guaranteed-
bandwidth allocations of network connections, guaranteed-bandwidth allocations

Dataflow model construction 99

sh
el

l

kernel kernel

sh
el

l

sh
el

l

sh
el

l

network
router

tile i tile j

Li,j

Lj,i

posted write transaction for updating the read pointer
posted write transaction for updating the write pointer

P

M

S
l

M
a

M
a

S
l

P

M

NI NI

Figure 7.10: Communication latency for address-based communication.

for network-interface shells to access their memories, and bounded network-interface
buffer capacities. The bounds can be computed for a given configuration of the net-
work and memory-port arbiters. In computing the communication-latency upper
bounds, we assume that multiple tasks are executed on a processor. Therefore, there
can exist multiple communication channels that have to be implemented between
two tiles. In address-based communication, these communication channels are im-
plemented with the same set of network connections between these two tiles. Over
the network connections, data containers, write pointers, and read pointers are trans-
ferred. Furthermore, the processors use run-time scheduling mechanisms to execute
their tasks. Therefore, the execution order of tasks is unknown at design time. If the
execution order is unknown, it can be, especially in case of preemptive scheduling,
that one task stores output containers in the memory of another tile just before an-
other task wants to store output containers in the same remote memory. Therefore,
the network connection can be occupied, i.e. the network-interface buffers can be
full when writing to a remote memory. Thus we assume that the network-interface
buffers are already full when we derive an upper bound on the communication la-
tency. Therefore, the temporal behaviour of the model is conservative with respect
to the temporal behaviour of the implementation so that the upper bound holds for
every possible use case. Of course more effort can be put in deriving a tighter upper
bound, in case end-to-end latency is not tight enough. In case of meeting the job’s
throughput requirement, we can increase the buffer capacity of the circular buffer, as
we will describe later.

When writing to a remote memory, the time until the network interface accepts a
posted write transaction is taken into account in computing the processor stall cycles,
as described in Section 7.2.1. Therefore, communication latency, for writing a read
and write pointer update in a remote memory, is defined as follows:

Definition 14 (Pointer-update communication latency). Pointer-update communi-
cation latency is defined as the time between the pointer update is accepted by the
network-interface and it is written in the memory at the destination tile.

100 Shared memory architecture and remote write accesses

In the dataflow model of Fig. 7.9, the execution time of actor v5 equals to the upper
bound on the communication latency it takes for the write pointer to be written in
the memory of tile j. The execution time of actor v6 equals to the upper bound on
the communication latency it takes for the read pointer to be written in the memory
of tile i. These communication latencies are depicted by Li,j and Lj,i in Fig. 7.10.
Communication latency depends on the amount of posted-write transactions that
are pending in a network connection, i.e. in the network-interface buffers or in the
router network. Therefore, larger network-interface buffer capacities will increase
the possibly pending number of posted-write transactions in the network connec-
tion, because multiple inter-task communication channels can make use of the same
network connections. In computing an upper bound on the communication latency,
we assume that the network-interface buffers are full with posted-write transactions,
as described earlier. Therefore, larger network-interface buffer capacities will in-
crease our upper bound on the communication latency. The higher communication
latencies will increase the cycle mean on the cycle from actors v1 through actor v6

in the dataflow graph of Fig. 7.9. This increase of cycle mean can result in a larger
maximum cycle mean of the dataflow graph. From Eq. (4.18) we know that a larger
maximum cycle mean can be compensated by increasing the number of initial tokens
on the edge (v6, v1). A higher number of initial tokens represents a larger capacity of
the circular buffer in the memory of tile j. Therefore, we conclude the following: If
multiple communication channels are implemented with address-based communication and
they make use of the same network connections, then the increase of the network-interface
buffer capacities can result in larger required buffer capacities for the circular buffers.

The dataflow-analysis technique [91] makes use of the property that a too conserva-
tive buffer requirement cannot result in a decrease of a job’s minimum throughput.
Notice that this holds for the buffer capacities of circular buffers and it does not
hold for the network-interface buffers, in case of address based communication. The
reason is that the network-interface buffers are used for transferring messages from
multiple communication channels. This problem does not occur in case of address-
less communication, which is used in part I of this thesis. Because, in address-less
communication, data containers are stored in these network-interface buffers and
these network-interface buffers are dedicated to only one communication channel.

7.5 Case study: MP3 playback

In this section, we introduce an industrial case study to show that we can model a
job that is executed on a platform which makes use of a shared memory architecture
and run-time scheduling between tasks.

An MP3-playback job contains, among others, an MP3-decoder and sample-rate con-
verter task. The compressed-audio input of the MP3-decoder task is left out in this
case-study, because the task consumes a variable number of tokens per execution,
which is beyond the scope of this thesis. In [93] it is shown that tasks with a vari-
able number of token consumption and production behaviour can be modelled in a
Variable Rate DataFlow (VRDF) graph. This is shown in case a task is represented
by one actor in a dataflow model.

The MP3-playback job makes use of an asynchronous sample-rate conversion, which

Case study: MP3 playback 101

Task MP3 SRC
Execution time τ̌(ux) 467899 cc 791 cc
Number of local memory accesses α(ux) 112898 cc 485 cc
Number of remote write accesses ̺(ux) 0 3

Table 7.1: Overview of the parameters of the MP3-decoder and sample-rate con-
verter tasks.

converts the 48 kHz audio stream into a 44.1 kHz audio stream that matches with the
digital-to-analog converter at the output. The MP3-decoder and sample-rate con-
verter tasks are both executed on an EPICS processor, by making use of a run-time
scheduling mechanism. The EPICS processor is executing with a clock frequency
of 125 MHz. The MP3-decoder task executes in the main loop on this processor and
the sample-rate converter task executes in an interrupt service routine. A timer pe-
riodically generates interrupts, so that the sample-rate converter task executes peri-
odically. The execution time and number of local and remote memory accesses per
execution of the MP3-decoder and sample rate converter tasks, are depicted in Ta-
ble 7.1. For our case study, the execution times and number of local memory accesses
are derived via cycle-accurate simulation. Therefore, the numbers in the table are
optimistically-estimated upper bounds, which will be described in the next chapter.

First, we compute upper bounds on the number of processor stall cycles for exe-
cuting the MP3-decoder and a sample-rate converter tasks. The bound of the MP3-
decoder task is also compared with the measured stall cycles during cycle-accurate
simulation. Subsequently, we show how we can derive the latency Θ and rate ρ
parameters for the MP3-decoder task, since this task is scheduled using a run-time
scheduling mechanism.

7.5.1 Upper bounds on processor stall cycles

The EPICS processor can suffer from stall cycles when accessing its local memory, be-
cause we make use of a shared local memory. Therefore, we derive upper bounds on
processor stall cycles, when executing the MP3-decoder and sample-rate converter
tasks.

First, we compute upper bounds on the number of processor stall cycles while exe-
cuting the sample-rate converter task uSRC. This task generates posted write transac-
tions to store three words of data in the memory of another tile, two words of data
for the stereo sample and one word of data for the write-pointer update, since we
communicate via address-based communication as described in Section 7.1.

So the upper bound on the number of processor stall cycles, caused by the remote
write accesses, is computed with Eq. 7.1 and equals:

σ1(uSRC) = (M − 1) · 3 (7.7)

The processor can also suffer from stall cycles by accessing its shared local memory.
The upper bound on the number of processor stall cycles σ2(uSRC), caused by access-
ing the local memory, is computed with Eq. (7.4), (7.5) and (7.6) for different values

102 Shared memory architecture and remote write accesses

computed with Eq. (7.6)
computed with Eq. (7.5)
computed with Eq. (7.4)

N

ǫ(
u

S
R

C
)

1098765432

1

0.9

0.8

0.7

0.6

0.5

0.4

Figure 7.11: Estimated bounds of metric ǫ(uSRC) computed for the sample-rate con-
verter task.

of N . The execution time τ̌(uSRC), the number of memory accesses α(uSRC), and the
set of bursts BSRC are all derived from profiling the sample-rate converter task uSRC

during cycle-accurate simulation.

To compare the upper bounds on the number of processor stall cycles (σ1(ux) +
σ2(ux)), we define the metric ǫ(ux) that makes the number of processor stall cycles
relative to the execution time. Therefore, the reader will get a better feeling about
the impact on performance by using the different levels of abstraction in comput-
ing σ2(ux). For task ux the metric ǫ(ux) is defined as follows:

ǫ(ux) =
τ(ux)

τ(ux) + σ1(ux) + σ2(ux)
, 0 < ǫ(ux) ≤ 1 (7.8)

With the computed upper bounds on the number of processor stall cycles, we com-
pute lower bounds on ǫ(uSRC) with Eq. (7.8). The lower bounds are plotted in Fig. 7.11
for different values of N and assuming that M = 10.

The tightness of abstraction level (ii) (i.e. Eq. (7.5)) is investigated with profiling the
MP3-decoder task uMP3 during cycle-accurate simulation. The MP3-decoder task uMP3

is executed on an EPICS processor while another tile keeps sending posted write
accesses to the local memory of the EPICS processor, so that the network-interface
slave port keeps writing in this local memory. In the simulator, we measure the
number of processor stall cycles for different values of N while executing the MP3-
decoder task. From the computed and measured number of processor stall cycles,
we compute the metric ǫ(uMP3) with Eq. 7.8 for each value N , which are depicted in
Fig. 7.12. An indication for the accuracy of the computed bound is the difference be-
tween the computed and measured metric ǫ(uMP3). From Fig. 7.12, we conclude that
this difference is less than 6 %. Furthermore, the measured number of processor stall
cycles is already zero (i.e. ǫ(uMP3) = 1) given a service-cycle time N of seven clock
cycles. Therefore, it seems that the bursts from the processor to the memory are at
most six processor cycles for our input stream. Typically, sufficient memory band-
width is available for the network-interface slave port to access the local memory.
For example, the tasks uMP3 and uSRC access the data memory, respectively, 24 % and
54 % of the time, as can be seen from the numbers in Table 7.1.

Case study: MP3 playback 103

computed with Eq. (7.5)
measured

N

ǫ(
u

M
P

3
)

1098765432

1

0.98

0.96

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

Figure 7.12: Comparison between a conservatively-estimated and measured met-
ric ǫ(uMP3) for the MP3-decoder task.

7.5.2 Latency-rate server representation of the MP3-decoder

The next step is to derive a latency-rate server representation for the MP3-decoder
task, which is executed on an EPICS processor using a run-time scheduling mech-
anism. The MP3-decoder task executes in the main loop on this processor and
the sample-rate converter task executes in an interrupt service routine. The output
stream of the MP3-decoder task has a sample rate of 48 kHz. The output stream of
the sample-rate converter task has a sample rate of 44.1 kHz. The interrupt service
routine will be triggered with the highest sample-rate frequency, which is 48 kHz.
This results in an interrupt once every 20.8 ns. An upper bound on the interrupt
time is the sum of the upper bound on execution time and processor stall cycles
of the sample-rate converter task. Assuming that M = 10 and N = 10, the upper
bound on the interrupt time is 875 cc, which is 7 ns on the EPICS processor running at
125 MHz. Therefore, the MP3-decoder task can occupy the processor at least 13.8 ns
per period of 20.8 ns. Assuming that M = 10 and N = 10, the sum of upper bounds
on execution time and processor stall cycles of the MP3-decoder task is 480454 cc or
3844 ns. Therefore, the maximum allocated rate parameter ρMP3 can be computed as
follows:

1/ρMP3 = 7 ·
3844

13.8
+ 3844 = 5794 ns (7.9)

This means that, in a busy period, the MP3 decoder produces at least one MP3 frame
per 5794 ns.

