
Building Support Vector Machines in the Context of Regularised Least
Squares

Peng, J., Rafferty, K., & Ferguson, S. (2016). Building Support Vector Machines in the Context of Regularised
Least Squares. Neurocomputing, 1. DOI: 10.1016/j.neucom.2016.03.087

Published in:
Neurocomputing

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-
nc-nd/4.0/ which permits distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Queen's University Research Portal

https://core.ac.uk/display/74404484?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/building-support-vector-machines-in-the-context-of-regularised-least-squares(e4655c2f-5f31-4084-a4b9-9754d0b77abb).html

Author’s Accepted Manuscript

Building support vector machines in the context of
regularised least squares

Jian-Xun Peng, Karen Rafferty, Stuart Ferguson

PII: S0925-2312(16)30575-6
DOI: http://dx.doi.org/10.1016/j.neucom.2016.03.087
Reference: NEUCOM17187

To appear in: Neurocomputing

Received date: 19 August 2015
Revised date: 8 March 2016
Accepted date: 21 March 2016

Cite this article as: Jian-Xun Peng, Karen Rafferty and Stuart Ferguson, Building
support vector machines in the context of regularised least squares,
Neurocomputing, http://dx.doi.org/10.1016/j.neucom.2016.03.087

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com/locate/neucom

http://www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.03.087
http://dx.doi.org/10.1016/j.neucom.2016.03.087

Building Support Vector Machines in the Context of

Regularised Least Squares

Jian-Xun Peng, Karen Rafferty, Stuart Ferguson

The School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Ashby Building, Stranmillis Road, Belfast BT9 5AH, UK

Abstract

This paper formulates a linear kernel support vector machine (SVM) as a reg-

ularized least-squares (RLS) problem. By defining a set of indicator variables

of the errors, the solution to the RLS problem is represented as an equation

that relates the error vector to the indicator variables. Through partitioning

the training set, the SVM weights and bias are expressed analytically using

the support vectors. It is also shown how this approach naturally extends

to Sums with nonlinear kernels whilst avoiding the need to make use of La-

grange multipliers and duality theory. A fast iterative solution algorithm

based on Cholesky decomposition with permutation of the support vectors is

suggested as a solution method. The properties of our SVM formulation are

analyzed and compared with standard SVMs using a simple example that

can be illustrated graphically. The correctness and behavior of our solution

(merely derived in the primal context of RLS) is demonstrated using a set of

public benchmarking problems for both linear and nonlinear SVMs.

Keywords: Data classification, support vector machines, regularized least

squares, fast training algorithm, Cholesky decomposition

Preprint submitted to Neurocomputing June 7, 2016

1. Introduction

Support vector machines (SVM) are a set of empirical data modeling

techniques that is firmly grounded in the framework of VC theory [1], a spe-

cific approach to computational learning theory. The SVM was originally

developed for binary data classification problems. Conceptually, a machine

maps the input space to a so-called feature space through some non-linear

mapping chosen a priori. The feature space is of higher dimension than the

input space. In this feature space a linear decision surface is constructed

based on the structural risk minimization (SRM) principal: an upper bound

on the expected risk (the expectation of the test error for a machine on an

unseen point) is minimized by maximization of the margin [2]. The margin

refers to the distance between the two parallel hyperplanes that bound the

training points of the two classes, respectively. The hyperplane that lies mid-

way between the two bounding hyperplanes is called the decision hyperplane,

and the training points that determine the two parallel bounding hyperplanes

are referred to as the support vectors.

It was shown [2] that if the training vectors are separated without errors

by an optimal hyperplane the expectation value of the probability of com-

mitting an error on a test example is bounded above by the ratio between

the expectation value of the number of support vectors and the number of

training vectors. Particularly, this bound does not explicitly contain the di-

mensionality of the feature space. It follows from this bound, that if the

optimal hyperplane can be constructed from a small number of support vec-

tors, relative to the training set size, then the generalization ability will be

high even in an infinite dimensional feature space.

2

This optimal margin algorithm is generalized by [3] to non-separable data

sets by the introduction of non-negative slack variables as a measurement of

the misclassification errors in the statement of the optimization problem, and

by using a structural objective function with a penalty term on the training

errors. For a sufficiently large penalty parameter C, the hyperplane is chosen

so that it minimizes the number of errors on the training set, while the rest

of then training points are separated with maximal margin; if the training

data can be separated without errors, then the hyperplane obtained in the

procedure coincides with the optimal margin hyperplane.

Compared with traditional methods employed by conventional neural net-

works, the SRM principle has been shown to be superior because it not only

minimizes the error on the training data [4], but also minimizes the capabil-

ity of the model [5]. This equips SVM with a greater ability to generalize,

which is the goal in statistical learning. Experimental studies have demon-

strated the competitive performance of SVMs in a range of application fields

[6][7][8][9].

Typically, constructing a SVM involves a constrained quadratic (or con-

vex) optimization problem. In the majority of textbooks and articles intro-

ducing SVMs, instead of directly solving the primal problem, a dual of the

problem is formulated using Lagrange multipliers [10][3][11][12]. There are

two reasons for doing this [10]: a) duality theory provides a convenient way

to deal with the constraints, and b) with the Lagrange reformulation of the

problem, the training data will only appear (in the actual training and test

phases) in the form of dot products between input vectors. This is a crucial

property which allows us to generalize SVMs to the nonlinear case. In addi-

3

tion, most popular algorithms and existing toolboxes (for example, interior

point method [13] and the sequential minimal optimization (SMO) [14] algo-

rithm) formulate their solution in the dual. This gives the strong impression

that this is the only possible way to construct a SVM, particularly for SVMs

with nonlinear kernels. There has aslo been quite a lot of interest in study-

ing systems that have particular properties, for example [15]’s work on sparse

learning- and [16]’s sparse least squares. However, there has been increasing

interest in constructing SVMs directly in the primal. [17] formulated a pri-

mal least-square version of the SVM, which had been originally proposed in

the dual [18]. [19] applied conjugate gradient schemes to logistic regression

for data classification. [20] proposed an algorithm for linear L1-SVMs that

works by approximating the L1-loss function by a sequence of smooth modi-

fied logistic regression loss functions, this is followed by sequentially solving

smooth primal modified logistic regression problems using nonlinear conju-

gate gradient methods. However, all the inequality constraints are replaced

by equality constraints in least squares SVM. A particular drawback of that

method is its inability to exploit the sparsity property of SVMs in which only

the support vectors determine the final solution. To overcome this shortage

of the least squares SVM, a pruning method was proposed based on the fact

that support values reveal the relative importance of each of the training

data points, where a small number of points, e.g., 5% in the training set [21],

that have the smallest values in the sorted support vector values spectrum,

are removed in each training loop, until some user-defined performance index

degrades.

Some promising primal algorithms have also been studied for standard

4

linear SVMs [22][23][24], and implemented in toolboxes for linear SVMs, for

example, in LIBLINEAR [25]. All of these algorithms are based on the fact

that, for linear SVM, the feature space is the same as the input space, the

normal vector to the separating hyperplane is thus explicitly presented in the

linear SVM. However, for SVMs with nonlinear kernels, where some nonlinear

map from the input space to the feature space exists, the map itself and many

of its properties are unknown [26]. What is known is, a given kernel function

involving a dot product in the feature space, a concept introduced by [27],

thus the normal is not explicitly present in the final discriminative function

of nonlinear SVMs again. This makes it difficult to apply primal solution

algorithms in nonlinear kernel cases.

[28] showed that when the goal is to find an approximate solution, primal

optimization is superior because it is focused on minimizing what we are

directly interested in: the primal objective function. Motivated by this, a

Newton method is applied to the primal problem for both linear and non-

linear cases. For the nonlinear case, the optimal solution to the SVM is

expressed by a linear combination of the kernel functions evaluated in all the

training points based on the representer theorem of [29]. Given this linear

combination solution, and using the representing property of the kernel, the

problem is thus converted into one of optimizing the linear coefficients in the

combination. This requires the full kernel matrix to be invertible (positive

definite), given that the full kernel matrix is a symmetric matrix formed by

pair-wise point inner products or kernel evaluations on the full training set.

An iterative technique, IRWLS [30] [31], based on re-weighed least squares

produced the fastest algorithm of its time. The IRWLS approach was sub-

5

sequently proved to converge to the SVM solution [32], Since then there has

been continued interest in primal and iterative least squares approaches to

finding the best SVM solution [33] [34] [35]. Recently, particularly in the

machine learning arena, recursive and weighted least squares has attracted

interest in the context of twin support vectors, [36] provide an overview or

nonparallel hyperplane algorithms and [37] and [38] illustrate recent work

on twin support vector machines.

The goal of this paper is to show how a primal SVM algorithm can be

constructed that removes some of the caveats on other formulations of primal

solutions. Most notably: we use kernel matrices that need only be positive

semi-definite and suggest a procedure that overcomes the lack-of-sparseness

shortage of least squares SVMs. Those points without violations are not

presented in the solution. Our SVM in this paper is different from the least

squares SVM [18] in that our SVM is derived merely in the context of RLS,

while the least squares SVM was originally derived in the dual. Secondly, the

least squares SVM replaces the inequality constraints with equalities while

the solution proposed in this paper minimizes the violations without that

replacement.

Our formulation begins as a regularized least squares (RLS) problem as

was done by [28]. LSSVM only needs to solve a linear equation set rather

than dealing with a quadratic programming problem, by using equality con-

straints instead of inequality ones and a least squares loss function, which

greatly reduces the computational complexity [39]. The training set is parti-

tioned into two parts: the one includes those points that are bounded by the

two class-bounding-hyperplanes, and another one includes those points that

6

are unbounded. The later is referred to as the support vector set hereafter.

