4 research outputs found

    Random 2-cell embeddings of multistars

    Full text link
    Random 2-cell embeddings of a given graph GG are obtained by choosing a random local rotation around every vertex. We analyze the expected number of faces, E[FG]\mathbb{E}[F_G], of such an embedding which is equivalent to studying its average genus. So far, tight results are known for two families called monopoles and dipoles. We extend the dipole result to a more general family called multistars, i.e., loopless multigraphs in which there is a vertex incident with all the edges. In particular, we show that the expected number of faces of every multistar with nn nonleaf edges lies in an interval of length 2/(n+1)2/(n + 1) centered at the expected number of faces of an nn-edge dipole. This allows us to derive bounds on E[FG]\mathbb{E}[F_G] for any given graph GG in terms of vertex degrees. We conjecture that E[FG]O(n)\mathbb{E}[F_G ] \le O(n) for any simple nn-vertex graph GG.Comment: 15 pages, 2 figures. Accepted to European conference on combinatorics, graph theory and applications (EUROCOMB) 202

    Random Embeddings of Graphs: The Expected Number of Faces in Most Graphs is Logarithmic

    Full text link
    A random 2-cell embedding of a connected graph GG in some orientable surface is obtained by choosing a random local rotation around each vertex. Under this setup, the number of faces or the genus of the corresponding 2-cell embedding becomes a random variable. Random embeddings of two particular graph classes -- those of a bouquet of nn loops and those of nn parallel edges connecting two vertices -- have been extensively studied and are well-understood. However, little is known about more general graphs despite their important connections with central problems in mainstream mathematics and in theoretical physics (see [Lando & Zvonkin, Springer 2004]). There are also tight connections with problems in computing (random generation, approximation algorithms). The results of this paper, in particular, explain why Monte Carlo methods (see, e.g., [Gross & Tucker, Ann. NY Acad. Sci 1979] and [Gross & Rieper, JGT 1991]) cannot work for approximating the minimum genus of graphs. In his breakthrough work ([Stahl, JCTB 1991] and a series of other papers), Stahl developed the foundation of "random topological graph theory". Most of his results have been unsurpassed until today. In our work, we analyze the expected number of faces of random embeddings (equivalently, the average genus) of a graph GG. It was very recently shown [Campion Loth & Mohar, arXiv 2022] that for any graph GG, the expected number of faces is at most linear. We show that the actual expected number of faces is usually much smaller. In particular, we prove the following results: 1) 12lnn2<E[F(Kn)]3.65lnn\frac{1}{2}\ln n - 2 < \mathbb{E}[F(K_n)] \le 3.65\ln n, for nn sufficiently large. This greatly improves Stahl's n+lnnn+\ln n upper bound for this case. 2) For random models B(n,Δ)B(n,\Delta) containing only graphs, whose maximum degree is at most Δ\Delta, we show that the expected number of faces is Θ(lnn)\Theta(\ln n).Comment: 44 pages, 6 figure

    EUROCOMB 21 Book of extended abstracts

    Get PDF
    corecore