Next to the parameter ρMP3 we have to derive the parameter ΘMP3. The latency pa-
rameter is derived from the worst-case response time of the MP3-decoder task. The
response time is the time between the MP3-decoder task is enabled and the time
it has finished its execution. Once the MP3-decoder task is enabled, the additional
latency (to the 5794 ns) is at most 7 ns, which occurs if there is an interrupt service
routine just after the task is enabled. Therefore, the parameter ΘMP3 equals 7 ns.

104 Shared memory architecture and remote write accesses

7.6 Concluding remarks

This chapter described a multiprocessor with a shared memory architecture that sup-
ports the use of address-based communication, so that processors can access their
local memories and the memory in another tile. This architecture increases the flex-
ibility, because the number of communication channels and buffer capacities can be
adapted by changing the software.

A processor can suffer from stall cycles when accessing a shared memory (local or re-
mote), but the number of stall cycles can be bounded. The conservatively-estimated
upper bound on these stall cycles depends on the allocated bandwidth between the
processor and the shared memory. In case of address-based communication, net-
work connections can transfer data from multiple communication channels. But the
communication latency can still be bounded, due to guaranteed bandwidth services
and bounded network-interface buffer capacities. Data containers are stored in cir-
cular buffers that are located in the local memories of processors. Circular buffers
support checking for the available number of full and empty containers in a buffer.
This allows us to use run-time scheduling mechanisms, which enables us to execute
tasks from multiple jobs on the same processor.

The uncertainty in temporal behaviour is increased at design time, because a proces-
sor can suffer from stall cycles, multiple communication channels can share network
connections, and the tasks execution order is determined at run time. However, we
can construct a dataflow graph to model a job that is mapped to a multiprocessor
platform that makes use of a shared memory architecture and run-time scheduling
of tasks. The in this chapter presented techniques are demonstrated by means of
an MP3-playback job. The job’s throughput and end-to-end latency constraints can
be verified from the dataflow model by making use of existing dataflow-analysis
techniques.

Compared to our first architecture, data containers can exceed the size of network-
interface buffers and processors can execute tasks from multiple jobs. Therefore,
the target domain is block-based processing, e.g. a MP3-decoder task that processes
frames of data.

Chapter 8

Cache-based multiprocessor
architecture

For infotainment-nucleus generation four, an external memory is required because
the memory footprint of the jobs is considered too expensive to store in an on-chip
memory. An external memory that is shared between processors is a bottleneck in
current systems. Efficient use of the memory hierarchy is critical for achieving high
performance in a multiprocessor system-on-chip.

In Section 8.1, we first describe our multiprocessor architecture that contains a shared
external memory and a number of caches. This architecture increases the uncer-
tainty in the temporal behaviour, e.g. due to unknown number of cache misses
and unknown cache-miss penalties. Therefore, Section 8.2 investigates the use of
optimistically-estimated bounds instead of conservatively-estimated bounds on ex-
ecution times and processor stall cycles. A selection of cache-miss reduction tech-
niques are described in Section 8.3. In section 8.4, the number of cache misses are
trade-off against end-to-end latency and memory usage, by making use of a cache-
aware mapping technique that is based on execution scaling [73]. The instruction and
data locality are improved by executing a task multiple times before moving to the
next task in a schedule. In Section 8.5, we apply this cache-aware mapping technique
to our industrial application, which is a Digital-Radio-Mondiale receiver. Finally, we
conclude this chapter in Section 8.6.

8.1 Multiprocessor architecture with external memory

External memory is required when the memory footprint of the software is too ex-
pensive to store in an on-chip memory. Therefore, our tile-based multiprocessor
architecture is extended with an off-chip SDRAM, which we refer to as the external
memory (M). The external memory is connected to a memory controller (CTRL), as
depicted in Fig. 8.1. Multiple processors can access the memory, therefore, it is a
shared external memory. A processor (P) can have a level-one cache ($), as depicted
in Fig. 8.1. Once a copy of an external-memory location is stored in the cache, the

106 Cache-based multiprocessor architecture

tile
on-chip

M

router network

tile

$

Ma
NI
MaSl

M

P

tile

$

Ma
NI
MaSl

M

P

CA

tile

NI
SlSlMa

CTRL

LT LT LL

Figure 8.1: Multiprocessor architecture with external memory and caches.

processor has a low latency in accessing this memory location. If there is no copy of
this memory location present in the cache, a new cache block will be fetched from the
external memory so that a copy of the memory location is stored in the cache. The
processor suffers from stall cycles until the cache block is fetched from the external
memory and it is stored in the level one cache. This fetching of a new cache line is
referred to as a cache miss.

The memory-access latency, to the shared external memory, is larger compared to the
on-chip local memories. This is, among others, a result of arbitration at the external-
memory port. For example, when two or more processors want to access the memory
at the same time, an arbiter in the memory controller will grant access to one proces-
sor. The accesses from the other processors will be postponed until the current pro-
cessor finishes its access. In our architecture, the SDRAM controller distinguishes
two classes of memory accesses: low latency (LL) and latency tolerant (LT) [1]. The
advantage of splitting latency-tolerant from low-latency memory accesses is more
scheduling freedom. The latency for the class low-latency accesses can be reduced
by postponing the latency-tolerant accesses. Fetching new cache blocks falls in the
class of low-latency accesses because its latency has a direct impact on the number
of processor stall cycles. Pre-fetching data containers from the external to the local
memory belongs to the class of latency-tolerant accesses, because some extra latency
has little or no affect on the system performance.

The processor tiles have also local memories (M) which can be accessed directly
by the processors, we refer to these memories as uncached memories. Inter-task
communication between two processors is either with address-less communication
via dedicated network connections (as described in Chapter 3.2) or with address-
based communication via circular buffers stored in an uncached local memory (as
described in Chapter 7.1). The buffers are stored in uncached memory regions be-
cause streaming input data is only read once and streaming output data is only pro-
duced once. If these buffers would be stored in cached memory regions, the accesses
to these buffers would always result in cache misses.

In case data containers are too large to store in local memory, then the buffer must

Multiprocessor architecture with external memory 107

be stored in the external memory. The circular buffer and its administration can be
stored in a cached memory region if streaming consistency [12] is applied to ensure
cache coherency and memory consistency. This approach requires caches to have
means to invalidate and flush cache blocks in an address range. Such functionality
is present in, for example, ARM11 and TriMedia [12].

When a buffer does not fit in a local memory, but the individual containers do fit,
then this buffer can be distributed between the local and external memory. In this
case, the buffer is composed of two circular buffers, one (small) buffer that is located
in uncached local memory, and one larger buffer that is located in an uncached mem-
ory region of the external memory. The producing processor will generate posted
write transactions to the circular buffer in the external memory. In the SDRAM-
controller tile there is a communication assist [18], which is an autonomous DMA
controller that is introduced to prefetch data containers from the circular buffer in
the external memory to the circular memory in the local memory. Finally, the con-
suming processor can read the data containers from the circular buffer that is located
in its local memory. This inter-processor communication does not have the disadvan-
tage of cache misses and it does allow storing of large number of containers in the
external memory.

Key for this architecture is that we do not communicate the input and output data via
the cache (preventing cache misses), that we use latency-tolerant memory accesses,
and that we can distribute a FIFO buffer between local and external memory.

8.1.1 Inter-tile communication via external memory

A general producer-consumer example is used to explain the implementation of
streaming communication via a buffer that is distributed between local and exter-
nal memory. Task u1 is executed on the processor in tile i and task u2 is executed on
the processor in tile j, as depicted in Fig. 8.2. The program code and state of task u1

and u2 are stored in a cached memory region of the external memory. Task u1 pro-
duces containers of data that are stored in the circular buffer (FIFO1) that is located
in an uncached memory region of the external memory. The communication assist
transfers these containers to the circular buffer (FIFO2) that is located in the memory
of tile j, so that task u2 has low access latency when consuming the data containers.

The implementation of streaming communication between task u1 and u2 will be de-
scribed in the following steps. These steps are also depicted in Fig 8.2. The container
communications are depicted with the thick lines in this figure.

1. The processor, on which task u1 is executed, reads the FIFO1’s administration
values from its local memory (i.e. read and write pointers) to see if there is
space available to store a data container.

2. In case there is space available, task u1 produces output data and the processor
stores it in FIFO1 by generating posted write transactions to the external mem-
ory. These posted write transactions are latency-tolerant external-memory ac-
cesses.

3. After the posted write transactions are accepted by the network interface in

108 Cache-based multiprocessor architecture

1 3

u1
1

tile i tile j

1
u2

c1

2 4

5,7

8 8

9 1011 12

tile

network

CTRLP P

M M
CA

FIFO1

FIFO2
6

LT

M

WP1
RP1

RP2
WP2

R
P

2
W

P
2

W
P

1
R

P
1

Figure 8.2: Implementation of streaming communication via a buffer that is dis-
tributed between local and external memory.

tile i, the processor updates the write pointer in the buffer administration that
is located in its local memory.

4. Finally, the processor in tile i updates the write pointer in the buffer adminis-
tration that is located at the communication assist. This is done by generating
a posted write transaction to the memory-controller tile.

5. The communication assist reads the administration values from FIFO1 and
FIFO2 to see if there is a data container available in FIFO1 and space available
in FIFO2.

6. In case a container can be transferred from FIFO1 to FIFO2, the communica-
tion assist reads the data container from the external memory and stores it in
FIFO2 by generating posted write transactions to tile j. The external-memory
accesses of the communication assist are latency-tolerant memory accesses, be-
cause communication-assist stall cycles are not costly.

7. After the communication assist has finished transferring the data, the commu-
nication assist updates the read pointer of FIFO1 and the write pointer of FIFO2
from the buffer administrations that are located in the memory-controller tile.

8. Finally, the communication assist updates the read pointer in the buffer ad-
ministration that is located in the memory of tile i and the write pointer in the
buffer administration that is located in the memory of tile j. This is done by
generating a posted write transactions to this memory.

9. The processor, on which task u2 is executed, reads FIFO2’s administration val-
ues from its local memory (i.e. read and write pointers) to see if there is a data

Optimistically-estimated versus conservatively-estimated bounds 109

container available in FIFO2.

10. In case there is a data container available, the processor in tile j reads the data
container from its local memory.

11. After the processor has finished reading the data, the processor in tile j updates
the read pointer in the buffer administration that is located in its local memory.

12. Finally, the processor in tile j updates the read pointer in the buffer adminis-
tration that is located in the memory-controller tile. This is done by generating
a posted write transaction to the memory-controller tile.

8.2 Optimistically-estimated versus conservatively-esti-

mated bounds

The execution time of a task is defined by Definition 5 in Chapter 2.1. This execu-
tion time does not include processor stall cycles due to cache misses. In general,
upper bounds on the execution times and upper bounds on processor stall cycles are
needed to show that real-time requirements are satisfied.

It is not always possible to obtain upper bounds on execution times of tasks [95].
This is only possible if we use a restricted form of programming, which guarantees
that tasks always terminate, i.e. iteration is only allowed if iteration counts of loops
are explicitly bounded. A reliable conservatively-estimated execution-time bound of
a task can potentially be given if the worst-case input for a task is known. Unfortu-
nately, often the worst-case input is not known or hard to derive. Furthermore, if
a worst-case input could be extracted, it is still unclear how often this input would
occur in practice.