Accordingly, the error vector is partitioned into two parts. The main con-

tribution of this paper is the derivation of the optimal solution with the use

of only some matrix operations for the partitioned error vector and merely

in the context of the RLS. Instead of giving the linear combination form of

the optimal solution in advance as was done by [28], our optimal solution is

derived and can be expressed as a linear combination of the inner products of

the support vectors with an input point. This approach not only overcomes

the drawback of the invertability requirement of the kernel matrix, but also

makes it natural to generalize to cases of SVMs with nonlinear kernels.

In Section 2, an SVM with linear kernel is formulated as an unconstrained

minimization problem with the L2-loss.

The main details of our approach is presented in sections 3 and 4. Firstlty

section 3 expresses the solution to the problem as an equation with regard

to the error vector and a set of indicator variables. Then In section 4, it

is shown how the error vector may be partitioned into two parts and how

the solution to the linear SVM is expressed as a linear combination of inner

products of the support vectors with an input point. How the solution may

be generalized to cases of nonlinear kernels is discussed in comparison with

standard SVM. In section 5 an iterative algorithm to solve our SVM formu-

lation is described, this is based on Cholesky decomposition, (an approach

also favored by [40]) and offers the potential to contribute when it comes to

develop a wider population of problems with nonlinear kernels. The accuracy

of the method is examined in Section 6 by comparing the algorithm’s output

with that from some existing SVM software packages. Section 7 draws a few

7

conclusions about our algorithm.

2. Linear Support Vector Machines

This section briefly reviews the SVM and introduces the notation to be

used in the paper.

Given a data set of N point-label pairs {(xk, yk), k = 1, . . . , N}, referred
to as the training set, each point is represented in a row vector xk ∈ �1×n, to

which a label either +1 or −1, i.e., yk ∈ {+1,−1}, is attached. This means

the points (or patterns in some context) fall into two categories. This is a

binary data classification problem, where a classifier is to be found that can

separate the points into two classes.

For general SVMs with nonlinear kernels, there is some nonlinear map

from the input space to a high-dimensional feature space where the two par-

allel bounding hyperplanes and the separating hyperplane are defined. In the

following we formulate the linear SVM for simplicity, but all the derivations

and conclusions are applicable to nonlinear cases by replacing x← f = φ(x),

where φ denotes some nonlinear map from the input space to a feature space,

x an input point and f = φ(x) the corresponding map of x in the feature

space.

The standard SVM with a linear kernel is given by the following primary

quadratic program [3][28]:

min
w,b

J(w, b) = wTw + C
N∑
k=1

ξpk (1)

8

subject to ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xkw + b ≥ +1− ξk, if yk = +1

xkw + b ≤ −1 + ξk, if yk = −1
ξk ≥ 0, k = 1, · · · , N

(2)

which is equivalent to

yk(xkw + b) ≥ 1− ξk, ξk ≥ 0, k = 1, · · · , N (3)

where C > 0 is referred to as the penalty parameter ; p is either 1 [10] or

2 [23], J(w, b) is the objective function to be minimized. This quadratic

program defines two parallel hyperplanes in �n that have the same normal

vector w (a n-dimensional column vector). The two hyperplanes are given by

xkw + b = ±1. The distance between the two parallel hyperplanes, referred

to as the margin, is given by 2(wTw)−1/2. Hyperplane xkw+ b = +1 bounds

the points of class yk = +1, while xkw + b = −1 bounds the points of class

yk = −1. For a linearly inseparable training data set, points that lie on

the wrong side of the hyperplane bounding their category are called violates

of the points. The magnitude of these violations ξk, ξk ≥ 0, referred to

as the violations in this paper, are penalized in the objective function. The

violation is zero for any point of the training set that satisfies yk(xkw+b) ≥ 1,

meaning that this point is within the category boundary. The problem (1) is

thus solved by maximizing the margin while minimize the loss (the sum of the

violations or squared violations). The penalty parameter C is predefined to

balance between the magnitude of then margin and the number of violations.

The hyperplane:

f(x) = xw + b = 0 (4)

9

lying midway between the two bounding hyperplanes is the (linear) separat-

ing boundary, which is the discriminant function of the classifier for predict-

ing the category y of an unseen points x ∈ �1×n as follows:

y =

⎧⎨
⎩ +1, if f(x) > 0

−1, if f(x) < 0
(5)

where f(x) is the discriminant function of the SVM classifier given in (4).

The quadratic program (1) with constraints (3) can be reformulated as

the following minimization problem without constraints [25][28]:

min
w,b

J(w, b) = wTw + C
N∑
k=1

L(w, b;xk, yk) (6)

where the loss function L is properly chosen such that points that violate

the constraints in (3) are penalized according to the violations, while points

that satisfy the constraints are ignored. The two most commonly used loss

functions are L(w, b;xk, yk) = max(0, 1− yk(xw + b)) and

L(w, b;xk, yk) = max(0, 1− yk(xw + b))2, (7)

respectively referred to as L1-loss (hinged loss) and L2-loss functions [25],

respectively, where and hereafter function max(·, ·) values the maximal one

of the two input arguments to the function.

In this paper the L2-loss function is used, which is first-order continuously

differentiable with respect to w ∈ �n and b ∈ �. In this case, the problem

specified by (6) is to minimize the sum of the squared violations of the train-

ing points with a regularization term wTw. In this sense, problem (6) is thus

viewed as a regularized least-squares (RLS) problem, That is: Generalize the

objective (6) as
∑n

i=1 |wi|pw +C
∑N

k=1 L(w, b;xk, yk)
ph with pw, ph > 0, which

10

is convex only when pw, ph ≥ 1. We known that small ph encourages sparsity

in the dual variables (less kernels in the model), while small pw encourages

sparsity in the primal variables (less features involved in the model). Based

on this fact, [41] proposed pw < 1 for the purpose of feature selection (for

smallest number of inputs to SVM), while standard SVM use ph = 1 (the

smallest value for convex problems) for sparse models (for smallest number

support points/kernels).

Most methods in the literature that solve this unconstrained optimization

problem or its dual are based on quadratic programming [42] or Newton

search [43]. As the objective function (6) for the L2-SVM loss function is

obviously convex with regard to [w, b] ∈ �n+1, there is a unique optimal

solution to w and b that minimizes the objective function. Thus a vanishing

gradient becomes a sufficient condition for a feasible solution to be globally

optimal and [32] proves that iterative lease squares conveges to an SVM for

hinge loss constraints.

Based on this, the solution for a linear SVM is derived in section 3, it

is then extended to allow for nonlinear generalizations in section 4. These

two sections constitute the details of our formulation. Later sections provide

details of an iterative algorithm that uses the new formulation and some

basic verifications of their efficacy, sec the following section.

3. Solution in the Primal

For the L2-SVM loss function (7), the first-order partial derivatives of

J(w, b) in (6) with respect to w and b are given by

∂J

∂w
= 2w + 2CPTS(by +Pw − 1) (8)

11

and
∂J

∂b
= 2CyTS(by +Pw − 1) (9)

where 1 denotes a column of N unity elements, y = [y1, · · · , yN]T , P =

[pT
1 , · · · ,pT

N]
T with pk = ykxk or simply P = diag(y)X. In this paper,

diag(·) denotes the diagonal matrix formed with a given vector as the diag-

onal elements, and for convenience, the N n-dimensional training patterns

are collected in an N × n matrix X.

The matrix

S=diag(s), s = [s1, · · · , sN]T (10)

sk=s(ek) =

⎧⎨
⎩0, ek ≤ 0

1, ek > 0

ek=1− yk(xkw + b), k = 1, · · · , N

arises during the calculation of the partial derivatives (8) and (9) where

the first-order differential of function L(e) = max(0, e)2 with regard to e is

involved, given by

dL(e)

de
= 2s(e)e =

⎧⎨
⎩ 0, e ≤ 0

2e, e > 0
(11)

Here ek = 1 − yk(xkw + b) is referred to as the error for point xk, the

indicator variables, sk, k = 1, · · · , N , identify which points give rise to the

support vectors.

Equating the first-order partial derivatives (8) and (9), to zero results in

solutions for w and b:⎧⎨
⎩ w = C(I+ CPTSBP)−1PTSB1

b = yTS(1−Pw)
yTSy

(12)

12

where (and hereafter) I denotes an identity matrix of proper size and

B = I− yyTS

yTSy
(13)

It is easy to verify that BB = B,B is therefore idempotent, i.e. the eigen-

values of B are either 1 or zero. Noting that the second term is formed by

left-multiplying a column vector to a row vector, which has one unity eigen-

value and N − 1 zero eigenvalues, B is of rank N − 1 and has N − 1 unity

and one zero eigenvalues. Vector y is obviously the eigenvector for the zero

eigenvalue.

Noting the solution to b given in (12), define

e = 1−Pw − by = B(1−Pw)

= B[I− CP(I+ CPTSBP)−1PTSB]1

= [I− CBP(I+ CPTSBP)−1PTS]B1 (14)

which is the column of the errors for the N training points, and referred to

as the error vector. Using the matrix identity (15), which is a special case of

the Woodbury matrix identity (19) [44]

(I+AB)−1 = I−A(I+BA)−1B (15)

we have

e = B(I+ CPPTSB)−11 = (I+ CBPPTS)−1B1 (16)

Note that the errors ek = 1−yk(xkw+b) here are different from the violations

ξk defined in (3), the relationship between them is ξk = skek, k = 1, · · · , N .

If a classifier’s discriminant function, f(x) = xw+ b, does not require the

13

bias term b, i.e. b = 0, simply let B = I, to give⎧⎨
⎩ w = C(I+ CPTSP)−1PTS1

b = 0
(17)

with the corresponding error vector

e = (I+ CPPTS)−11 (18)

Equation (16) represents a nonlinear relationship between e and the in-

dicators S, where P = diag(y)X is given by the training data set standing

constant; S = S(e) and B = B(e) are matrix functions of e, which are

defined in (10) and (13), respectively.

