257 research outputs found

    Stability under dwell time constraints: Discretization revisited

    Full text link
    We decide the stability and compute the Lyapunov exponent of continuous-time linear switching systems with a guaranteed dwell time. The main result asserts that the discretization method with step size~hh approximates the Lyapunov exponent with the precision~Ch2C\,h^2, where~CC is a constant. Let us stress that without the dwell time assumption, the approximation rate is known to be linear in~hh. Moreover, for every system, the constant~CC can be explicitly evaluated. In turn, the discretized system can be treated by computing the Markovian joint spectral radius of a certain system on a graph. This gives the value of the Lyapunov exponent with a high accuracy. The method is efficient for dimensions up to, approximately, ten; for positive systems, the dimensions can be much higher, up to several hundreds

    Application of the Lyapunov Exponent Based on Current Vibration Control Parameter (CVC) in Control of an Industrial Robot.

    Get PDF
    Controlling dynamics of industrial robots is one of the most important and complicated tasks in robotics. In some works[3,7], there are algorithms of the manipulators steering with flexible joints or arms. However, introducing them to calculation of trajectory results in complicated equations and a longer time of counting. On the other hand, works [4,5,6]show that improvement of the tool path is possible thanks to the previousidentification of the robot errors and their compensation. This text covers application of Largest Lyapunov Exponent (LLE) as a criterion for control performance assessment (CPA) in a real control system. The main task is to find a simple and effective method to search for the best configuration of a controller in a control system. In this context, CPA criterion based on calculation of LLE by means of a new method [9–11] is presented in the article

    Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

    Full text link
    We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of graphs called path-complete graphs, and show that any such graph gives rise to a method for proving stability of the switched system. This enables us to derive several asymptotically tight hierarchies of semidefinite programming relaxations that unify and generalize many existing techniques such as common quadratic, common sum of squares, and maximum/minimum-of-quadratics Lyapunov functions. We compare the quality of approximation obtained by certain classes of path-complete graphs including a family of dual graphs and all path-complete graphs with two nodes on an alphabet of two matrices. We provide approximation guarantees for several families of path-complete graphs, such as the De Bruijn graphs, establishing as a byproduct a constructive converse Lyapunov theorem for maximum/minimum-of-quadratics Lyapunov functions.Comment: To appear in SIAM Journal on Control and Optimization. Version 2 has gone through two major rounds of revision. In particular, a section on the performance of our algorithm on application-motivated problems has been added and a more comprehensive literature review is presente

    Spectral quantities associated to pairs of matrices are hard, when not impossible, to compute and to approximate

    Get PDF
    Caption title.Includes bibliographical references (p. 9-11).Supported by the ARO. DAAL-03-92-G-0115John N. Tsitsiklis, Vincent D. Blondel

    On feedback stabilization of linear switched systems via switching signal control

    Full text link
    Motivated by recent applications in control theory, we study the feedback stabilizability of switched systems, where one is allowed to chose the switching signal as a function of x(t)x(t) in order to stabilize the system. We propose new algorithms and analyze several mathematical features of the problem which were unnoticed up to now, to our knowledge. We prove complexity results, (in-)equivalence between various notions of stabilizability, existence of Lyapunov functions, and provide a case study for a paradigmatic example introduced by Stanford and Urbano.Comment: 19 pages, 3 figure

    Optimization of the Control System Parameters with Use of the New Simple Method of the Largest Lyapunov Exponent Estimation.

    Get PDF
    This text covers application of Largest Lapunov Exponent (LLE) as a criterion for control performance assessment (CPA) in a simulated control system. The main task is to find a simple and effective method to search for the best configuration of a controller in a control system. In this context, CPA criterion based on calculation of LLE by means of a new method [3] is compared to classical CPA criteria used in control engineering [1]. Introduction contains references to previous publications on Lyapunov stability. Later on, description of classical criteria for CPA along with formulae is presented. Significance of LLE in control systems is explained. Moreover, new efficient formula for calculation of LLE [3] is shown. In the second part simulation of the control system used for experiment is described. The next part contains results of the simulation in which typical criteria for CPA are compared with criterion based on value of LLE. In the last part results of the experiment are summed up and conclusions are drawn
    corecore