The literature on timing analysis is not always clear on making a distinction between
worst-case execution times and estimates for them [95]. Figure 8.3 depicts the num-
ber of occurrences of an execution time of task ui as function of the execution time,
for the set observed execution times and all execution times. A task typically shows a
certain variation of its execution time depending on the input data, e.g. due to in-
put data dependent conditional branches and loops. The distribution of times for
set all execution times is shown as the upper curve in Fig. 8.3. The longest execu-
tion time is called the worst-case execution time τ(ui). The execution time depends
on the path that is taken at conditional branches in the task’s program code. Typ-
ically, there is a large number of possible paths and the number of paths can even
depend on the input data. Therefore, it can be problematic to exhaustively explore
all possible execution paths and in consequence of that it is hard to determine the
exact worst-case execution time. Furthermore, it can also be difficult to derive a
conservatively-estimated execution-time bound τ̂(ui) that is tight. Today, in many
parts of the industry, the common method to estimate execution-time bounds is to
measure the execution time for a subset of the possible input stimuli [95]. This deter-
mines the set observed execution times from which an optimistically-estimated upper
bound τ̌(ui) is derived, as shown in Fig. 8.3. This optimistic estimate will, in general,
underestimate the worst-case execution time.

110 Cache-based multiprocessor architecture
d

is
tr

ib
u

ti
o

n
o

f
ti

m
es all execution times

observed execution times

optimistic
estimate

worst case

conservative
estimate

execution time
of task ui

τ̂(ui)τ(ui)τ̌(ui)

Figure 8.3: The definition of worst-case execution time and an optimistically-
estimated and conservatively-estimated upper bound on the worst-case execution
time.

It is also difficult to derive tight conservatively-estimated upper bounds on the num-
ber of processor stall cycles. Processors are stalled in case of a cache miss and con-
tinue to execute after a new cache block is fetched from the external memory. In order
to verify that the real-time requirements are met, we need to derive an upper bound
on the number of processor stall cycles during the execution of a task. The number
of processor stall cycles is determined by the number of cache misses and the cache
miss penalty [42]. A cache miss penalty is hard to predict because it depends on
the communication latency in the network, arbitration at the external memory port,
and the access time to the external memory. The communication latency depends on
the allocated bandwidth in the network, the state of the slot table, and the amount
of data that has to be communicated. The contention at the external memory port
depends on the number of requests, the burst size of each request, and the distances
between individual requests. The memory access time depends on the number of
cache blocks that need to be read and written. In case of a data cache miss, a cache
block can be modified which means that the current cache block has to be written
back to the external memory before receiving the new cache block. In case of access-
ing double data words it is possible that two (instead of one) cache blocks have to
be fetched, i.e. if a data word is split over two consecutive cache blocks. Therefore,
it is hard to derive a tight conservatively-estimated upper bound on the number of
processor stall cycles. Furthermore, there can be a large difference between the typi-
cal number of processor stall cycles and a conservatively-estimated upper bound on
them. Therefore, in the industry, often optimistically-estimated upper bounds on the
processor stall cycles are used in a multiprocessor system with external memory and
caches.

With the use of optimistically-estimated upper bounds on execution times and pro-
cessor stall cycles, we are not able to guarantee that real-time requirements are met
for all input stimuli. Therefore, optimistically-estimated bounds are not safe to be
used for the design of hard real-time constraint systems. However, for a specific set
of input stimuli, we are able to derive an optimistically-estimated upper-bound on
execution times and an optimistically-estimated number of cache misses. When the
external memory controller is able to guarantee upper bounds on the external mem-
ory accesses, then we are able to guarantee that real-time requirements are met for

Cache-miss reduction techniques 111

u2

fs

u1

fs

u4u3

no data loss
due to

back-pressureoverflow
buffer

potential potential
buffer

underrun

1 1 11 1 1

Figure 8.4: Optimistically-estimated execution-time bounds can lead to overflow at
the input buffer and underrun at the output buffer.

our set of input stimuli. In the implementation the task should be allowed to fin-
ish its execution even when the execution time exceeds the optimistically-estimated
execution-time bound. When other tasks have a lower execution time than expected
or when input and output buffers still have space and data available, respectively,
then hopefully no deadlines will be missed. Once our set of input stimuli is repre-
sentative, we are confident that the real-time constraints are not violated too often.
However, a deadline miss can occur for other input stimuli. Such a deadline miss
will not cause serious damage to the environment and will not jeopardise correct
system behaviour, because our jobs have firm real-time requirements instead of hard
real-time requirements. However, a fall-back mechanism is required which must be
activated in case a deadline miss does occur. An example of a fall-back mechanism
is to reuse a previous audio sample or display a previous video frame. Once the
deadline misses are sporadic, typically, they are hardly noticeable by the user.

A task only consumes a data container from its input buffer, in case a full container
is available in this buffer. Furthermore, a task only produces a data container to its
output buffer, if there is an empty container available in this buffer. The fact that a
task waits until sufficient data or space is available leads to an efficient mechanism
to prevent buffer overflow. We refer to this mechanism as back-pressure. The use
of back-pressure ensures that potentially non-conservative execution-time estimates
result in either overflow at the input buffer or underrun at the output buffer, as
depicted in Fig. 8.4. No data containers will be lost by communicating data over
internal buffers, because such loss of data is difficult to handle by tasks. Note that in
case of a composable architecture, a deadline miss of one job will have no affect on
the performance of another job [37].

8.3 Cache-miss reduction techniques

As the gap between processor and memory performance is increasing [42], efficient
use of the memory hierarchy is critical for achieving a high performance. Processors
are stalled in case of a cache miss and continue to execute after a new cache block is
fetched from the external memory.

The increasing number of processors and the increasing contention at the external-
memory port contribute to an increase of the cache-miss penalty. A reduced number
of cache misses can compensate for an increased miss penalty. Furthermore, it de-

112 Cache-based multiprocessor architecture

creases the average number of low-latency memory accesses and thereby reduces
the contention at the external memory and indirectly reduces the cache-miss penalty
for other processors in the multiprocessor system. The reduction of cache misses
and cache-miss penalty reduces the average number of processor stall cycles and in-
creases the system performance. Minimising the number of cache misses is seen as
an intermediate approach, because there is still low-latency communication between
the external memory and cache. Future work is explicit pre-fetching the task’s pro-
gram code and working data set into a local memory, instead of pre-fetching with a
cache, so that the external-memory communication becomes more latency tolerant.
In the ideal situation, tasks are pre-fetched in a local memory and then they are exe-
cuted from this memory. It is shown in [89] that the use of a local memory can have
a positive impact on the estimated upper bound on the worst-case execution time,
compared to the use of a cached memory.

There is a large body of literature on reducing the number of cache misses. First
of all the cache parameters (e.g. cache line size, cache size, and associativity) have
an impact of the number of cache misses [42]. Next, there are many compiler op-
timisation techniques for reducing the instruction and data cache misses [62]. The
compiler can reduce the number of instruction cache misses by placing functions
near to their callers in memory (assuming routines and callers are temporally close
to each other), and by removing infrequently executed code (such as error handling)
out of the main body of the code and straightening the code, so that in general, a
higher fraction of the instructions fetched into the instruction cache are actually exe-
cuted. For programs that manipulate large arrays of data, the number of data cache
misses can be reduced by loop transformations. Examples of loop transformations
are interchanging two nested loops, reversing the order in which loop’s iterations
are performed, and fusing two loop bodies together into one. Cache-miss reduc-
tion comes from a better use of the memory hierarchy. In this thesis, we apply a
cache-optimisation technique execution scaling [73], which is a transformation that
improves the use of the memory hierarchy by executing each task multiple times
before moving to the next task in a schedule. Execution scaling is related to loop
transformations that concentrate on optimising the use of data caches, but execution
scaling is focussed on transforming the scheduling of tasks (main loop), whereas
conventional compiler loop transformations are quite locally applied. That means, a
compiler typically does not change the order in which tasks are executed, e.g. due to
the dependencies between tasks.

In the context of Synchronous Data-Flow (SDF) graphs, which is a subset of CSDF
graphs [9], there is a large body of literature on scheduling these graphs to optimise
various metrics. The number of context-switches is minimised in [69]. First, they
use a single appearance schedule in which each task appears once and is activated
a minimum number of times. Second, they scale this schedule with constraints on
end-to-end latency and memory usage. The focus is a single processor with local
memory and the goal is to reduce context-switching overhead cost and maximise the
degree of vector processing opportunity. The number of cache misses are minimised
in [48, 73] in the context of a single processor. They store the input and output buffers
in a cached memory, creating the problem that the input and output data eventually
overflow the data cache, when task executions are scaled extensively.

This chapter focus on mapping of jobs onto a multiprocessor architecture instead

Cache-aware mapping of streaming jobs 113

1 11111 c2c1 c3
u1 u2 u3 u4

Figure 8.5: Streaming job.

of a single processor. The input and output buffers are stored in a memory region
that is not cached, in contrast with [48, 73]. Therefore, input and output data can-
not overflow the data cache, and execution scaling is only limited by end-to-end
latency and memory-usage constraints. FIFO buffers can be distributed between the
local and external memory allowing us to create large buffer capacities. Further-
more, we present a dataflow model from a job that is mapped onto a multiprocessor
system with a certain execution scaling factor m. From this model, we compute the
end-to-end latency and memory usage by making use of existing dataflow-analysis
techniques.

8.4 Cache-aware mapping of streaming jobs

Often, streaming jobs are rich with parallelism and regular communication patterns,
which can be exploited in our multiprocessor system. In this way tasks can be freely
combined and split to improve the system behaviour. For example, two small tasks
can be merged into one to reduce task’s switching overhead cost, or one big task
can be split into two to enable more task’s level parallelism. Obviously, splitting
a task into two can potentially lead to cyclic dependencies that can limit task level
parallelism.

For the class of streaming jobs, we apply the cache-optimisation technique execution
scaling, which is a transformation that improves instruction and data locality by ex-
ecuting each task multiple times before moving to the next task in a schedule. This
cache-aware optimisation technique is based on [73], but we target a multiprocessor
architecture instead of a single processor and use uncached local memories to store
the input and output data of a task. This allows us to scale the execution extensively
and still reduce data cache misses.

We map a general job onto a simplified multiprocessor to illustrate the trade-off be-
tween mapping of tasks to processors and the maximum allowed number of succes-
sive task executions. Mapping consists of binding tasks to processors and scheduling
tasks on a processor.

The general application is depicted in Fig. 8.5 and it has a minimum throughput con-
straint of 1/2T . The tasks u1 through u4 communicate via communication channel c1

through c3. The tasks are executed on two identical processors p1 and p2. The worst-
case execution time of each task is T time units. On each processor p, we execute two
tasks in a static-order schedule Sp. The static-order schedule Sm

p = (um
i , um

j) repre-
sents m executions of task ui followed by m executions of task uj . Our goal is to find
the mapping with the maximum execution scaling factor m that satisfies end-to-end
latency and memory constraints.

114 Cache-based multiprocessor architecture

T

(b)

(a)

u1 u2

u3 u4

p1 p2

u2 u3 u4

p1 p2

p1 u1 u1 u1 u1u1u3u3u3

p2 u2 u2 u2 u4 u4 u4 u2

m executions m executions

t

· · ·

· · ·

· · ·

· · ·

p1 u1 u1 u1 u2 u2 u2 u1 u1

p2 u3 u3 u4 u4 u4

u1 u2

u3

u2

m executions m executions m executions

t
u3

· · · · · ·

· · ·

· · ·

· · ·u1

T

Figure 8.6: Two mapping options (a) and (b).