As mentioned before, the objective function (6) is convex with regard

to [w, b] ∈ �n+1, thus there is a unique optimal solution to w and b. The

sufficient and necessary condition for the global optimal solution is that the

gradient vanishes, or equivalently, the equality (16) holds. Solving the opti-

mization problem (6) is therefore equivalent to finding the solution to (16).

This is further explained as follows.

Eequation (12) can be viewed as the solution to w and b for the reg-

ularized least-squares problem (6) with the L2-SVM loss for the subset of

training points {(xk, yk), k = 1, · · · , N, s(ek) = 1}. These points lie outside

the bounding hyperplanes (i.e. xkw + b < 1 for yk = +1 and xkw + b > −1
for yk = −1) and their violations ek = 1− yk(xkw + b) > 0 are penalized by

Ce2k in the L2-SVM loss function (7). These training points determining the

solution are referred to as the support vectors. The other points with sk = 0

lie within the bounding hyperplanes satisfying ek = 1 − yk(xkw + b) ≤ 0

and have no violation to be penalized in the objective function (6), therefore

14

they need to be ignored. This is accomplished by multiplication with the

corresponding sk = 0 in S, which achieves the same effect. As a result, the

solution for S in equation (16) indicates a set of support vectors.

To this end, it should be noted that the definition (10) of the indicator

function s(e) at e = 0 (either 0 or 1) does not influence the first-order dif-

ferential of L(e) given in (11). It is demonstrated in the following that this

definition has also no influence on the solutions of (12) and (16).

For case of the classifier without bias, we first investigate how the normal

vector to the separating hyperplane w varies as the indicator for a point

changes, say sk for the k’th point pk = ykxk. Let Ik denote the matrix with

only the k’th diagonal entry being unity while all others being zero. Suppose

a change δk in sk is made. Substituting PT (S + δkIk)P = PTSP + δkp
T
kpk

into (17), and applying the Woodbury matrix identity [45]

(A+BCD)−1 = A−1 −A−1B(DA−1B+C−1)−1DA−1 (19)

results in the variation in w as δk, which is given by:

w(sk + δk) = C(I+ CPTSP+ Cδkp
T
kpk)

−1(PTS1+ δkp
T
k)

= w(sk) +
δkek(sk)(I+ CPTSP)−1pT

k

δkpk(I+ CPTSP)−1pT
k + 1

(20)

The corresponding error vector is given by

e(sk + δk) =1−Pw(sk + δk) = e(sk)− δkek(sk)P(I+ CPTSP)−1pT
k

δkpk(I+ CPTSP)−1pT
k + 1

(21)

Now suppose ek(sk) = 0, then any change δk to sk will not affect either

the normal vector w of the separating hyperplane or the error vector e, thus

15

the objective function value will also be unaffected. This also reveals that the

solution with L2-loss is more sensitive to outliers far away from the separating

hyperplanes than to those near to the separating hyperplanes. In contrast,

algorithms with L1-loss are more sensitive to outliers near to the separating

hyperplanes than to those faraway from them.

In cases where the classifier has a bias, simply augment P and the identity

I in (17) as follows,

P← [y,P], I←
⎡
⎣ 0 0T

0 I

⎤
⎦ (22)

(where the bold type face 0 denotes a column of n 0’s, the zero diagonal

element in the augmented identity matrix means no regularization is applied

on the bias b in problem (6)) and one can conclude the same results.

Particularly, the bias will also be unaffected by δk in case ek(sk) = 0,

given that the augmented normal vector here includes the bias b as its first

component.

4. Nonlinear Generalization

As previously discussed, existing literature on SVMs gives an impression

that one has to represent the SVM in the dual in order to introduce non-

linear kernels (i.e., nonlinear generalization). This section reformulates the

previous solution for linear SVM by partitioning the training points and cor-

respondingly the error vector. This reformulation gives us a novel way to

generalize the linear SVM to nonlinear cases. This generalization may be

done merely in the primal RLS context.

16

4.1. Existing Nonlinear Generalizations

In standard SVM theory, the principal way of introducing a nonlinear

kernel is to solve the dual problem of (1), where the classifier (4) can be ex-

pressed for any input x ∈ �1×n as a linear combination of the inner products

of all the support vectors with the input x, possibly with an additional bias

b as follows:

f(x) = b+

nSV∑
i=1

yiθi〈x,xi〉 (23)

where xi ∈ �1×n, i = 1, · · · , nSV denote a set of nSV support vectors with

associated labels yi, respectively, 〈x,xi〉 the inner product of x and xi. For

linear SVMs, 〈x,xi〉 = xxT
i , noting that input patterns are represented in row

vectors in this paper. If a nonlinear kernel is defined on the n-dimensional

input space, for example, the well-known Gaussian kernel:

〈x,xi〉 = exp(− 1

2σ2
(x− xi)(x− xi)

T) (24)

we can replace all the inner product expressions of input-pairs from the input

space for linear SVMs with the defined nonlinear kernel (which represents the

inner product of the maps of the input-pairs in the feature space), resulting

in SVMs of nonlinear kernels.

For convenience, the inner products of two sets of points from the input

space are denoted hereafter as follows:

〈U,V〉 =

⎡
⎢⎢⎢⎣
〈u1,v1〉 · · · 〈u1,vv〉

...
...

〈uu,v1〉 · · · 〈uu,vv〉

⎤
⎥⎥⎥⎦ (25)

where U and V represent u and v n-dimensional points, respectively, ui and

17

vi denote the i’th rows (a point) of U and V, respectively. For linear kernel,

one has the inner product 〈U,V〉 = UVT .

Much interest has been directed to solving SVMs in the primal, so avoid-

ing the need to apply any duality theory. However these only apply to the

linear case and solve for the normal vector of the separating hyperplane (w),

while unable to work out the α’s of standard SVMs, for example [25][28]. To

extend linear SVM to cases with a nonlinear kernel in the primal, [28] applied

in advance a representation theorem, which implies that the optimal normal

vector to the separating hyperplane in the higher dimensional feature space

can be written as a linear combination of kernel functions that are evaluated

at the training samples. By substituting this linear combination for w, the

original RLS problem with regard to w and b is thus converted into an opti-

mization problem to obtain coefficients for the linear combination of kernels.

This optimization problem takes the form similar to (55) for all the training

points (instead of the support vector set XS in (55)) for the L2-SVM loss.

To confirm the uniqueness of the solution, the Hessian matrix 2(CK+KSK)

must be invertible, the full kernel matrix K = 〈X,X〉 is therefore assumed

invertible.

4.2. Assumptions

In our approach, nonlinear kernels are introduced into SVMs without the

need to call on duality theory, or by specifying in advance that the optimal

normal vector is a linear combination form of kernel function evaluations.

Instead, all derivations are matrix operations in the primal context of RLS.

Formula that relate the bias b and the coefficient vector θ = [θ1, · · · , θnSV
]T of

the generalized SVM (23) with the support vectors and the associated labels

18

are obtained, where all support vectors are present only in the inner product

form. As a result, it is natural to generalize all the steps in our method into

cases for nonlinear SVMs simply by replacing the inner products of point-

pairs from the input space with a nonlinear kernel function defined in the

input space.

For this generalization, it is assumed that:

a) the full kernel matrix is symmetrical, and

b) any principal minor of the full kernel matrix is positive semi-definite.

These assumptions guarantee that the RLS problem has a unique optimal

solution. In addition, matrix I + CPPTSB is invertible in (16) for any

S when the full inner product matrix PPT is replaced in a general form

diag(y)〈X,X〉diag(y) for nonlinear kernels. This will be discussed again

later. However the full kernel matrix 〈X,X〉 is not required to be invertible

in this paper. For an obvious example, the linear case, 〈X,X〉 = XXT , which

is of dimension N×N , is definitely not invertible if n < N , but it is certainly

positive semi-definite.

In this paper, we use θ’s to denote the coefficients of the SVM in (23) to

distinguish it from the well known α’s (the Lagrange multipliers) in the liter-

ature. The θ’s here are defined in the primal RLS context of problem (6) and

have no restrictions on their values. The α’s for standard SVMs are intro-

duced in the dual problem as the Lagrange multipliers and are constrained

by 0 ≤ αi ≤ C. Furthermore, only nSV (the number of support vectors,

although this is of course not known in advance) θ’s are defined here, while

N (the number of training points) α’s are defined with each applied to a

constraint in standard SVM (3).

19

4.3. Partition of the Training Patterns

Suppose a set of support vectors (SVs) is identified, partition matrix P

and y into two parts respectively as follows:

P =

⎡
⎣ PS

P0

⎤
⎦ , y =

⎡
⎣ yS

y0

⎤
⎦ (26)

where PS and yS denote the rows of P and y, respectively, corresponding to

the SVs (for sk = 1), while P0 and y0 collect all the other rows (for sk = 0).

Then we have the following block matrix:

B = I− 1

nSV

⎡
⎣yS

y0

⎤
⎦[

yT
S ,0

]
=

⎡
⎣IS − n−1

SV ySy
T
S 0

−n−1
SV y0y

T
S I0

⎤
⎦ (27)

and it follows that

I+ CPPTSB =

⎡
⎣ IS + CPSP

T
S (IS − n−1

SV ySy
T
S) 0

CP0P
T
S (IS − n−1

SV ySy
T
S) I0

⎤
⎦ (28)

where the 0’s are matrices of zeros of proper size, nSV = yTSy = yT
SyS is

the number of support vectors, IS and I0 denote identity matrices of proper

size.

