58 research outputs found

    Ordinal HyperPlane Loss

    Get PDF
    This research presents the development of a new framework for analyzing ordered class data, commonly called “ordinal class” data. The focus of the work is the development of classifiers (predictive models) that predict classes from available data. Ratings scales, medical classification scales, socio-economic scales, meaningful groupings of continuous data, facial emotional intensity and facial age estimation are examples of ordinal data for which data scientists may be asked to develop predictive classifiers. It is possible to treat ordinal classification like any other classification problem that has more than two classes. Specifying a model with this strategy does not fully utilize the ordering information of classes. Alternatively, the researcher may choose to treat the ordered classes as though they are continuous values. This strategy imposes a strong assumption that the real “distance” between two adjacent classes is equal to the distance between two other adjacent classes (e.g., a rating of ‘0’ versus ‘1,’ on an 11-point scale is the same distance as a ‘9’ versus a ‘10’). For Deep Neural Networks (DNNs), the problem of predicting k ordinal classes is typically addressed by performing k-1 binary classifications. These models may be estimated within a single DNN and require an evaluation strategy to determine the class prediction. Another common option is to treat ordinal classes as continuous values for regression and then adjust the cutoff points that represent class boundaries that differentiate one class from another. This research reviews a novel loss function called Ordinal Hyperplane Loss (OHPL) that is particularly designed for data with ordinal classes. OHPLnet has been demonstrated to be a significant advancement in predicting ordinal classes for industry standard structured datasets. The loss function also enables deep learning techniques to be applied to the ordinal classification problem of unstructured data. By minimizing OHPL, a deep neural network learns to map data to an optimal space in which the distance between points and their class centroids are minimized while a nontrivial ordering relationship among classes are maintained. The research reported in this document advances OHPL loss, from a minimally viable loss function, to a more complete deep learning methodology. New analysis strategies were developed and tested that improve model performance as well as algorithm consistency in developing classification models. In the applications chapters, a new algorithm variant is introduced that enables OHPLall to be used when large data records cause a severe limitation on batch size when developing a related Deep Neural Network

    Simulated annealing least squares twin support vector machine (SA-LSTSVM) for pattern classification

    Get PDF
    Least squares twin support vector machine (LSTSVM) is a relatively new version of support vector machine (SVM) based on non-parallel twin hyperplanes. Although, LSTSVM is an extremely efficient and fast algorithm for binary classification, its parameters depend on the nature of the problem. Problem dependent parameters make the process of tuning the algorithm with best values for parameters very difficult, which affects the accuracy of the algorithm. Simulated annealing (SA) is a random search technique proposed to find the global minimum of a cost function. It works by emulating the process where a metal slowly cooled so that its structure finally “freezes”. This freezing point happens at a minimum energy configuration. The goal of this paper is to improve the accuracy of the LSTSVMalgorithmby hybridizing it with simulated anneaing. Our research to date suggests that this improvement on the LSTSVM is made for the first time in this paper. Experimental results on several benchmark datasets demonstrate that the accuracy of the proposed algorithm is very promising when compared to other classification methods in the literature. In addition, computational time analysis of the algorithm showed the practicality of the proposed algorithm where the computational time of the algorithm falls between LSTSVM and SVM

    Support matrix machine: A review

    Full text link
    Support vector machine (SVM) is one of the most studied paradigms in the realm of machine learning for classification and regression problems. It relies on vectorized input data. However, a significant portion of the real-world data exists in matrix format, which is given as input to SVM by reshaping the matrices into vectors. The process of reshaping disrupts the spatial correlations inherent in the matrix data. Also, converting matrices into vectors results in input data with a high dimensionality, which introduces significant computational complexity. To overcome these issues in classifying matrix input data, support matrix machine (SMM) is proposed. It represents one of the emerging methodologies tailored for handling matrix input data. The SMM method preserves the structural information of the matrix data by using the spectral elastic net property which is a combination of the nuclear norm and Frobenius norm. This article provides the first in-depth analysis of the development of the SMM model, which can be used as a thorough summary by both novices and experts. We discuss numerous SMM variants, such as robust, sparse, class imbalance, and multi-class classification models. We also analyze the applications of the SMM model and conclude the article by outlining potential future research avenues and possibilities that may motivate academics to advance the SMM algorithm

    Literature Review on Big Data Analytics Methods

    Get PDF
    Companies and industries are faced with a huge amount of raw data, which have information and knowledge in their hidden layer. Also, the format, size, variety, and velocity of generated data bring complexity for industries to apply them in an efficient and effective way. So, complexity in data analysis and interpretation incline organizations to deploy advanced tools and techniques to overcome the difficulties of managing raw data. Big data analytics is the advanced method that has the capability for managing data. It deploys machine learning techniques and deep learning methods to benefit from gathered data. In this research, the methods of both ML and DL have been discussed, and an ML/DL deployment model for IOT data has been proposed

    Dimensional reduction applied to an intelligent model for boost converter switching operation

    Get PDF
    The dimensional reduction algorithms are applied to a hybrid intelligent model that distinguishes the switching operating mode of a boost converter. Thus, the boost converter has been analyzed and both operating mode are explained, distinguishing between Hard-switching and Soft-switching modes. Then, the dataset is created out of the data obtained from simulation of the real circuit and the hybrid intelligent classification model is implemented. Finally, the dimensional reduction of the input variables is carried out and the results are compared. As result, the proposed model with the applied dimensional reduced dataset is able to distinguish between the HS and SS operating modes with high accuracy.ERDF -European Regional Development Fund(ED431G 2019/01
    corecore