In Fig. 8.6, we show two mapping options that satisfy the minimum throughput
constraint 1/2T . In mapping option (a), we execute tasks u1 and u2 on processor p1
and we execute tasks u3 and u4 on processor p2. This mapping option requires FIFO
buffer capacities of m, 2, and m data containers for communication channels c1, c2,
and c3, respectively. The end-to-end latency (from task u1 until u4) is equal to (2m +
2) · T time units. In mapping option (b), we execute tasks u1 and u3 on processor p1
and we execute tasks u2 and u4 on processor p2. This mapping option requires FIFO
buffer capacities of 2, m, and 2 data containers for communication channels c1, c2,
and c3, respectively. The end-to-end latency is equal to (m + 2) · T time units.

In mapping option (a), the end-to-end latency and FIFO buffer capacities grow with
a factor 2m whereas in mapping option (b) these grow with a factor m. Therefore,
we conclude that mapping option (b) allows a higher value of m for the same end-to-
end latency and memory constraint. Notice that mapping option (b) requires more
inter-tile communication channels than mapping option (a) (three instead of one),
but these inter-tile communication channels belong to the class of latency-tolerant
communication whereas cache refills belong to the class of low-latency communica-
tion. A higher value of m results in fewer cache misses and less low-latency memory
accesses. Therefore, the amount of low-latency external-memory accesses is lower
in mapping option (b) than in mapping option (a). Since the external memory is
typically a bottleneck in current and future platforms, mapping option (b) is a better
mapping option than mapping option (a).

This example shows that the mapping of tasks to processors influences the maximum
execution scaling factor m. We need tools to compute buffer capacities and end-
to-end latencies for exploring different mapping options with different execution
scaling factors.

8.4.1 Execution scaling

If a task is executed in a loop repeatedly, then, ideally the first iteration brings its
code into the cache and subsequent iterations execute from the cache, rather than
requiring it to be reloaded from memory each execution. Therefore, the first itera-
tion may incur overhead for fetching the instructions into the cache, but subsequent
iterations generally need not. Similarly, if a block of data is used repeatedly, it is

Cache-aware mapping of streaming jobs 115

(a) (b) (c)

Sp

log(cache size)

lo
g

(c
ac

h
e

m
is

se
s)

Sm
p

Figure 8.7: Cache misses as function of the cache size.

ideally fetched into the cache and accessed from there, again incurring the overhead
of reading it from main memory only on its first use.

Disadvantages of execution scaling are an increase of end-to-end latency and an in-
crease of FIFO buffer capacities. The end-to-end latency increases because we exe-
cute a task multiple times before moving to the next task, therefore, it takes more
time before the data is rippled through the job’s task graph. This problem is not of-
ten severe, as many streaming jobs can tolerate additional latency. The FIFO buffer
capacity increases, because when executing a task multiple times, we need sufficient
capacity to store the data communicated between the tasks. However, large FIFO
buffers can be distributed between the local and external memory and data can be
pre-fetched by a communication assist.

To explain execution scaling, we use the following terminology. Let Up be a set
of tasks executed on a processor p and Sp a static-order schedule with length N .
The schedule is denoted by Sp = (s1, s2, ..., sN) with si ∈ Up and 1 ≤ i ≤ N .
Scaling the execution with factor m means that each task si is executed m times
before moving to the next task in the static-order schedule. We refer to the new
schedule by Sm

p = (sm
1 , sm

2 , ..., sm
N).

When the cache size is small compared to the size of the set of tasks Up and the cache

size q increases, then the number of cache misses decreases with
√

q0/q, where q0 is
application dependent. If the cache size exceeds the size of the set of tasks Up, then
only compulsory misses [42] (cold start misses) remain, because in our architecture
the input and output buffers are stored in the local memory that is not cached. When
executing schedule Sp, the number of cache misses follow the line in Fig. 8.7 [27].
The compulsory misses are depicted by the flat line in Fig 8.7. The number of cache
misses can be reduced by executing task si multiple times before moving to the next
task s(i+1)%N in the schedule Sp, for 1 ≤ i ≤ N . After executing schedule Sm

p , the
number of cache misses follow the dashed line in Fig. 8.7.

The impact of execution scaling on the number of cache misses for the cache size
ranges (a), (b), and (c), in Fig. 8.7, are the following: (a) There is hardly any impact
on the number of cache misses, none of the tasks ui ∈ Up fit in the cache. (b) This
has the largest impact on the number of cache misses. Individual tasks ui ∈ Up fit in
the cache while the set of tasks Up does not fit. During the first execution of a task
we see compulsory misses, because the task is being discarded from the cache when
executing the other tasks in the schedule. During the following m − 1 executions,

116 Cache-based multiprocessor architecture

generally the task can execute from the cache, because the program code and state
data are already present in the cache. The average number of cache misses reduces
when increasing the scaling factor m. (c) There is no impact on the number of cache
misses. For both schedules Sp and Sm

p only compulsory misses remain, because the
individual tasks ui ∈ Up as well as the set of tasks Up fit in the cache.

The more tasks that are executed on the processor (i.e. the larger set of tasks Up), the
larger the size of range (b). For example, if two tasks with the same size are executed
on a processor, then for schedule Sm

p the flat line in Fig. 8.7 starts at half the cache size
compared to schedule Sp. When four tasks with the same size are executed on the
processor, then for schedule Sm

p the flat line starts at 1/4 of the cache size compared
to schedule Sp.

There are limitations to what extend we can increase the execution scaling factor m.
First, it is limited by the constraints on end-to-end latency and memory usage. Sec-
ond, if two tasks uk and ul are executed on one processor and there is a feedback
loop (cycle in the task graph) between these tasks, then the maximum value of m is
limited because of the cyclic dependency between tasks uk and ul. The latter can be
solved by executing tasks uk and ul on separate processors, but the tasks have to wait
for each other due to the cyclic dependency, affecting the processor performance.

The cache-miss model that is described in this section, holds for instruction and data
cache misses, because in our architecture the input and output buffers are stored in
uncached memory regions so that input and output data cannot overflow the data
cache.

8.4.2 Computation of the execution scaling factor

In this section, we describe a flow for mapping a job onto a multiprocessor archi-
tecture. We assume that each task ui ∈ Up fits in the instruction and data cache
and that the set of tasks Up does not fit. For this case we can apply execution scal-
ing to minimise the number of cache misses, as described in Section 8.4.1. The job’s
throughput and its dataflow-graph representation are an input to our flow. Further-
more, we need the end-to-end latency and memory constraints as an input. Dataflow
modelling and analysis techniques are used to derive the maximum execution scal-
ing factor m.

The design flow, which maximises the execution scaling factor m, is depicted in
Fig. 8.8. First, we bind the tasks of a job to the processors in our multiprocessor archi-
tecture. Second, we construct a static-order schedule Sp for each processor p. These
schedules are used as initial schedules. In the first iteration the execution scaling fac-
tor m is initialised to one, which represents the original schedule without execution
scaling. For the computed binding and static-order schedule Sm

p we can construct a
CSDF graph, as described in Section 4.3.2. For computing buffer capacities and end-
to-end latencies, we use the existing dataflow-analysis techniques [79, 91] that are
described in Section 4.4. The required buffer capacities can be computed from the
constructed dataflow model in combination with the given throughput constraint.
The end-to-end latency is computed after computing the buffer capacities. We repeat
this procedure for different execution scaling factors m until we find the maximum
value of m that satisfies the end-to-end latency and memory constraints.

Cache-aware mapping of streaming jobs 117

compute buffer capacities for given throughput

compute end-to-end latency

Y

constraints met?
latency and memory

are the

N

m = 1

m = m + 1

return (m − 1)

bind tasks to processors

construct static-order schedule

construct dataflow model

Figure 8.8: Flow to calculate the maximum execution scaling factor m.

Future extensions of the design flow are backtracking for different initial schedules
and different bindings of tasks to processors. Furthermore, in this thesis we use
only one execution scaling factor m for all processors. The exploration with different
scaling factors for different processors and a more efficient heuristic for increasing
factor m is also left for future work.

8.4.3 Example of execution scaling in a dataflow model

A job that is mapped onto a predictable multiprocessor and from which the tasks are
executed in static-order schedules, can be modelled in a CSDF model, as described in
Section 4.3.2. After applying the execution-scaling technique, the static-order sched-
ules are scaled with scaling factor m. The result is still a static-order schedule, there-
fore, the job can still be modelled into a CSDF graph. The final model will be used in
a design flow to minimise the number of cache misses by maximising the execution
scaling factor m and still satisfy the end-to-end latency and memory constraints.

We take the job in Fig. 8.5 as an example to model execution scaling in a CSDF graph.
We assume the binding and static-order schedule as defined by mapping option (b)
in Fig. 8.6. Furthermore, we assume an execution scaling factor m = 3 and a task
switching overhead cost C. Figure 8.9 shows the CSDF graph in which the sched-
ules S3

p1 = (u3
1, u

3
3) and S3

p2 = (u3
2, u

3
4) are modelled. The number of phases of the

actors v1 through v4 equal lcm(1, 3) = 3, as described in Section 4.3.2. The cyclo-
static execution times of actor v1 through v4 are 〈T + C, T, T 〉. The communication
channels c1 through c3 are modelled with the forward and backward edges between
the actors, which we refer to as the set Eb. The actors that model the communication
latencies, are omitted for simplicity reasons. The numbers beside the black dots indi-
cate the number of initial tokens that model the FIFO buffer capacities in the number
of containers. The input and output rates on every edge eb ∈ Eb equal 〈1, 1, 1〉. On
the remaining edges Es, which represent the scheduling dependencies, the input
rates γ(es) are 〈1, 0, 0〉 and the output rates π(es) are 〈0, 0, 1〉. The initial tokens on

118 Cache-based multiprocessor architecture

2 3 2

〈1,0,0〉 〈1,0,0〉

〈1,0,0〉 〈1,0,0〉

〈1,1,1〉〈1,1,1〉

1

1

〈1,1,1〉 〈1,1,1〉 〈1,1,1〉 〈1,1,1〉 〈1,1,1〉 〈1,1,1〉

〈1,1,1〉〈1,1,1〉〈1,1,1〉〈1,1,1〉

〈0,0,1〉 〈0,0,1〉

〈0,0,1〉 〈0,0,1〉

v1 v2 v3 v4

Figure 8.9: CSDF graph modelling the job in Fig. 8.5 with mapping option (b) in
Fig. 8.6 and execution scaling factor m = 3.

vSD

〈a〉〈1〉 〈1〉〈b〉 〈c〉

〈c〉=〈1920〉〈a〉=〈76875〉 〈b〉=〈027, 10, 022, 10, 023, 10〉

〈1〉

〈1〉 〈a〉 〈b〉 〈1〉 〈1〉〈c〉

vADC vCD vDAC

Figure 8.10: CSDF model of the digital radio receiver.

the edges (v3, v1) and (v4, v2) make sure that the actors v1 and v2 start firing, because
tasks u1 and u2 are the first tasks to execute in the schedule S3

p1 and S3
p2.

8.5 Case study: Digital-Radio-Mondiale receiver

In this section, we apply the cache miss reduction technique to our Digital-Radio-
Mondiale [78] receiver from infotainment-nucleus generation four. We measure the
impact of execution scaling on the number of cache misses for different cache sizes
and for different values of execution scaling factor m. Finally, we compute, by means
of our CSDF model, the maximum value m that still meets our end-to-end latency
and memory constraints.