Denote the following corresponding block matrix

(I+ CPPTSB)−1 =

⎡
⎣ VS Z

V0 U

⎤
⎦ (29)

It then follows from (28) and

(I+ CPPTSB)

⎡
⎣ VS Z

V0 U

⎤
⎦ =

⎡
⎣ IS 0

0 I0

⎤
⎦ (30)

20

that

[
IS + CPSP

T
S (IS − n−1

SV ySy
T
S)
]
VS = IS (31)[

IS + CPSP
T
S (IS − n−1

SV ySy
T
S)
]
Z = 0 (32)

CP0P
T
S (IS − n−1

SV ySy
T
S)VS +V0 = 0 (33)

CP0P
T
S (IS − n−1

SV ySy
T
S)Z+U = I0 (34)

Note that PSP
T
S is always positive semi-definite and, IS−n−1

SV ySy
T
S has non-

negative (one zero and nSV −1 unity) eigenvalues, see the comment following

equation (13). Scalar C > 0 is given in advance. Matrix IS + CPSP
T
S (IS −

n−1
SV ySy

T
S) is therefore of full rank and invertible if nSV > 0, i.e. there is

at least one support-vector. The inverse is given later in (46). This in turn

confirms the invertibility of I + CPPTSB in (29). Therefore (30)-(34) are

reasonable. It follows from (31) and (33) that

VS =
[
IS + CPSP

T
S (IS − n−1

SV ySy
T
S)
]−1

(35)

V0 = −CP0P
T
S (IS − n−1

SV ySy
T
S)VS (36)

Again, as IS +CPSP
T
S (IS−n−1

SV ySy
T
S) is invertible, from (32) and (34) there

must be

Z = 0 (37)

U = I0 (38)

Correspondingly, substituting (27), (29), (36), (37) and (38) into (16), the

error vector defined in (14) is thus partitioned as follows

e =

⎡
⎣ eS

e0

⎤
⎦ =

⎡
⎣ IS − n−1

SV ySy
T
S 0

−n−1
SV y0y

T
S I0

⎤
⎦
⎡
⎣ VS 0

V0 I0

⎤
⎦
⎡
⎣ 1S

10

⎤
⎦ (39)

21

or

e =

⎡
⎣ (IS − n−1

SV ySy
T
S)VS 0

−(n−1
SV y0y

T
S + CP0P

T
SBS)VS I0

⎤
⎦
⎡
⎣ 1S

10

⎤
⎦ (40)

where and hereafter we denote BS = IS − n−1
SV ySy

T
S for simplicity, eS and

e0 are the two parts for unity and zero indicators, respectively. Rewrite the

partitioned error vector as⎡
⎣ eS

e0

⎤
⎦ =

⎡
⎣ VS1S − n−1

SV ySy
T
SVS1S

10 − CP0P
T
SBSVS1S − n−1

SV y0y
T
SVS1S

⎤
⎦ (41)

¿From matrix identity (15), we have

VS =
[
IS + CPSP

T
S (IS − n−1

SV ySy
T
S)

]−1

or

VS = IS − CPSP
T
S (IS − n−1

SV ySy
T
S)VS (42)

Substituting (42) into the first term of eS in (41), i.e. for the VS in term

VS1S, it follows that⎡
⎣ eS

e0

⎤
⎦ =

⎡
⎣ 1S − CPSP

T
SBSVS1S − n−1

SV ySy
T
SVS1S

10 − CP0P
T
SBSVS1S − n−1

SV y0y
T
SVS1S

⎤
⎦ (43)

Looking at the second component of equation (43) and comparing it with

the definition of the error vector e in (14), the following equation holds

throughout the RLS solution for w and b given in (12)

e0 = 10 −P0w − y0b ≡ 10 − CP0P
T
SBSVS1S − n−1

SV y0y
T
SVS1S

where VS is given in (35). Note again BS = IS − n−1
SV ySy

T
S . Both VS and

BS only depend on the support vectors PS and the associated labels yS, and

22

are independent from P0 and y0. From the previous derivation, (44) holds

for any P0 and y0. So w = CPT
S (IS − n−1

SV ySy
T
S)VS1S must hold. Thus we

can define ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w = PT
Sθ

θ = C(IS − n−1
SV ySy

T
S)VS1S

b = n−1
SV y

T
SVS1S

(44)

It is obvious that θ and b only depends on the support vectors PS and their

associated labels yS. Note that the introduction of θ here is not subject to

any constraint on it, such as the 0 ≤ αi ≤ C that would apply in the case of

the Lagrange multiplier αi’s for standard SVMs [3][10]. It is simply based on

the fact that the definition of θ in (44) enables the linear SVM (4) to take

the form f(x) = xPT
Sθ + b for any input x, say any row from PS or P0 as

shown in the two component equations of (43). In this form, the SVM is a

linear combination of inner products of the input x with PS. This makes it

easy to generalize the linear SVM (4) into (23) for nonlinear kernels.

To simplify the computation and to analyze the properties of the solution

to θ and b, (44) is further simplified as follows.

Using a matrix identity (15) again, we have

(IS + CPSP
T
S)

−1PSP
T
S = C−1IS − C−1(IS + CPSP

T
S)

−1 (45)

Noting the number of support vectors nSV = yT
SyS, it follows from (45) that

yT
S (IS + CPSP

T
S)

−1PSP
T
SyS − nSVC

−1 = −C−1yT
S (IS + CPSP

T
S)

−1yS

Along with matrix identity (19), VS given in (35) is simplified as follows.

23

VS = [IS + CPSP
T
S (IS − n−1

SV ySy
T
S)]

−1

=

[
IS − (IS + CPSP

T
S)

−1PSP
T
SySy

T
S

yT
S (IS + CPSPT

S)
−1PSPT

SyS − nSVC−1

]
(IS + CPSP

T
S)

−1

=

[
IS − ySy

T
S − (IS + CPSP

T
S)

−1ySy
T
S

yT
S (IS + CPSPT

S)
−1yS

]
(IS + CPSP

T
S)

−1 (46)

As PSP
T
S is symmetric and positive semi-definite and C > 0, IS +

CPSP
T
S is always symmetric and positive definite and therefore yT

S (IS +

CPSP
T
S)

−1yS > 0 holds for any nonzero yS, given that yS here is a column

of 1’s and -1’s. Substituting (46) into (44) for θ and b, results in

⎧⎨
⎩ θ = (C−1IS +PSP

T
S)

−1(1S − byS)

b =
yT
S (C−1IS+PSP

T
S)−11S

yT
S (C−1IS+PSP

T
S)−1yS

(47)

4.4. Nonlinear Generalization

¿From (47) it is obvious that only then support vectors (PS) and the

associated labels (yS) are involved in the solution. Note the notation P =

diag(y)X introduced in (8) and (9), and that the labels in y are either 1

or -1. Denoting YS = diag(yS) as the diagonal matrix with yS being the

diagonals, there have PSP
T
S = YSXSX

T
SYS, YSyS = 1S, YS1S = yS and

YSYS = IS. Rewriting (47) with the original data YSXS instead of PS, and

making the substitution XSX
T
S ← 〈XS,XS〉, results in the following solution

for general SVMs with linear or nonlinear kernels:⎧⎨
⎩ θ = YS(C

−1IS + 〈XS,XS〉)−1(yS − b1S)

b =
1T
S (C−1IS+〈XS ,XS〉)−1yS

1T
S (C−1IS+〈XS ,XS〉)−11S

(48)

24

Correspondingly, the normal vector w in (44) to the separating hyperplane

(4) is rewritten (for then linear case) as

w = XT
SYSθ = XS(C

−1IS + 〈XS,XS〉)−1(yS − b1S)

and the classifier (4) is rewritten for generalized kernels as:

f(x) = 〈x,XS〉YSθ + b (49)

For cases without bias, simply let b = 0 in (48), and thus⎧⎨
⎩ θ = YS(C

−1IS + 〈XS,XS〉)−1yS

b = 0
(50)

4.5. Properties of the Solution

It is of interest to compare the properties of θ here with those of the α’s for

standard SVMs, which are well known in the literature, and are introduced as

Lagrange multipliers and discussed in the context of duality theory. Firstly,

noting yT
SYS = 1T

S , it is easily checked from (48) that, for cases with the bias

b, the following equation holds∑
si=1

yiθi = yT
S θ = 1T

S (C
−1IS + 〈XS,XS〉)−1(yS − b1S) = 0 (51)

where the summation over si = 1 means sum over all support vectors, the

θi’s are the components of θ. Secondly, from (49), it holds that

w =
∑
si=1

yiθix
T
i (52)

In addition, by comparing θ in (44) with (41), eS (the upper part of the

matrix partition in (41)) an interesting relationship between eS and θ is

evident as follows:

θ = CeS (53)

25

This shows that the coefficient vector θ for a support vector machine is

C times the value of the partial error vector for the support vectors. As

discussed before, for the global solution, the errors for the support vectors

are positive and therefore the following inequalities hold:

θi > 0, i = 1, · · · , N, si = 1 (54)

Properties defined by equations (51), (52) and (54) are exactly the same

as those of the αi’s as described in textbooks and articles on SVMs, see for

example, [10][3].

With regard to property (53), it could be noted that a similar property is

derived by [18] for least squares SVMs from the Lagrangian function, where

the inequality constraints (3) are replaced by equalities. Because of this

replacement, the sparseness is lost in such a way that points with negative

errors (meaning that the points do not violate the constraints (3)) may be

included in the resulted SVM because αi = Cei < 0 (instead of zero) [18][46].

The spareness of the SVMs obtained using our method is highlighted by

example in section 6.

Of particular interest, as previously shown in (20) and (21) that for points

with zero errors, the values of the corresponding indicators are irrelevant, any

arbitrary choice (either 1 or 0) can be made and this will not influence the

solution. This conclusion is more clearly confirmed by property (53): support

vectors (if they are set) with vanishing errors have zero coefficients in the final

SVM (49). Furthermore, it can be concluded that the coefficient of a support

vector in the SVM (49) is proportional to the violation of the support vector

in the corresponding constraint (3).

Finally, using (49) and replacement XSX
T
S ← 〈XS,XS〉, the objective

26

function (6) with the L2-SVM loss function can be rewritten as

J(θ, b) = θTYS〈XS,XS〉YSθ + CeTS(e)e (55)

where diagonal matrix S(e) is evaluated using (10) for the full error vector

e. The loss term eTS(e)e is thus the sum of squares of all the positive

errors (violations). For an algorithmic procedure, vector w in the feature

space is generally numerically unavailable, as it is of indefinite or unknown

dimensions in general cases, Equation (55) can be useful to monitor the value

of the objective function during optimization.