The Digital-Radio-Mondiale job is first partitioned into a number of tasks. The CSDF
graph that represents our Digital-Radio-Mondiale job before mapping, is depicted
in Fig. 8.10. The graph consists of four actors that model an Analog-to-Digital Con-
verter (vADC), Channel Decoder (vCD), Source Decoder (vSD), and Digital-to-Analog
Converter (vDAC). The analog-to-digital and digital-to-analog converters are imple-
mented as separate tiles in our multiprocessor system. The tasks uCD and uSD are
executed on a TM2270 which belongs to the TriMedia family [67]. We refer to this
processor as the Digital Signal Processor (DSP). An external memory is applied be-
cause the memory footprints of task uCD and uSD are considered too expensive to
store in an on-chip memory. During our measurements, the static-order schedule
on the DSP processor is Sm

DSP = (um
CD, u

m
CD, u

m
CD, u

m
SD , um

CD, u
m
CD, u

m
SD). We used the pream-

ble P DSP = (u28
CD) before executing schedule Sm

DSP, so that there are ten containers on
the communication channel from task uCD to task uSD and task uSD is able to execute.
This preamble is a result of the production rate < 027, 10, 022, 10, 023, 10 > on the
edge (vCD, vSD).

The multiprocessor platform that is described in Section 8.1, is built in a SystemC [44]

Case study: Digital-Radio-Mondiale receiver 119

I$, m = 100
I$, m = 1

D$, m = 100
D$, m = 1

cache size

ca
ch

e
m

is
se

s

10245122561286432

1e+07

1e+06

100000

10000

1000

100

Figure 8.11: Instruction (I$) and data (D$) cache misses.

simulation environment. Tiles are modelled using cycle-accurately [21] models. The
network makes use of flit-accurate models, since the network packets have a granu-
larity of a flit (three words). The TriMedia tile makes use of an instruction set simulator
to model the DSP. The size and the initial content of memories, cache sizes, and cache
parameters for the instruction and data cache are configured at the start of the simu-
lation. The presented number of cache misses and execution times are measured in
this SystemC simulation environment.

For different instruction and data cache sizes, we measure the number of cache
misses for an execution scaling factor m = 1 and m = 100, as shown in Fig. 8.11.
Schedule S1

DSP represents the original code without execution scaling and schedule
S100

DSP represents a mapping where the execution scaling of tasks is extensively. The
number of cache misses is measured during hundred executions of schedule S1

DSP

and one execution of the schedule S100
DSP so that the total number of task executions is

equal in both cases. The cache misses in Fig. 8.11 follow the same pattern as the cache
misses in Fig. 8.7. The impact of execution scaling on the number of cache misses is
the largest for an instruction and data cache size of 128 KByte and 512 KByte, respec-
tively. For these cache sizes, the numbers of cache misses are reduced by a factor 22.7
and 8.5 for the instruction and data cache, respectively. For smaller cache sizes the
program code and private data of the individual tasks does not fit in the cache, hence
execution scaling has a small or no impact on the number of cache misses. When the
instruction and data cache sizes grow, both tasks uCD and uSD fit in the cache, there-
fore, the impact of execution scaling on the number of cache misses reduces again.

For an instruction and data cache size equal to 128 KByte and 512 KByte, respectively,
we measured the impact of the execution scaling factor m on the number of cache
misses, as shown by the plot in Fig. 8.12. The number of cache misses were measured
during 500 executions of task uCD and 200 executions of task uSD. From this log-
log plot we conclude that the number of instruction and data cache misses reduce
when increasing the execution scaling factor m. Ideally, the measured points form a
straight line in the log-log plot, because in the first iteration we observe cache misses

120 Cache-based multiprocessor architecture

I$=128KB
D$=512KB

m

ca
ch

e
m

is
se

s

100101

1e+06

100000

10000

1000

Figure 8.12: Cache misses versus scaling factor m.

but subsequent iterations we generally do not.

Finally, we compute the maximum value m that still meets our end-to-end latency
and memory constraints. The throughput of our receiver is determined by the analog-
to-digital and digital-to-analog converters, which have a sample rate of 48 kHz. Fur-
thermore, the end-to-end latency should be within reasonable bounds. In this thesis
we assume a maximum end-to-end latency of one second. The memory usage is
not critical because the FIFO buffers can be distributed between the local and ex-
ternal memory. The end-to-end latency is defined as the difference between finish-
ing the first execution of task uDAC and starting the first execution of task uADC. An
optimistically-estimated upper bound on the execution time plus processor stall cy-
cles of task uCD is 〈289627, 14071, 289622, 14071, 289623, 14071〉microseconds and an
optimistically-estimated upper bound on the task switching cost CCD is 631 micro-
seconds. An optimistically-estimated upper bound on the execution time plus pro-
cessor stall cycles of task uSD is 〈2202〉microseconds and an optimistically-estimated
upper bound on the task switching cost CSD is 595 microseconds. These estimates
are based on the DSP processor with a clock frequency of 300MHz, instruction cache
of 128 KByte, data cache of 512 KByte, and assumed cache miss penalties of 100 and
150 DSP clock cycles for an instruction and data cache miss, respectively. The exe-
cution times of tasks uADC and uDAC are equal to 1/48 kHz. With the design flow that is
described in Section 8.4, we compute the buffer capacities and end-to-end latency
for different execution scaling factors m. The end-to-end latencies are shown in Ta-
ble 8.1. The presented latencies include the latency of the preamble PDSP, which is
0.444 s. From Table 8.1, we conclude that execution scaling factor m = 11 still meets
the end-to-end latency constraint. The impact of execution scaling factor m = 11
on the number of instruction and data cache misses is 6.4 and 3.4, respectively. The
impact on the total number of cache misses (instruction plus data) is a factor 4.2.

The tools SDF3 and Hebe, which are described in Section 4.4, compute the buffer
capacities for the given throughput requirement of 48 kHz at the analog-to-digital
and digital-to-analog converter. The tool SDF3 uses an exact technique in computing
buffer capacities, which is based on explicit state-base exploration. The tool Hebe
uses an approximation technique in which sufficiently large buffer capacities are
computed. The sum of the individual buffer capacities is plotted in Fig. 8.13 for

Case study: Digital-Radio-Mondiale receiver 121

Latency Latency
m [s] m [s]
1 0.507 7 0.772
2 0.542 8 0.818
3 0.588 9 0.864
4 0.645 10 0.910
5 0.680 11 0.968
6 0.726 12 1.003

Table 8.1: End-to-end latency for different execution scaling factors m.

SDF3
Hebe

m

to
ta

l
b

u
ff

er
ca

p
ac

it
y

[K
B

y
te

]

12108642

400

350

300

250

200

150

100

50

0

Figure 8.13: Total required FIFO-buffer capacities.

both the exact and approximation technique, and for different values of m.

The runtime to analyse a dataflow graph depends on the complexity of the graph.
A measure of the complexity of a CSDF graph is the number of actors in the equiv-
alent SRDF graph. Table 8.2 shows the number of equivalent SRDF actors for every
execution scaling factor m and it shows the runtimes of the Hebe tool to analyse the
CSDF graphs. For the SDF3 tool, we were unable to measure the runtimes, because
we used an experimental version of the tool that required manual interaction in gen-
erating the Pareto points between throughput and buffer capacities. Therefore, the
total experiment took approximately four hours, which is higher than the runtimes
observed with the Hebe tool. However, for our case study, the approximation tech-
nique is overestimating the buffer requirements with approximately 60 %. A similar
trade-off has been seen in [39], where the approximation technique was compared
with an exact technique that is based on maximum-cycle-mean analysis.

For an execution scaling factor m = 11, the input and output buffers are distributed
between local and external memories. Therefore, additional bandwidth is required
for the external memory to store and pre-fetch input and output data, resulting in es-
timated additional net-bandwidth of 2.3 MByte/second. However, these external mem-
ory accesses are latency tolerant. Therefore, they have a limited impact on the miss
penalty of other processors in the multiprocessor system. The measured net band-
width for instruction cache refills, data cache refills , and writing modified cache

122 Cache-based multiprocessor architecture

m Equivalent SRDF actors runtime [seconds]
1,3,5 115305 0.19

2,6,10 230610 0.35
9 345915 0.54

4,12 461220 0.66
7 807135 1.13
8 922440 1.29

11 1268355 1.89

Table 8.2: Measured runtimes for computing the results with the dataflow-analysis
tool Hebe.

blocks back to the external memory, equals 7.6 MByte/second and 2.0 MByte/second for an
execution scaling factor m = 1 and m = 11, respectively. This is a low-latency band-
width requirement reduction of a factor 3.9.

Finally, we compare the metric ǫ (as defined in Eq. (7.8)) for the case with and without
execution scaling. This metric gives the number of processor stall cycles relative to
the execution times. This is done for both tasks on the DSP processor, therefore, we
refer to it as the processor utilisation. The reduction of the number of cache misses
will reduce the number of processor stall cycles. Additionally, cache miss reduction
to other processors in the multiprocessor system will potentially reduce the average
cache miss penalty, due to a reduction of contention at the external memory port.
When assuming cache-miss penalties of 100 and 150 DSP clock cycles for an instruc-
tion and data cache miss, respectively, then the processor utilisation is 88 % for the
original code (i.e. execution scaling factor m = 1) and 97 % for an execution scal-
ing factor m = 11. Therefore, the impact of execution scaling on the DSP processor
utilisation is 9 %.

For the experiments in this thesis, we adapted the size of the instruction and data
cache to show the impact of execution scaling on the number of cache misses. In
general, if cache sizes are fixed, we can change the task granularity so that each task
fits in the instruction and data cache, allowing us to use execution scaling to optimise
for cache misses.

8.6 Concluding remarks

This chapter described a cache-based multiprocessor architecture with a shared ex-
ternal memory. The external memory enables the execution of tasks from which
the memory footprint is considered to be too expensive to store on-chip. Compared
to the previous multiprocessor architectures, the use of a shared external memory,
instruction caches, and data caches increases the uncertainty in the temporal be-
haviour. Typically, at design time, it is hard to give conservatively-estimated upper
bounds on execution times and processor stall cycles that are tight. Therefore, in the
industry, often optimistically-estimated instead of conservatively-estimated upper
bounds are used. With the use of optimistically-estimated bounds, we are unable
to guarantee that throughput and end-to-end latency requirements are met for all

Concluding remarks 123

possible input stimuli. Therefore, a fall-back mechanism is required that need to be
activated in case of a deadline miss.

Furthermore, this chapter proposed a novel cache-aware mapping technique that re-
duces the number of instruction and data cache misses for streaming jobs in a multi-
processor system. It is shown that executing tasks multiple times in a loop is effective
if the individual tasks fit in the instruction and data cache, and the set of tasks exe-
cuted on a processor do not fit simultaneously. We have described how to model a
job mapped onto the multiprocessor and a specific execution scaling factor. With this
model we derived the maximum number of successive task executions, by making
use of existing dataflow-analysis techniques. For our industrial case study, which is
a Digital-Radio-Mondiale receiver, we reduced the number of cache misses by a fac-
tor 4.2. The reduction of the number of cache misses and the reduction of contention
at the external memory will improve the overall system performance. Future work
is on optimising the memory hierarchy by explicitly pre-fetching the task’s program
code and working data set into a local memory, instead of pre-fetching with a cache.

124 Cache-based multiprocessor architecture

Chapter 9

Concluding remarks

Car-infotainment platforms support a nucleus of common and stable jobs from the
application areas: radio, audio, navigation and video. Jobs are, for performance and
power efficiency reasons, executed on heterogeneous multiprocessor platforms. The
number of supported jobs is increasing rapidly and the number of possible use cases
is increasing exponentially with the number of jobs. Most of the jobs belong to the
class of streaming and they have firm real-time requirements, like throughput and
end-to-end latency.

To reduce the verification effort, we described an architecture for a predictable sys-
tem from which we can verify, at design time, that the job’s throughput and end-
to-end latency requirements are satisfied. This thesis described a multiprocessor
architecture for a firm real-time system that is optimised for infotainment-nucleus
generation four. This generation includes jobs from the application areas radio and
audio. Future generations will include jobs from the application areas navigation
and video, but this is seen as future work. Figure 9.1 gives an overview of the ar-
chitecture for infotainment-nucleus generation four. This architecture combines dif-
ferent flavours of tiles, so that it can execute all the jobs from infotainment-nucleus
generation four while the uncertainty in temporal behaviour is reduced.

Tile i is based on the tile-based multiprocessor architecture that is described in Chap-
ter 3. This architecture minimises resource sharing to come to a predictable temporal
behaviour. Tiles communicate via a network-on-chip, because it offers a structural
and scalable integration of our tiles into a working system. From a predictability
perspective, the network’s guaranteed communication services are a step forward in
mastering the verification effort, i.e. we can guarantee that data is delivered in time.
Processing tiles contain local memories and the processor is the only master who is
accessing its local memory, so that memory-access latencies are predictable. The ar-
chitecture makes use of local synchronisation, which means that all input and output
containers of a task are stored locally (i.e. stored in local memories and network-
interface buffers). The transport from one tile to another is implemented as a sep-
arate step, i.e. a copy action over the network using the services of the network.
Finally, tasks are executed on processors by means of static-order schedules.

The advantage of this architecture is that we can derive, at design time, tight conser-

126 Concluding remarks

M

$

Ma
NI
MaSl

M

P

CA

NI
SlSlMa

CTRL

LT LT LL

router network

NI

P

M

Sl

M

NI
Ma

P
tile i

tile j tile k tile
on-chip

Figure 9.1: Predictable multiprocessor architecture for infotainment-nucleus gener-
ation four.

vatively-estimated upper bounds on execution times and communication latencies,
and that the execution order of tasks is known. Therefore, the architecture enables
the derivation of tight bounds on throughput and end-to-end latency. However, this
architecture has also some limitations. First, static-order schedules cannot be used
in case the execution order between tasks cannot be derived at design time, which is
typically the case for tasks from multiple jobs. Second, the task’s program code and
the complete working data set must fit in the local memory of a tile and, in case of
inter-tile communication, the buffer in a network interface must be able to contain a
complete data container. So the size of tasks is limited and containers must be rather
small. Third, it is a hardware driven approach which lacks flexibility. For example,
the supported number of communication channels is coupled to the number of hard-
ware buffers in network interfaces. As a consequence, for tile i in Fig. 9.1, the target
domain is restricted to sample-based processing, like analog terrestrial radio and
audio post-processing. Tile i can also contain a hardware accelerator or peripheral
instead of a processor.

In Chapter 7, the multiprocessor architecture is extended with shared memories and
address-based communication, so that processors can access their local memories
and the memories in another tile. Data containers are stored in circular buffers that
are located in a shared memory and they are implemented by software. A processor
can suffer from stall cycles when accessing a shared memory while there is con-
tention at the memory port. Furthermore, multiple communication channels can
communicate data over the same network connection. The number of stall cycles
and the communication latencies can be bounded due to guaranteed bandwidth ser-
vices and bounded network-interface buffers. The circular buffers support checking
for available number of full and empty containers in a buffer, which enables the use
of run-time scheduling mechanisms. Therefore, processors can execute tasks from
multiple jobs with uncorrelated throughput requirements.

The uncertainty in temporal behaviour is increased compared to the first architec-
ture. Because a processor can suffer from stall cycles when accessing a shared mem-
ory, communication channels can influence each others communication latency, and

127

the execution order of tasks is unknown at design time. However, it increases the
flexibility, because the number of communication channels and the buffer capacities
can be adapted by changing the software. Therefore, for tile j in Fig. 9.1, the target
domain is block-based processing. However, this architecture still requires that pro-
gram code and data fits in the local memories of a processor. So the size of tasks is
limited. Examples of tasks that can be executed on tile j are the MP3-decoder and
acoustic-echo-cancellation tasks.

Chapter 8 extended the architecture with a shared external memory so that it can
store tasks from which the memory footprint is considered to be too expensive to
store on-chip. Level-one caches are used for instruction and data, to hide the large
memory-access latencies in accessing the external memory. Processors suffer from
stall cycles in case of a cache miss. The number of stall cycles depends on the num-
ber of cache misses and the cache-miss penalty. Compared to the previous multi-
processor architectures, the use of a shared external memory, instruction caches, and
data caches again increases the uncertainty in the temporal behaviour. Typically, it is
hard to give conservatively-estimated upper bounds on execution times and proces-
sor stall cycles that are tight (and useful). Therefore, in many parts of the industry,
often optimistically-estimated instead of conservatively-estimated upper bounds are
used. With the use of optimistically-estimated bounds, we are unable to guarantee
that throughput and end-to-end latency requirements are met for all possible input
stimuli. Therefore, a fall-back mechanism is required that need to be activated if a
deadline miss occurs.

A predictable architecture does not, per definition, add a large increase in cost.
It is shown in Chapter 5, after comparing the Æthereal network (which supports
guaranteed throughput connections) with the traditional interconnect from platform
SAF7780, that the chip area increased only a few percent and the round-trip la-
tency between the DSP and CRD increased only 2.7 %. After mapping our channel
equaliser job to the predictable architecture, the accuracy of the derived conserva-
tively-estimated throughput bound is within 10.1 %. Furthermore, in Chapter 8, we
described a cache-aware mapping technique to reduce the number of cache misses
for streaming applications. This approach is seen as an intermediate step. Future
work is optimising the memory hierarchy by explicitly pre-fetching the task’s pro-
gram code and working data set into a local memory, instead of pre-fetching with a
cache.

At design time, we need to guarantee that each job will meet its real-time require-
ments like throughput and end-to-end latency, in order to guarantee a high quality
for the user. This thesis uses dataflow modelling and analysis techniques, because
they allow cyclic data dependencies that influence the job’s performance. Cyclic
data dependencies can come from feedback loops (i.e. cycles in a job’s task graph),
back-pressure due to bounded buffers, or scheduling dependencies (e.g. in case of
static-order schedules). In this thesis, we limit us to jobs that can be modelled in a
cyclo-static dataflow graph [9]. Modelling jobs with input data dependent container
consumption and production behaviour, by making use of variable rate dataflow
graphs [93], is seen as future work. We have shown how to construct a dataflow
model from a job that is mapped onto our predictable multiprocessor platforms. It is
shown that tasks, which are executed in a static order, can be represented with one
actor despite the absence of the firing rule in the task’s implementation. After each

128 Concluding remarks

mapping step, additional constraints are added to the dataflow model. The final
dataflow model takes into account: computation of tasks, communication between
tasks, buffer capacities, and the scheduling of shared resources. The job’s through-
put and end-to-end latency bounds can be derived from a self-timed execution of the
dataflow graph, by making use of existing dataflow-analysis techniques.

The focus of this thesis is mapping of streaming jobs at design time. Adding a re-
source manager that can map streaming jobs at run time and one that can trade-off
quality levels of jobs, is seen as a challenge for future work.

Appendix A

Modelling static-order
schedules: Relation between
phase f ′and position q

This chapter is an extension on Section 4.3.2. It describes the relation between q and
f ′, as introduced in Section 4.3.2.

A task ui is modelled with actor vi and the cyclo-static behaviour of the task is repre-
sented by the θ(vi) distinct phases of actor vi. Furthermore, task ui occurs Ω(ui, Sp)
times in schedule Sp. The different positions of task ui in schedule Sp, are mod-
elled with different phases of Actor v′

i. The number of phases θ(v′
i) of actor v′

i is
equal to the least common multiple (lcm) of the number of occurrences of task ui in
schedule Sp and the number of phases of actor vi, i.e. θ(v′

i) = lcm(Ω(ui, Sp), θ(vi)).
Therefore, the number of phases θ(v′

i) is a multiple of the number of occurrences
Ω(ui, Sp), i.e. θ(v′

i) = l ·Ω(ui, Sp) with l ∈ N+ and l ≥ 1. This is illustrated in the first
column of Table A.1.

For phase f ′ of actor v′
i, which represents task ui, its firing is at a certain position q

in the static-order schedule Sp. The first firing of actor v′
i represents the first firing of

task ui in the static-order schedule Sp, therefore, it is at position φ(1, ui, Sp). The kth
firing of actor v′

i represents the kth firing of task ui in the static-order schedule Sp.
The static-order schedule is cyclo static and task ui occurs Ω(ui, Sp) times in the
schedule. Therefore, the kth firing of task ui is during the ⌊k/Ω(ui,Sp)⌋ iteration of
static-order schedule Sp. So it is at position:

φ(((k − 1)%Ω(ui, Sp)) + 1, ui, Sp) (A.1)

For phase f ′ of actor v′
i, its firing is at a position q in the static-order schedule Sp.

Now, we can compute position q as follows:

q = φ(((f ′ − 1)%Ω(ui, Sp)) + 1, ui, Sp) (A.2)

The relation between phase f ′ and position q is also illustrated in Table A.1.

130 Modelling static-order schedules: Relation between phase f ′and position q

f ′ ((f ′ − 1)%Ω(ui, Sp)) + 1 q
1 1 φ(1, ui, Sp)
2 2 φ(2, ui, Sp)
...

...
...

Ω(ui, Sp) Ω(ui, Sp) φ(Ω(ui, Sp), ui, Sp)
Ω(ui, Sp) + 1 1 φ(1, ui, Sp)
...

...
...

2 · Ω(ui, Sp) Ω(ui, Sp) φ(Ω(ui, Sp), ui, Sp)
2 · Ω(ui, Sp)+1 1 φ(1, ui, Sp)
...

...
...

l · Ω(ui, Sp) Ω(ui, Sp) φ(Ω(ui, Sp), ui, Sp)

Table A.1: Illustrating the relation between phase f ′ and position q.

Bibliography

[1] Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: A predictable SDRAM
memory controller. In: Proc. Int’l Conf. on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2007.

[2] ARM. AMBA AXI Protocol Specification, 2004.

[3] F. Bacelli, G. Cohen, G.J. Olsder, and J-P. Quadrat. Synchronization and Linearity. John
Wiley & Sons, Inc., 1992.

[4] Marco Bekooij, Rob Hoes, Orlando Moreira, Peter Poplavko, Milan Pastrnak, Bart Mes-
man, Jan David Mol, Sander Stuijk, Valentin Gheorghita, and Jef van Meerbergen.
Dataflow analysis for real-time embedded multiprocessor system design. In: Dynamic
and Robust Streaming in and between Connected Consumer-Electronic Devices, volume 3, pp.
81–108. Springer, 2005.

[5] Marco Bekooij, Arno Moonen, and Jef van Meerbergen. Predictable and composable
multiprocessor system design: a constructive approach. In: Proc. Bits & Chips Symposium
on Embedded Systems and Software, 2007.

[6] Albert Benveniste and Gerard Berry. The synchronous approach to reactive and real-time
systems. Proceedings of the IEEE, 79 (9): pp. 1270–1282, 1991.

[7] B. Bhattacharya and SS Bhattacharyya. Parameterized dataflow modeling of DSP sys-
tems. In: Proc. Int’l Conf. on Acoustics, Speech, and Signal Processing (ICASSP), 2000.

[8] H.S. Bhullar, R. van den Berg, J. Josten, and F. Zegers. Serving digital radio and audio
processing requirements with sea-of-DSPs for automotive applications the philips way.
In: Proc. Int’l Conf. on Global Signal Processing (GSPx), 2004.