Note again that this solution guarantees that the errors for support vec-

tors are positive (with unity diagonal entries for S) while for other points

the errors are negative (with zero diagonal entries for S). Based on (53), the

minimal value of the objective function is thus given by

J(θ̂, b̂) = θ̂TYS(C
−1IS + 〈XS,XS〉)YS θ̂

= yT
S (C

−1IS + 〈XS,XS〉)−1(yS − b1S) = 1T
S θ̂ =

nSV∑
i=1

θ̂i (56)

where θ̂ denotes the optimal solution to θ of components θ̂i’s.

5. An Iterative Algorithm

As discussed in section 3, solving the optimization problem (6) subject to

the L2-SVM loss (7) is equivalent to solving the nonlinear equation (16) for S

and e subject to (10). However, this equation is difficult to solve analytically,

given that S = S(e) involves indicator functions of the error vector e which

are not continuous. In this paper we simply demonstrate the effectiveness

27

of our formulation with an iterative algorithm to solve problem (6). The

iteration scheme is constructed directly from (16) as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Bτ) = I− (yTSτ)y)−1yyTSτ)

eτ+1) = ε(Sτ)) = (I+ CBτ)Y〈X,X〉YSτ))−1Bτ)1

Sτ+1) = S(eτ+1))

S0) = I, τ = 0, 1, 2, · · ·

where Y = diag(y) and Y〈X,X〉Y is the generalization of PPT for non-

linear kernels. The notation ε(Sτ)) = (I + CBτ)Y〈X,X〉YSτ))−1Bτ)1 is to

highlight that the right-hand side is a vector function of S, and the partially

parenthesized super subscripts for S, B and e denote the iteration count.

Given initially S0) = I, iterate for τ = 0, 1, 2 · · · until the indicators S do not

change, i.e. Sτ+1) = Sτ). In this case, S indicates a set of support vectors

as previously discussed: those training points having unity indicators are

support vectors.

However directly implementing algorithm (57) involves the inversion of

an N ×N matrix for each iteration. To reduce the computation, we re-order

the matrix according to the values of the indicators Sτ). This allows us to

partition the matrix when solving for θ and b using (48).

To see how this is done, we first (for convenience) rewrite the error vector

(43) as: ⎡
⎣ e

τ+1)
S

e
τ+1)
0

⎤
⎦ =

⎡
⎣ θτ+1)/C

10 −Y0〈X0,XS〉YSθ
τ+1) − bτ+1)y0

⎤
⎦ (57)

where θτ+1) and bτ+1) are updated using (48) for S = Sτ). For any given set

of indicators, say Sτ), the training data points X and the associated labels y

28

are partitioned into two parts: XS with the associated labels yS corresponds

to points having unity indicators in Sτ). X0 is associated with labels y0

corresponding to zero indicators in Sτ). As discussed before, the necessary

and sufficient condition for a given indicator Sτ) to be optimal is that the

partitioned error vector (44) satisfies e
τ+1)
S > 0 and e

τ+1)
0 ≤ 0 with θτ+1)

and bτ+1) being determined using (48) for S = Sτ). The terms 〈XS,XS〉 and
〈X0,XS〉 are calculated in a predefined kernel.

Based on this, an iteration algorithm is constructed as follows:

Step 1) Initially set the indicators s
0)
i = 1, i = 1, · · · , N for a given set of N

training points represented in X (with each row representing a point.

Set the associated label y (a column of 1’s and -1’s), and iteration

number τ = 0.

Step 2) Partition the training data as follows: X
τ)
S and y

τ)
S collect those rows

of X and y, for s
τ)
i = 1, i = 1, · · · , N , respectively, while X

τ)
0 and y

τ)
0

collect rows for s
τ)
i = 0, i = 1, · · · , N .

Step 3) Compute θ
τ+1)
S and bτ+1) using (48) for X

τ)
S and y

τ)
S . Compute the error

vector using (49) for θ
τ+1)
S and bτ+1) as e

τ+1)
i = 1−yi〈xi,X

τ)
S 〉Yτ)

S θτ+1)−
bτ+1)yi for i = 1, · · · , N . Note that for those points with a unity indica-

tor, the errors e
τ+1)
S can be computed simply by dividing θτ+1) by C as

shown in (57). Alternatively, directly take the value of θτ+1) since only

the signs of the errors are concerned here rather than their magnitudes.

Step 4) Update the indicators according to (10): for i = 1, · · · , N , let s
τ+1)
i = 1

if e
τ+1)
i > 0 otherwise let s

τ+1)
i = 0, where e

τ+1)
i is the i’th element of

the updated error vector eτ+1).

Step 5) Check for termination. If s
τ+1)
i = s

τ)
i for i = 1, · · · , N , stop the itera-

29

tion, otherwise let τ ← τ + 1 and go to step 2.

In this algorithm, the inverse of an nSV × nSV matrix C−1IS + 〈XS,XS〉
is required at each iteration, see (48). This is inefficient and impractical for

large nSV . For cases of SVMs with linear kernels and n < nSV , this inverse

can be computed as (C−1IS +XSX
T
S)

−1 = CIS −CXS(C
−1I+XT

SXS)
−1XT

S

by applying matrix identity (15), where C−1I+XT
SXS is an n×n matrix with

n being now only the number of dimensions of the input space. In this case,

the computational complexity of this algorithm depends only on min(n, nSV)

.

5.1. Cholesky Decomposition

For cases of SVMs with nonlinear kernels or when n ≥ nSV , to avoid the

inversion of a large matrix in (48), one can solve the following two linear

systems

(C−1IS + 〈XS,XS〉)u = 1S(C
−1IS + 〈XS,XS〉)v = yS (58)

for u and v. Then the solution for θ and b in (48) is given by⎧⎨
⎩ θ = YS(v − bu)

b = 1T
Sv/1

T
Su

(59)

To see the importance of this, consider again that (C−1IS+〈XS,XS〉) has
real entries and is symmetric and positive definite, thus it can be uniquely

decomposed as

C−1IS + 〈XS,XS〉 = LDLT (60)

where L is a lower triangular matrix with unity diagonal entries, D is a

diagonal matrix with strictly positive diagonal entries. The diagonals of D

30

and entries of L below its diagonal are given recursively by⎧⎨
⎩ Dj = Aj,j −

∑j−1
k=1 L

2
j,kDk, j = 1, · · · , nSV

Li,j = 1
Dj

(
Ai,j −

∑j−1
k=1 Li,kLj,kDk

)
, i > j

(61)

where Ai,j and Li,j denote the entries (i, j) of A = C−1IS + 〈XS,XS〉 and L,

respectively, Dj the j’th diagonal entry of D. This is a Cholesky decompo-

sition [47], resulting in⎧⎨
⎩ u = (C−1IS + 〈XS,XS〉)−11S = (LDLT)−11S

v = (C−1IS + 〈XS,XS〉)−1yS = (LDLT)−1yS

(62)

which can be computed by forward and backward substitution.

5.2. Permutation of The Support Vectors

Note that there are always some common vectors in the support vector

sets of two sequential steps during the previous iteration process. Particularly

in the later stage (near convergence), only a few of the support vector set

are updated during each step. This fact makes it possible to improve the

computational efficiency of the iteration by partially reusing the Cholesky

factor matrices L and D.

Suppose two sets of support vectors denoted as, S1) = {s1)1 , · · · , s1)nSV 1}
and S2) = {s2)1 , · · · , s2)nSV 2} of nSV1 and nSV2 support vectors, respectively,

with 1 ≤ s
i)
j ≤ N, i = 1, 2, j = 1, · · · , nSVi

denoting the index numbers of

the support vectors (i.e., the row numbers in the training set X). There are

q common support vectors in the two sets. The set S2) has been sorted so

that the first q support vectors, s
2)
1 , · · · , s2)q , are present in set S1). It can

be arranged that the first q elements of S1) are identical to that of S2) by

permuting the nSV1 elements of S1). Corresponding to this permutation, the

31

Cholesky factor matrices need to be updated. Permutation of the support

vectors in S1) and the corresponding update to the Cholesky factor matrices

are investigated in the following.

Suppose the Cholesky factor matrices for support vectors S1) are com-

puted, and denoted as L1) and D1), which satisfy C−1IS1) + 〈XS1) ,XS1)〉 =
L1)D1)L1) T . Now investigate the effect of switching two consequent sup-

port vectors s
1)
p and s

1)
p+1 in set S1), then, both the p’th and the p + 1’th

support vectors (rows) of XS1) are switched. For simplicity, denote matrix

A1) = C−1IS1)+〈XS1) ,XS1)〉 and Â1) = C−1IS1)+〈UmXS1) ,UmXS1)〉, where
the Um denotes the nSV1 × nSV1 permutation matrix that switches the p’th

and the p + 1’th rows of XS1) , of which the entries Up,p+1 = Up+1,p = Uii =

1, i = 1, · · · , p − 1, p + 1, · · · , nSV1 while all the others are zero. Noting the

symmetrical property of the kernel function, i.e., 〈xi,xj〉 = 〈xj,xi〉, we have

Â1) = UmA
1)Um (63)

Denote the Cholesky factor matrices of the permuted matrix Â1) as L̂1) and

D̂1), i.e., Â1) = L̂1)D̂1)L̂1) T . With relationship (63), it is not difficult to

determine from (61) that only the entries in rows p and p+1 and columns p

and p+1 of the Cholesky factor matrices are changed, while all other entries

remain unchanged. In addition, L̂1) and D̂1) may be computed from L1) and

32

D1) as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̂p = Dp+1 + μLp+1,p

L̂p+1,p = D̂−1
p μ

D̂p+1 = Dp − μ̂L̂p+1,p

L̂p,j = Lp+1,j, L̂p+1,j = Lp,j, j < p

L̂i,p = D̂−1
p (Dp+1Li,p+1 + μLi,p)

L̂i,p+1 = D̂−1
p+1(DpLi,p − μ̂L̂i,p), i > p+ 1

μ = DpLp+1,p, μ̂ = D̂pL̂p+1,p

(64)

where for simplicity Li,j and Dp denote the entries of the original Cholesky

factor matrices L1) and D1) (before switching support vectors p and p + 1),

L̂i,j and D̂p denote the corresponding updated entries of L̂1) and D̂1) (due to

the switching).

The steps specified in (64) that update the Cholesky factor matrices in

correspondence with the permutation of the support vectors can be performed

without any evaluation of the kernel function. To compute the Cholesky

factor matrices for the q common support vectors in S1) and S2), one can

permute the support vectors in S1) by the same series of switching operations

that are used to update the Cholesky factor matrices using (64). Other entries

of rows q + 1 to nSV2 for the other nSV2 − q support vectors of S2) can then

be computed using (61).

5.3. Complexity Analysis and Implementation

Looking at (64), corresponding to each switching operation of two se-

quential support vectors, say the p’th and the p + 1’th of a support vector

set of size nSV , 8(nSV − p) floating-point operations (FPOs, including ad-

dition/subtraction and multiplication/division and comparison operations of

33

floating-point numbers) are required to update the two columns of L and the

two diagonal entries of D, i.e., 2(nSV − p) + 1 entries in total. The two rows

p and p + 1 of L from columns 1 to p − 1 are switched (without using any

FPOs), while all other entries are unchanged.

For a worst case example (which will never occur in practice), that revises

the order of a set of support vectors of size nSV , it would be necessary to

iterate the switching operation for p from nSV −1 to k and k from 1 to nSV −1,
requiring 4

3
nSV (nSV − 1)(nSV + 1) FPOs. By comparison, to fully compute

the same Cholesky factor matrices using (61) requires 1
2
nSV (nSV −1)(nSV +2)

FPOs. For this worst case scenario, the computational burden of using the

switching technique (64), is about 8
3
times of that of Cholesky decomposition

(61). Note that computation of the kernel matrix for C−1IS + 〈XS,XS〉 is
not counted here, but it is required in the method that uses (61), and is of

order O(nn2
SV) FPOs, where n is the number of dimensions of the training

vectors.

When implementing this algorithm, for a given support vector set of size

nSV , only one memory buffer block is required to store the lower triangular

part of matrix A = C−1IS + 〈XS,XS〉. Once A is computed (with its lower

triangular part), the Cholesky factor matrices can be computed using (61),

which overwrite A with the Cholesky factor D overwriting the diagonals.

The unity diagonal entries of L needs not to be stored.

Using L and D, vectors u and v (62) can be computed using forward and

backward substitution, and from them b and θ using (59). By evaluating the

errors, a new support vector set can be identified, see Step 3) of the iterative

algorithm. To reuse the existing L and D, re-sort the new support vector

34

set with the common support vectros at the start. Assuming q common

support vectors are identified, permutate the original support vector set such

that the q common support vectors are also at the beginning, and update

L and D correspondingly. The top rows(1 to q) of the updated Cholesky

factor matrices for the new support vector set is thus obtained for the q

common support vectors. the bottom rows (q + 1 and below) is irrelevant

and the memory buffer can be used to store the corresponding part of matrix

C−1IS + 〈XS,XS〉 by overwriting. The bottom part of the updated L and D

can then be computed using (61).

This technique of reusing the Cholesky factor matrices of the previous

step can greatly reduce the computational burden in both factorizing using

(61) and kernel function evaluations. The full Cholesky factorization (61)

is only performed in the first iteration. In the later stage of the iteration,

the support vector set is approaching to the solution, only a small part of

it is changed in each iteration. In addition, this algorithm converges in a

few iterations (often no more than 10 cycles.) Some problems might re-

sult in systems where it takes longer to converge but we do not explore the

possibility of terminating the iterative process early in a trade off of accu-

racy versus speed of convergence. Combining previous analysis, the overall

computational complexity is of order O(n2
SV (nSV +N + n)).

Obviously the amount of memory required to store the kernel matrix and

the Cholesky factor matrices in this algorithm is 1
2
n2
SVMax, where nSVMax is

the maximum size of the support vector sets during the iteration, which is

unknown in advance. One can simply let nSVMax = N . However this as-

sumption is inefficient, even impractical, for large data set. According to the

35

previous analysis, the memory requirement increases quadratically (n2
SV) and

the computational complexity required to solve for b and θ using Cholesky

decomposition increased cubically (n3
SV) with the size of the support vector

set.

To overcome this problem, nSVMax can be set in advance at some value

that is not smaller than the size of the final solution support vector set. That

is, no more than nSVMax support vectors are selected in each iteration. In-

stead of selecting all the training support vectors of positive error values, only

nSVMax at most will be selected in decreasing order of the errors. This may

not only reduce the memory requirement, but also improve the computa-

tional efficiency, as the number of potential support vectors (of positive error

values) during the iteration can be much greater than the size of the final

solution, particularly for large data set in the initial stage of the iteration.

When starting with nSVMax < N the initial support vector set can be

drawn from the training vector set using stratified sampling strategies on the

two classes. Instead of simply taking all the training vectors as mentioned in

algorithm Step 1) A uniform fraction of vectors are drawn from each of the

two classes (strata), and thus the numbers of initial support vectors drawn

from each class is proportional to the number of training vectors belonging

to that class.

Since the iterative process will work towards a final set of support vectors

there is no loss of accuracy over other methods. There are a few cases where

it does take a larger number of iterations to arrive at a suitable support

vector set. Our broad spectrum applicability, with its ability to converge

in situations where other methods do not, mitigates the few cases where

36

convergence is slower. There is no winner takes all SVM technique and

our approach demonstrates a method that offers some potential to obtain a

support vector set when other techniques fail.

6. Simulation Examples

In this section, our SVM solution technique, derived in the RLS context

(denoted as RLSSVM here after), is demonstrated for linear and nonlinear

kernels. The proposed iterative algorithm has been implemented in C code

and can be compared in terms of execution time with other algorithms coded

in C or C++. The algorithm of [28] for solving (6) in the primal (referred to

as Primal1), and two well-known packages, LIBSVM2[48] and SVMLight3[49]

for SVM are employed for comparisons. These software packages are not

the most recently available but they are exhaustively tested and known to

produce accurate results. We test our algorithm here mainly for accuracy,

robustness and range of applicability. Note that the LIBSVM implements an

SMO algorithm to solve the constrained problem (1) [50], while SVMLight

implements a chunking optimization method.

1MATLAB code downloaded at

http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/primal/
2C++ code package downloaded at

http://www.csie.ntu.edu.tw/∼cjlin/libsvm
3C code package downloaded at

http://www.cs.cornell.edu/People/tj/svm light/index.html

37

Table 1: Results of the four Algorithms on the Simple Example

RLSSVM Primal LIBSVM SVMLight

SVs 2,3 2,3 2,3 2,3

SVM- 0.9999 0.9999 1.0000 1.0000

coefficients -0.9999 -0.9999 -1.0000 -1.0000

SVM bias -0.9999 -0.9999 -1.0000 -1.0000

wTw 1.9996 1.9996 2.0000 2.0000

L2-loss 1.9996e-8 1.9996e-8 0.0000 0.0000

Error vector -9.9890e-2 -9.9890e-2 -1.0000e-1 -1.0000e-1

9.9990e-5 9.9990e-5 0.0000e+0 0.0000e+0

9.9990e-5 9.9990e-5 0.0000e+0 0.0000e+0

-9.9890e-2 -9.9890e-2 -1.0000e-1 -1.0000e-1

6.1. A Simple Artificial Problem

Note that LSSVM is not maximal margin classification algorithm as no

class-bounding hyperplane is clearly defined. The four maximal margin al-

gorithms, i.e. RLSSVM, Primal, LIBSVM and SVMLight, were tested on

a very simple binary classification problem to separate four 2-dimensional

points using linear SVM. The four labeled points are given by x1 = [1.1, 1],

y1 = +1; x2 = [1, 1], y2 = +1; x3 = [0, 0], y3 = −1; x4 = [−0.1, 0], y4 = −1.
This set of four points is linearly separable with the solution obviously known.

The linear solution SVM by SVMLIB is illustrated in Fig.1.

38

It should be noted that RLSSVM and Primal solve the unconstrained

problem (6) with the L2-SVM loss function, while LIBSVM and SVMLight

solve the dual of the constrained problem (1). Theoretically, algorithms

solving the constrained problem (1) for separable data sets yield solutions

independent of parameter C, because all the potential solutions that must

satisfy the constraints have zero violations. However, algorithms solving the

unconstrained problem (6) produce different solutions for different settings

of C. The linear solutions of RLSSVM for different C are illustrated in

Fig.2. It is evident in Fig.2 that small values for parameter C yield solutions

with large margins. For sufficiently large C (approaching +∞), the solution

approaches the solution of Equation (1) [23][3].

The four maximal margin algorithms succeeded in identifying the two

x*w+b=−1

x*w+b=0

x*w+b=1

−0.2 0 0.5 1 1.2
0.2

0

0.5

1

1.2

Figure 1: The solution of LIBSVM on a set of four 2-dimensional points. Pluses – points

of class +1, dots – points of class -1, dashed lines – bounding planes, solid lines – the

separating plane, and circles – support vectors.