[9] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-static dataflow. IEEE
Transactions on signal processing, 44 (2): pp. 397–408, February 1996.

[10] Shekhar Borkar, Pradeep Dubey, Kevin Kahn, David Kuck, Hans Mulder, Steve
Pawlowski, and Justin Rattner. Platform 2015: Intel Processor and Platform Evolution for
the Next Decade. Technical report, Intel, 2005.

[11] J.-Y. Le Boudec and P. Thiran. Min-plus and Max-plus System Theory, Chapter 4. Springer
Berlin / Heidelberg, 2001.

[12] Jan Willem van den Brand and Marco Bekooij. Streaming consistency: a model for ef-
ficient MPSoC design. In: Proc. Euromicro Symposium on Digital System Design (DSD),
2007.

[13] J.T. Buck. Scheduling Dynamic Dataflow Graphs with Bounded Memory using the Token Flow
Model. PhD thesis, University of California at Berkeley, 1993.

[14] G.C. Buttazzo. Hard Real-Time Computing Systems. Kluwer Academic Publishers, 1997.

[15] K. Chen, S. Malik, and D.I. August. Retargetable static timing analysis for embedded
software. In: Proc. Int’l Symposium on System Synthesis (ISSS), pp. 39–44, 2001.

132 Bibliography

[16] F. Commoner, A. Holt, S. Even, and A. Pnueli. Marked directed graphs. Journal of Com-
puter and System Sciences, 1971.

[17] R.L. Cruz. A calculus for netork delay, part ii: Network analysis. IEEE Transactions on
Information Theory, 37 (1): pp. 132–141, January 1991.

[18] D.E. Culler, J.P. Singh, and A. Gupta. Parallel computer architecture: a hardware/software
approach. Morgan Kaufmann Publishers, Inc., 1999.

[19] K. Denolf, M. Bekooij, J. Cockx, D. Verkest, and H. Corporaal. Exploiting the expressive-
ness of cyclo-static dataflow to model multimedia implementations. EURASIP Journal on
Advances in Signal Processing, pp. 1–14, 2007.

[20] Verband der Automobilindustrie. VDA specification for car hands-free terminals. Draft,
Version 1.5, Website: http://www.vdaqmc.de, December 2004.

[21] A. Donlin. Transaction level modeling: flows and use models. In: Proc. Int’l Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2004.

[22] Royal Philips Electronics. Speech recognition systems.
http://www.speechrecognition.philips.com.

[23] A.W.M. van den Enden. Efficiency in multirate and complex digital signal processing. PhD
thesis, Eindhoven University of Technology, 2001.

[24] Alberto Ferrari and Alberto Sangiovanni-Vincentelli. System design: Traditional con-
cepts and new paradigms. In: Proc. Int’l Conf. on Computer Design (ICCD), pp. 2–12, 1999.

[25] Om Prakash Gangwal, Andrei Rădulescu, Kees Goossens, Santiago González Pestana,
and Edwin Rijpkema. Building predictable systems on chip: An analysis of guaranteed
communication in the Æthereal network on chip. In: Peter van der Stok (Ed.), Dynamic
and Robust Streaming In And Between Connected Consumer-Electronics Devices, volume 3 of
Philips Research Book Series, Chapter 1, pp. 1–36. Springer, 2005.

[26] O.P. Gangwal, A. Nieuwland, and P. Lippens. A scalable and flexible data synchroniza-
tion scheme for embedded HW-SW shared-memory systems. In: Proc. Int’l Symposium
on System Synthesis (ISSS), pp. 1–6. ACM, 2001.

[27] J.D. Gee, M.D. Hill, D.N. Pnevmatikatos, and A.J. Smith. Cache performance of the
SPEC92 benchmark suite. Micro, IEEE, Aug. 1993.

[28] A.H. Ghamarian, M.C.W. Geilen, S. Stuijk, T. Basten, A.J.M. Moonen, M.J.G. Bekooij, B.D.
Theelen, and M.R. Mousavi. Throughput analysis of synchronous data flow graphs. In:
Proc. Int’l Conf. on Application of Concurrency to System Design (ACSD), 2006.

[29] A.H. Ghamarian, S. Stuijk, T. Basten, M.C.W. Geilen, and B.D. Theelen. Latency min-
imization for synchronous data flow graphs. In: Proc. Euromicro Symposium on Digital
System Design (DSD), 2007.

[30] Stefan Valentin Gheorghita. Dealing with Dynamism in Embedded System Design: Applica-
tion Scenarios. PhD thesis, Eindhoven University of Technology, 2007.

[31] Santiago González Pestana, Edwin Rijpkema, Andrei Rădulescu, Kees Goossens, and
Om Prakash Gangwal. Cost-performance trade-offs in networks on chip: A simulation-
based approach. In: Proc. Design, Automation and Test in Europe Conference and Exhibition
(DATE), pp. 764–769. IEEE Computer Society, Washington, DC, USA, February 2004.

[32] Kees Goossens, John Dielissen, Om Prakash Gangwal, Santiago González Pestana, An-
drei Rădulescu, and Edwin Rijpkema. A design flow for application-specific networks on
chip with guaranteed performance to accelerate SOC design and verification. In: Proc.
Design, Automation and Test in Europe Conference and Exhibition (DATE), pp. 1182–1187.
IEEE Computer Society, Washington, DC, USA, March 2005.

Bibliography 133

[33] Kees Goossens, John Dielissen, and Andrei Rădulescu. The Æthereal network on chip:
Concepts, architectures, and implementations. IEEE Design and Test of Computers, 22 (5):
pp. 414–421, Sept-Oct 2005.

[34] Kees Goossens, John Dielissen, Jef van Meerbergen, Peter Poplavko, Andrei Rădulescu,
Edwin Rijpkema, Erwin Waterlander, and Paul Wielage. Guaranteeing the quality of
services in networks on chip. In: Axel Jantsch and Hannu Tenhunen (Eds.), Networks on
Chip, Chapter 4, pp. 61–82. Kluwer Academic Publishers, Hingham, MA, USA, 2003.

[35] Andreas Hansson, Martijn Coenen, and Kees Goossens. Channel trees: Reducing la-
tency by sharing time slots in time-multiplexed networks on chip. In: Proc. Int’l Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2007.

[36] Andreas Hansson, Martijn Coenen, and Kees Goossens. Undisrupted quality-of-service
during reconfiguration of multiple applications in networks on chip. In: Proc. Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2007.

[37] Andreas Hansson, Kees Goossens, Marco Bekooij, and Jos Huisken. CoMPSoC: A tem-
plate for composable and predictable multi-processor system on chips. Transactions on
Design Automation of Electronic Systems (TODAES), ACM, 2009.

[38] Andreas Hansson, Kees Goossens, and Andrei Rădulescu. A unified approach to con-
strained mapping and routing on network-on-chip architectures. In: Proc. Int’l Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 75–80, September
2005.

[39] Andreas Hansson, Maarten Wiggers, Arno Moonen, Kees Goossens, and Marco Bekooij.
Applying dataflow analysis to dimension buffers for guaranteed performance in net-
works on chip. In: Proc. Int’l Symposium on Networks-on-Chip (NOCS), 2008.

[40] Andreas Hansson, Maarten Wiggers, Arno Moonen, Kees Goossens, and Marco Bekooij.
Enabling application-level performance guarantees in network-based systems on chip by
applying dataflow analysis. To appear in IET Computers & Digital Techniques, 2009.

[41] D. Harel and A. Pnueli. On the development of reactive systems. pp. 477–498, 1985.

[42] J.L. Hennessy and D.A. Patterson. Computer Architecture A quantitative Approach. Morgan
Kaufmann Publishers, 2003.

[43] S. Hosseine-Khayat and A.D. Bovopoulos. A simple and efficient bus management
scheme that supports continuous streams. ACM Transactions on Computer Systems, 13
(2): pp. 122–140, May 1995.

[44] http://www.systemc.org. Systemc community. Website.

[45] M. Jersak, K. Richter, and R. Ernst. Performance analysis of complex embedded systems.
International Journal of Embedded Systems, 1 (1–2): pp. 33–49, 2005.

[46] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R. Maeurer, and D. Shippy. Introduction
to the cell multiprocessor. IBM Journal of Research and Development, 49 (4): pp. 589–604,
2005.

[47] Kurt Keutzer, A. Richard Newton, Jan M. Rabaey, and Alberto Sangiovanni-Vincentelli.
System-level design: orthogonalization of concerns and platform-based design. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 19 (12): pp. 1523–
1543, 2000.

[48] Sanjeev Kohli. Cache aware scheduling for synchronous dataflow programs. Master’s thesis,
University of California, Berkeley, CA, 2004.

[49] H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications.
Kluwer Academic Publishers, 1997.

[50] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. In: Proceedings of the IEEE,
1987.

134 Bibliography

[51] E.A. Lee and T.M. Parks. Dataflow process networks. In: Proc. of the Institute of Electrical
and Electronics Engineers (IEEE), volume 83, pp. 773–799, 1995.

[52] P. Martin. A comparison of Network-on-Chip and Busses. Technical report, white paper
downloadable from the Arteris website (www.arteris.com), 2005.

[53] A. Maxiaguine, Y. Zhu, S. Chakraborty, and W.-F. Wong. Tuning SoC platforms for
multimedia processing: Identifying limits and tradeoffs. In: Proc. Int’l Conf. on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), 2004.

[54] A.J.M. Moonen. Modelling and simulation of guaranteed throughput channels of a hard real-
time multiprocessor system. Master’s thesis, Eindhoven University of Technology, 2004.

[55] A.J.M. Moonen, C. Bartels, M.J.G. Bekooij, R. van den Berg, H. Bhullar, K. Goossens,
P. Groeneveld, J. Huisken, and J. van Meerbergen. Comparison of an Aethereal network
on chip and traditional interconnects - two case studies. In: Giovanni De Micheli, Sal-
vador Mir, and Ricardo Reis (Eds.), VLSI-SoC: Research Trends in VLSI and Systems on Chip,
number 249 in International Federation for Information Processing (IFIP). Springer, 2007.
Fourteenth International Conference on Very Large Scale Integration of System on Chip
(VLSI-SoC2006), October 16-18, 2006, Nice, France.

[56] A.J.M. Moonen, M.J.G. Bekooij, R. van den Berg, and J. van Meerbergen. Decoupling
of computation and communication with a communication assist. In: Proc. Euromicro
Symposium on Digital System Design (DSD), 2007.

[57] A.J.M. Moonen, M.J.G. Bekooij, R. van den Berg, and J. van Meerbergen. Practical and
accurate throughput analysis with the cyclo static dataflow model. In: Proc. Int’l Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2007.

[58] A.J.M. Moonen, M.J.G. Bekooij, R. van den Berg, and J. van Meerbergen. Cache aware
mapping of streaming applications on a multiprocessor system-on-chip. In: Proc. Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2008.

[59] A.J.M. Moonen, M.J.G. Bekooij, and J. van Meerbergen. Timing analysis model for net-
work based multiprocessor systems. In: Proc. Workshop of Circuits, System and Signal
Processing (ProRISC), pp. 91–99, Veldhoven, The Netherlands, November 2004.

[60] A.J.M. Moonen, R. van den Berg, M.J.G. Bekooij, H. Bhullar, and J. van Meerbergen. A
multi-core architecture for in-car digital entertainment. In: Proc. Int’l Conf. on Global Signal
Processing (GSPx), Oct 2005.

[61] O.M. Moreira and M.J.G. Bekooij. Self-timed scheduling analysis for real-time applica-
tions. EURASIP Journal on Advances in Signal Processing, 2007: pp. 1–14, 2007.