39

x*w+b=−1

x*w+b=0

x*w+b=1C=41

−0.2 0 0.5 1 1.2
−0.2

0

0.5

1

1.2

x*w+b=−1

x*w+b=0

x*w+b=1C=42

−0.2 0 0.5 1 1.2
−0.2

0

0.5

1

1.2

x*w+b=−1

x*w+b=0

x*w+b=1C=43

−0.2 0 0.5 1 1.2
−0.2

0

0.5

1

1.2

x*w+b=−1

x*w+b=0

x*w+b=1C=44

−0.2 0 0.5 1 1.2
−0.2

0

0.5

1

1.2

Figure 2: Solutions of RLSSVM for different penalty parameter values (C)

40

solution SVs. Table 1 compares the solutions produced by the four maximal

margin algorithms for C = 10, 000. In table 1, SVs indicates that the second

and the third points are identified as the SVs by the four algorithms; the

SVM coefficients are the coefficients present in the SVM expansion expres-

sion (i.e. yiθi’s for RLSSVM, nonzero βi’s for Primal and nonzero yiαi’s for

LIBSVM and SVMLight); wTw and L2-loss are the values of the two parts

(the regularization term and the loss term without the penalty parameter

C) of the objective function (6) for RLSSVM and Primal or (1) for LIBSVM

and SVMLight; error vector lists all the errors (14) of an SVM for the four

points. It can be checked that, for all the algorithms, the sum of the two

SVM coefficients vanishes as shown in (51). For RLSSVM and Primal, θi’s

are C times the ei’s for the second and the third point, respectively, as shown

in (53).

It can be seen in Table 1 that, both RLSSVM and Primal, and both

LIBSVM and SVMLight approach the same solutions. Obviously, the L2-

losses of the solutions of both LIBSVM and SVMLight are zero, meaning

that the violations ξ1, ξ2, ξ3 and ξ4 of the four training points defined in (1)

are all zero, while for both RLSSVM and Primal there are small L2-loss

values meaning that those violations are not zero but very small. Parameter

C is used to balance between those violations and the size of the margin

(distance between the two bounding hyperplanes) as previously discussed

and illustrated in Fig.2. Intuitively, more (at least not less) support vectors

can be involved in SVMs produced by solving the unconstrained problem (6)

than are involved in SVMs produced by solving the constrained problem (1).

41

6.2. Real World Problems

In the following, experimental results of five algorithms on five public

benchmark problems are presented. Statistics of the the five benchmarking

data sets are listed in Table 2. These datasets have been referred to numerous

times in the literature, which makes them very suitable for testing our al-

gorithms performance. Additional information about the datasets and their

properties is given in our paper [51], no pre-processing was carried out on

the data except to choose a diversity of applications from the examples avail-

able. For more information on the data sets one is referred to LIBSVM Data

All the data sets employed in this work are available on-line. 4 The splice

data set is from the Delve Datasets of The University of Toronto, Toronto,

Ontario, Canada5. Both the adult and the web-page data sets are from the

University of California at Irvine (UCI) machine learning repository [52].

4http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
5http://www.cs.toronto.edu/∼delve/data/datasets.html

Table 2: Statistics of the five public benchmark problems

Data set Training set Test set Features Source

Splice 1,000 2,175 60 Delve

Adult 1,605 30,956 123 UCI [52]

Web-page 2,477 47,272 300 UCI [52]

Colon 30 32 2,000 [53]

Leukemia 38 34 7,129 [54]

42

The five algorithms are tested for linear kernel/basis and Gaussian radial

kernel/basis, k(x1,x2) = exp(−γ‖x1 − x2‖22), on each training/test pair.

Noting that LIBSVM and SVMLight use L1-loss while the other four use

L2-loss. The penalty parameter C and the kernel parameter γ are tuned for

each of the problems by a trial-and-error method: LIBSVM and Primal are

tested on the training data set for 9 different C values for linear kernel, and

9× 41 different (C, γ) pairs for Gaussian kernel. The 9 different C values are

{10−4, 10−3, · · · , 104}; and the 41 γ values are {10−5, 10−4.8, · · · , 103}. The

produced classifier models are tested on the test data set, the C and (C, γ)

pair that yield best classification performance on the test data are chosen, see

Table 3. In Table 3, the parameters for L1-loss are tuned using LIBSVM and

are settings for both LIBSVM and LIBLight which employ L1-loss, while the

parameters for L2-loss are tuned using Primal and are settings for Primal,

RLSSVM and LSSVM which employ L2-loss.

To allow for comparison, ten training/test pairs are produced by randomly

splitting each data set (for random training/test pairs of the same size as

specified in Table 2), and the means and the standard deviations of the

model size (#SVs), the running time (R.Time) which is included only for

comparision and should not be considered in absolute terms, the training

rate (T.Rate) and the testing rate (V.Rate) of the five algorithm over the

ten random training/test set-pairs are compared in Table 4-8 respectively for

the five data set. The training/testing rate here is defined as the percentage

of correctly predicted labels for a algorithm on a training/testing set.

To compare the solutions produced by different algorithms, the penalty

parameter C and kernel parameter γ are set to the same values for all the

43

Table 3: Tuned parameter settings for the benchmark problems

Data L1-loss L2-loss

set Linear Gaussian Linear Gaussian

(C) (C, γ) (C) (C, γ)

Splice 10−2 101, 1.6e−2 10−3 101, 1.6e−2

Adult 10−1 101, 1.6e−2 10−1 100, 2.5e−2

Web-page 101 101, 1.6e−2 101 101, 2.5e−2

Colon 10−3 102, 1.6e−5 10−1 102, 2.5e−5

Leukemia 10−3 102, 1.0e−5 10−1 103, 1.0e−5

four algorithms, and tuned for each of the problems by a trial-and-error

method. The maximal size of the support vector set is set at nSVMax = 1000

for RLSSVM for all the experiments. Both linear and Gaussian kernels are

tested for all the algorithms on each of the data sets.

In all of these experiments, the RLSSVM algorithm converges in no more

that 10 iterations. Test results on the five benchmark problems show that

all the four maximal margin algorithms provided solutions of competitive

performance for both linear and Gaussian kernels with regard to the rates

(both the means and the standard deviations) on test and training data sets.

It is shown that RLSSVM (our proposed algorithm) delivered exactly the

same results, in all the experiments, given that both Primal and RLSSVM

employs the same L2-loss. Both LIBSVM and SVMLight using the same

L1-loss delivered very similar solutions.

44

It can be observed that RLSSVM and Primal produced models of signifi-

cantly more support vectors (less sparse) than both LIBSVM and SVMLight

because both of them use L2-loss while LIBSVM and SVMLight use L1-loss.

This is an obvious shortcoming of methods that employ L2-loss as discussed

at the end of section 2. To overcome this problem, approximation techniques,

for an example, that of [55] can be applied.

Table 4: Results on Splice data set

Method #SVs R.Time (sec) T.Rate(%) V.Rate(%)

Model of Linear kernel/basis

RLSSVM 969.7, 7.1 0.341, 0.220 86.12, 0.79 83.33, 0.68

PRIMAL 969.7, 7.1 14.164, 0.489 86.12, 0.79 83.33, 0.68

LIBSVM 481.3, 12.0 0.930, 0.124 86.72, 0.61 83.74, 0.47

LIGHT 481.3, 11.7 0.966, 0.504 86.72, 0.61 83.74, 0.47

LSSVM 214.8, 34.1 0.086, 0.017 51.95, 1.17 51.89, 0.54

Model of Gaussian kernel/basis

RLSSVM 743.2, 16.9 2.772, 0.128 99.98, 0.04 89.43, 0.49

PRIMAL 743.2, 16.9 12.163, 1.271 99.98, 0.04 89.43, 0.49

LIBSVM 695.4, 16.6 1.925, 0.123 99.98, 0.04 89.44, 0.45

LIGHT 699.0, 18.3 3.384, 0.170 99.98, 0.04 89.44, 0.45

LSSVM 905.0, 0.0 3.602, 0.141 51.95, 1.17 51.89, 0.54

45

Table 5: Results on Adult data set

Method #SVs R.Time (sec) T.Rate(%) V.Rate(%)

Model of linear kernel/basis

RLSSVM 997.4, 29.3 1.264, 0.064 85.76, 0.63 84.22, 0.12

PRIMAL 997.4, 29.3 24.725, 1.324 85.76, 0.63 84.22, 0.12

LIBSVM 629.0, 19.6 0.937, 0.056 85.30, 0.71 83.89, 0.35

LIGHT 629.3, 19.3 1.565, 0.659 85.30, 0.71 83.89, 0.35

LSSVM 69.3, 19.2 0.084, 0.020 24.31, 0.94 24.07, 0.05

Model of Gaussian kernel/basis

RLSSVM 1079.3, 25.0 12.055, 0.738 86.41, 0.55 84.20, 0.15

PRIMAL 1079.3, 25.0 32.705, 4.004 86.41, 0.55 84.20, 0.15

LIBSVM 623.4, 21.6 1.334, 0.108 87.36, 0.57 83.96, 0.17

LIGHT 623.4, 21.6 6.595, 0.267 87.36, 0.57 83.96, 0.17

LSSVM 136.2, 66.7 0.201, 0.115 24.31, 0.94 24.07, 0.05

The LSSVM performed much more unsatisfactorily than the other meth-

ods in all the test cases. This is probably due to some poorly chosen algorithm

parameters, such as the step (by default 5%) and the tradeoff percent (by

default 75%). Publicly available code usually requires additional tunings.

An obvious advantage of the proposed RLSSVM over LSSVM is that there is

no additional parameters (in addition to C and then kernel parameters) that

46

need to be tuned, given that the maximal number of the support vectors,

nSVMax, for RLSSVM will not influence the solution when it is large enough

(not less than the number of support vectors of the solution), given again

that the global optimal solution is unique. In this experiment, it is simply

set at nSVMax = 1200 for all the cases.