[62] Steven S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann
Publishers, 1997.

[63] T. Parks. Bounded Scheduling of Process Networks. PhD thesis, University of California at
Berkeley, 1995.

[64] T.M. Parks, J.L. Pino, and E.A. Lee. A comparison of synchronous and cycle-static
dataflow. In: Proc. Conf. on Signals, Systems and Computers (Asilomar), 1995.

[65] Philips Semiconductors. Device Transaction Level (DTL) Protocol Specification. Version 2.2,
July 2002.

[66] Joseph Pompei. Audio spotlight. Holosonic Research Labs, http://www.holosonics.com,
1998.

[67] Selliah Rathnam and Gert Slavenburg. An architectural overview of the programmable
multimedia processor, TM-1. In: Proc. Int’l Computer Conf. (COMPCON), 1996.

Bibliography 135

[68] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerbergen, P. Wielage, and
E. Waterlander. Trade offs in the design of a router with both guaranteed and best-
effort services for networks on chip. IEE Proceedings Computers and Digital Techniques,
September 2003.

[69] Sebastian Ritz, Matthias Pankert, Vojin Zivojnovic, and Heinrich Meyr. Optimum vec-
torization of scalable synchronous dataflow graphs. In: Proc. Int’l Conf. on Application-
Specific Array Processors, 1993.

[70] Andrei Rădulescu, John Dielissen, Santiago González Pestana, Om Prakash Gangwal,
Edwin Rijpkema, Paul Wielage, and Kees Goossens. An efficient on-chip network in-
terface offering guaranteed services, shared-memory abstraction, and flexible network
programming. IEEE Transactions on CAD of Integrated Circuits and Systems, 24 (1): pp.
4–17, January 2005.

[71] Quino Sandifort, Lucien Breems, Carel Dijkmans, and Han Schuurmans. IF-to-digital
converter for FM/AM/IBOC radio. In: Proceedings European Conference on Solid-State
Circuits (ESSCIRC), pp. 707–710, 2003.

[72] R. Schiffelers, R. van den Berg, J. van den Braak, H.S. Bhullar, S. de Feber, and M. Klaar-
water. Epics7B - a learn and mean concept. In: Proc. Int’l Conf. on Global Signal Processing
(GSPx), 2003.

[73] Janis Sermulins, William Thies, Rodric Rabbah, and Saman Amarasinghe. Cache aware
optimization of stream programs. In: Proc. Int’l Conf. on Languages, Compilers, and Tools
for Embedded Systems (LCTES), 2005.

[74] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and A. Sangiovanni-
Vincentelli. Addressing the system-on-a-chip interconnect woes through
communication-based design. In: Proc. Design Automation Conference (DAC), pp.
667–672, June 2001.

[75] A Sriram and E.A. Lee. Determining the order of processor transactions in statically
scheduled multiprocessors. Journal of VLSI Signal Processing, 1997.

[76] S. Sriram and S.S. Bhattacharyya. Embedded Multiprocessors: Scheduling and Synchroniza-
tion. Marcel Dekker, Inc, 2000.

[77] D. Stiliadis and A. Varma. Latency-rate servers: a general model for analysis of traffic
scheduling algorithms. IEEE/ACM Transactions on Networking, 6 (5): pp. 611–624, October
1998.

[78] J. Stott. Digital radio mondiale: key technical features. Electronics & communication engi-
neering journal, pp. 4–14, February 2002.

[79] S. Stuijk, M.C.W. Geilen, and T. Basten. Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs. In: Proc. Design Automation
Conference (DAC), 2006.

[80] S. Stuijk, M.C.W. Geilen, and T. Basten. SDF3: SDF For Free. In: Proc. Int’l Conf. on
Application of Concurrency to System Design (ACSD), 2006.

[81] S. Stuijk, M.C.W. Geilen, and T. Basten. Throughput-buffering trade-off exploration for
cyclo-static and synchronous dataflow graphs. IEEE Transactions on Computers, 57 (10):
pp. 1331–1345, 2008.

[82] Sander Stuijk. Predictable Mapping of Streaming Applications on Multiprocessors. PhD thesis,
Eindhoven University of Technology, 2007.

[83] A.S. Tanenbaum. Computer Networks. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[84] J. Teich and S.S. Bhattacharyya. Analysis of dataflow programs with interval-limited
data-rates. The Journal of VLSI Signal Processing, 43 (2): pp. 247–258, 2006.

136 Bibliography

[85] B.D. Theelen, O. Florescu, M.C.W. Geilen, J. Huang, P.H.A. van der Putten, and J.P.M.
Voeten. Software/hardware engineering with the parallel object-oriented specification
langauge. In: Proc. Int’l Conf. on Formal Methods and Models for Codesign (MEMOCODE),
2007.

[86] B.D. Theelen, M.C.W. Geilen, T. Basten, J.P.M. Voeten, S.V. Gheorghita, and S. Stuijk. A
scenario-aware data flow model for combined long-run average and worst-case perfor-
mance analysis. In: Proc. Int’l Conf. on Formal Methods and Models for Codesign (MEM-
OCODE), 2006.

[87] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard real-
time systems. In: Proc. Int’l Symposium on Circuits and Systems (ISCAS), May 2000.

[88] R. van den Berg and H.S. Bhullar. Next generation philips digital car radios, based on a
sea-of-DSP concept. In: Proc. Int’l Conf. on Global Signal Processing (GSPx), 2004.

[89] L. Wehmeyer and P. Marwedel. Influence of memory hierarchies on predictability for
time constrained embedded software. In: Proc. Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2005.

[90] P Wielage, E J Marinissen, and C Wouters. Design and DFT of a high-speed area-efficient
embedded asynchronous FIFO. In: Proc. Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2007.

[91] M. H. Wiggers, M. Bekooij, and G. J. M. Smit. Efficient computation of buffer capacities
for cyclo-static dataflow graphs. In: Proc. Design Automation Conference (DAC), 2007.

[92] M. H. Wiggers, M. Bekooij, and G. J. M. Smit. Modelling runtime arbitration by latency-
rate servers in dataflow graphs. In: Proc. Int’l Workshop on Software and Compilers for
Embedded Systems (SCOPES), 2007.

[93] M. H. Wiggers, M. Bekooij, and G. J. M. Smit. Computation of buffer capacities for
throughput constrained and data dependent inter-task communication. In: Proc. Design,
Automation and Test in Europe Conference and Exhibition (DATE), 2008.

[94] M. H. Wiggers, M. J. G. Bekooij, P. G. Jansen, and G. J. M. Smit. Efficient computation of
buffer capacities for cyclo-static real-time systems with back-pressure. In: Proc. Sympo-
sium on Real-Time and Embedded Technology and Applications (RTAS), 2007.

[95] Reinhard Wilhelm et. al. The worst-case execution time problem overview of methods
and survey of tools. ACM Transactions on Embedded Computing Systems, 7 (3), 2008.

[96] Selwyn Wright. anti-sound / silence machine. University of Huddersfield, UK.

Curriculum Vitae

Arno Moonen was born in Weert, The Netherlands, on September 2nd, 1978. After the
primary school, he finished the study electrical engineering at the Lower Technical
School (LTS) in Weert and at the Middle Technical School (MTS) in Roermond in
1994 and 1998, respectively. In 2001 he received the Bachelor Degree in electrical
engineering at Fontys University of Applied Sciences in Eindhoven.

For his Master Degree, he studied at the Eindhoven University of Technology. The
topic of his M.Sc. thesis was on modelling of communication channels in hard real-
time multiprocessor systems. This research was conducted at Philips Research in
Eindhoven.

After receiving his Master Degree in 2004, he started as a Ph.D. research assistant
within the Electronic Systems group at Eindhoven University of Technology. His
research was in cooperation with NXP Research in Eindhoven and NXP Semicon-
ductors, Business-Line Car Infotainment, in Nijmegen. It has led among others to
several publications and this thesis.

Since July 2008, Arno is working within the digital design group at Prodrive B.V. in
Son, The Netherlands.

138 Bibliography

List of publications

First author

[58] A.J.M. Moonen, M.J.G. Bekooij, R. van den Berg, and J. van Meerbergen. Cache
Aware Mapping of Streaming Applications on a Multiprocessor System-on-
Chip. In Proc. Design, Automation and Test in Europe Conference and Exhibition
(DATE), 2008.

[55] A.J.M. Moonen, C. Bartels, M.J.G. Bekooij, R. van den Berg, H. Bhullar, K. Goossens,
P. Groeneveld, J. Huisken, and J. van Meerbergen. Comparison of the Æthe-
real Network on Chip and Traditional Interconnects - Two Case Studies. In
International Federation for Information Processing (IFIP), Volume 249, VLSI-
SoC: Research Trends in VLSI and Systems on Chip, Boston: Springer, 2007.

[57] A.J.M. Moonen, M.J.G. Bekooij, R. van den Berg, and J. van Meerbergen. Practi-
cal and Accurate Throughput Analysis with the Cyclo Static Dataflow Model.
In Proc. Int’l Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2007.

[56] A.J.M. Moonen, M.J.G. Bekooij, R. van den Berg, and J. van Meerbergen. De-
coupling of Computation and Communication with a Communication Assist.
In Proc. Euromicro Symposium on Digital System Design (DSD), 2007.

[60] A.J.M. Moonen, R. van den Berg, M.J.G. Bekooij, H. Bhullar, and J. van Meer-
bergen. A Multi-Core Architecture for In-Car Digital Entertainment. In Proc.
Int’l Conf. on Global Signal Processing (GSPx), 2005.

[59] A.J.M. Moonen, M.J.G. Bekooij, and J. van Meerbergen. Timing analysis model
for network based multiprocessor systems. In Proc. Workshop of Circuits, System
and Signal Processing (ProRISC), 2004.

[54] A.J.M. Moonen. Modelling and simulation of guaranteed throughput channels of
a hard real-time multiprocessor system. Master thesis, Eindhoven University of
Technology, 2004.

Co-author

[40] A. Hansson, M. Wiggers, A.J.M. Moonen, K. Goossens, and M.J.G. Bekooij. En-
abling Application-Level Performance Guarantees in Network-Based Systems
on Chip by Applying Dataflow Analysis. To appear in IET Computers & Digital
Techniques, 2009.

140 Bibliography

[39] A. Hansson, M. Wiggers, A.J.M. Moonen, K. Goossens, and M.J.G. Bekooij. Ap-
plying Dataflow Analysis to Dimension Buffers for Guaranteed Performance
in Networks on Chip. In Proc. Int’l Symposium on Networks-on-Chip (NOCS),
2008.

[5] M.J.G. Bekooij, A.J.M. Moonen, and J. van Meerbergen. Predictable and compos-
able multiprocessor system design: a constructive approach. In Proc. Bits &
Chips Symposium on Embedded Systems and Software, 2007.

[28] A.H. Ghamarian, M.C.W. Geilen, S. Stuijk, T. Basten, A.J.M. Moonen, M.J.G.
Bekooij, B.D. Theelen, and M.R. Mousavi. Throughput Analysis of Synchronous
Data Flow Graphs. In Proc. Int’l Conf. on Application of Concurrency to System
Design (ACSD), 2006.

	Abstract
	Contents
	1. Introduction
	2. Streaming application domain
	3. Multiprocessor architecture for streaming applications
	4. Analysing real-time performance
	5. Case study: comparison of Æthereal network andinterconnects in SAF7780
	6. Case study: analysing real-time performance of a channelequaliser
	7. Shared memory architecture and remote write accesses
	8. Cache-based multiprocessor architecture
	9. Concluding remarks
	Appendices