Tables 9, 10 and 11 present relative running times for the five meth-

Table 6: Results on Web-page data set

Method #SVs R.Time (sec) T.Rate(%) V.Rate(%)

Model of linear kernel/basis

RLSSVM 524.4, 30.1 1.703, 0.034 99.34, 0.15 97.98, 0.12

PRIMAL 524.3, 30.0 3.753, 0.252 99.34, 0.15 97.98, 0.12

LIBSVM 172.6, 12.7 0.434, 0.170 99.18, 0.14 98.00, 0.13

LIGHT 173.7, 11.2 1.191, 0.361 99.18, 0.14 98.00, 0.13

LSSVM 745.0, 229.6 2.051, 1.117 11.62, 1.17 11.50, 0.81

Model of Gaussian kernel/basis

RLSSVM 677.9, 38.3 13.288, 0.305 99.31, 0.13 98.03, 0.07

PRIMAL 677.9, 38.3 6.267, 0.470 99.31, 0.13 98.03, 0.07

LIBSVM 270.4, 30.1 0.408, 0.053 98.89, 0.27 97.95, 0.10

LIGHT 273.9, 33.6 2.433, 0.476 98.89, 0.27 97.95, 0.10

LSSVM 805.8, 312.7 2.098, 1.266 3.08, 0.28 2.97, 0.01

47

Table 7: Results on Colon data set

Method #SVs R.Time (sec) T.Rate(%) V.Rate(%)

Model of linear kernel/basis

RLSSVM 22.5,2.8 0.061, 0.008 100.00, 0.00 82.81, 6.29

PRIMAL 22.5,2.8 0.064, 0.047 100.00, 0.00 82.81, 6.29

LIBSVM 22.7,2.9 0.091, 0.009 98.67, 1.63 85.94, 4.89

LIGHT 22.7,2.9 0.123, 0.024 98.67, 1.63 85.94, 4.89

LSSVM 24.6,1.8 0.039, 0.014 49.33, 6.11 50.31,14.69

Model of Gaussian kernel/basis

RLSSVM 24.1, 2.7 0.055, 0.008 100.00, 0.00 83.13, 6.88

PRIMAL 24.1, 2.7 0.061, 0.009 100.00, 0.00 83.13, 6.88

LIBSVM 22.8, 2.9 0.089, 0.010 100.00, 0.00 83.13, 6.43

LIGHT 22.8, 2.9 0.150, 0.020 100.00, 0.00 83.13, 6.43

LSSVM 24.8, 1.3 0.039, 0.008 34.00, 8.14 36.88, 7.63

ods considered RLS(SVM), PRI(MAL), LIB(SVM) LIG(HT) LSS(VM). It

should be noted that the proposed algorithm is essentially a batch algorithm.

It is not suitable for large data sets (with large number of high-dimensional

points) from the point of view of both execution time and memory require-

ments. This is why RLSSVM is much slower than Primal, LIBSVM, SVM-

LIGHT and LSSVM on the web-page data set for Gaussian kernel, given

48

Table 8: Results on Leukemia data set

Method #SVs R.Time (sec) T.Rate(%) V.Rate(%)

Model of linear kernel/basis

RLSSVM 30.6, 1.8 0.019, 0.006 100.00, 0.00 94.41, 5.95

PRIMAL 30.6, 1.8 0.020, 0.007 100.00, 0.00 94.41, 5.95

LIBSVM 30.6, 1.8 0.091, 0.006 100.00, 0.00 94.41, 5.95

LIGHT 30.6, 1.8 0.106, 0.014 100.00, 0.00 94.41, 5.95

LSSVM 31.6, 1.5 0.023, 0.008 56.32, 9.86 50.88, 7.33

Model of Gaussian kernel/basis

RLSSVM 32.3, 1.8 0.017, 0.005 100.00, 0.00 93.82, 6.76

PRIMAL 32.3, 1.8 0.028, 0.006 100.00, 0.00 93.82, 6.76

LIBSVM 32.1, 2.0 0.092, 0.004 100.00, 0.00 93.53, 6.81

LIGHT 32.1, 2.0 0.108, 0.013 100.00, 0.00 93.53, 6.81

LSSVM 31.0, 1.8 0.027, 0.007 66.58, 4.09 63.82, 4.57

again that the running time of RLSSVM and memory requirement are of

orders O(n2
SV (nSV +N +n) and O(n2

SV), respectively, as discussed in section

5.3.

Hence, for problems of large data set sizes, a sequential implementation

of RLSSVM is desirable. Since it is merely derived in the RLS context, it is

straightforward to apply recursive least-squares in order to sequentialize the

49

Table 9: Relative running times for different C’s on splice for linear kernel

C RLS. PRI. LIB. LIG. LSS.

10−4 0.062 0.843 0.437 0.109 0.047

10−3 0.063 1.484 0.390 0.094 0.032

10−2 0.062 1.422 0.328 0.172 0.031

10−1 0.062 1.312 0.672 0.438 0.032

10+0 0.063 0.890 8.343 7.297 0.046

10+1 0.062 1.110 44.859 23.844 0.032

10+2 0.062 1.109 154.500 102.094 0.047

10+3 0.078 1.109 544.407 30.640 0.063

10+4 0.062 1.109 1419.250 30.797 0.062

algorithm by using (20) and (21). It is also observed that the running time

of LIBSVM is very sensitive to C, particularly for linear kernels. SVMLight

is also sensitive to its settings but slightly less so than LIBSVM. The other

four algorithms are much more stable with RLSSVM outperforming all the

other algorithms in stability.

7. Conclusions

The work presented in this paper shows how the linear SVM can be for-

mulated as a regularized least squares (RLS) problem. We have also shown

how this naturally extends to generalized SVMs with nonlinear kernels. The

50

Table 10: Relative running times times for different C’s on adult for linear kernel

C RLS. PRI. LIB. LIG. LSS.

10−4 0.282 4.860 0.344 0.422 0.000

10−3 0.297 4.860 0.343 0.188 0.000

10−2 0.313 8.937 0.359 0.204 0.140

10−1 0.328 5.125 0.375 0.297 0.031

10+0 0.328 5.938 0.812 1.937 0.078

10+1 0.360 3.797 5.563 13.984 0.266

10+2 0.422 4.797 44.672 54.453 0.250

10+3 0.406 4.344 179.000 202.468 0.313

10+4 0.390 4.359 615.125 13.094 0.406

novelty of this generalization is that it is done merely in the context of the

primal RLS, neither the Lagrange multipliers, Karush-Kuhn-Tucker (KKT)

conditions and duality theory, nor the application in advance of the represen-

ter theorem of Kimeldorf and Wahba is involved. A fast iterative algorithm

for solving the SVM based Cholesky decomposition is proposed to allow for

the formulation to be tested on some typical problems. The behavior of the

solution (it’s correctness and form) has been analyzed and is compared with

the results of applying standard SVM solvers to the same problems.

With the least squares solution to the normal of the SVM separating

hyperplane, the solution is expressed as an equation with regard to the error

51

Table 11: Relative running times times for different C’s on web-page for linear kernel

C RLS. PRI. LIB. LIG. LSS.

10−4 1.172 13.703 0.234 9.750 0.125

10−3 1.922 42.750 0.234 2.359 0.125

10−2 1.656 18.609 0.250 1.125 0.141

10−1 1.610 4.250 0.250 0.797 8.687

10+0 1.703 3.578 0.328 1.328 17.453

10+1 1.875 3.516 1.516 3.016 30.391

10+2 2.703 4.610 2.484 5.079 33.328

10+3 2.985 5.110 3.454 6.141 34.297

10+4 3.109 6.640 8.250 26.750 32.797

vector and a set of indicator variables depending on the errors, referred to

as the error equation. As the optimal solution is unique, solving the primal

RLS problem is equivalent to solving the error equation. Corresponding to

the bounded points and the support vectors which are unbounded, the error

vector is partitioned into two parts. By applying some matrix operations on

this error vector, the optimal solution is expressed as a linear combination

of inner products of the support vectors with an input point.

Existing primal methods that invoke the representer theorem require the

full kernel matrix (over the full training set) to be positive definite for a

well-conditioned Hessian and the globally optimal solution to be unique. Of

52

course, many practical data sets may have repeated points, making the full

kernel matrix only positive semi-definite. The solution proposed in this paper

is simply derived in the primal RLS context without invoking the representer

theorem, and only requiring the full kernel matrix to be positive semi-definite

– this is guaranteed for any training data by kernel functions satisfying Mer-

cer’s condition. Also , the solution here is derived in the context of the RLS

without replacing the inequality constraints with equalities, this overcomes

the lack-of-sparseness disadvantage, those points without violations are not

presented in the solution.

The fast (Cholesky decomposition based) successive substitution iterative

algorithm is proposed directly from the error equation based on and using

permutation of the support vectors. An experiment is presented on a simple

artificial data set to demonstrate the properties of the solution.

The algorithm is then applied to three benchmark binary classification

problems and compared with some well established approaches that solve

the (unconstrained) primal RLS problem and two popular software packages,

LIBSVM and SVMLight (which solve the dual of the standard constrained

quadratic programming problem.)

The only caveat evident from the experimental tests is that SVMs for-

mulated in unconstrained RLS problems with the L2-loss function, such as

our proposed algorithm and other Primal approaches, involve more support

vectors than standard SVMs.

This study of a variety of problem types is not intended to deliver a

detailed statistically significant evaluation. Our broad spectrum of examples

demonstrates the wide range of problems for which we can demonstrate good

53

convergence and we leave it to further research to perform larger trials upon

which it would be meaningful to perform statistical analysis.

However, the test results demonstrate the accuracy, stability and com-

putational simplicity of the method which should make it a very attractive

new method for solving problems that are amenable to attack using a SVM

classifier.

Acknowledgment

This work was part-funded by the European Commission under the Sev-

enth Framework Programme: large-scale integrating project HaptiMap, FP7-

ICT-224675.

[1] V. Vapnik, A. Lerner, Pattern recognition using generalized portrait

method, Automation and Remote Control 24 (1963) 774–780.

[2] V. N. Vapnik, Estimation of Dependences Based on Empirical Data,

Addendum 1, New York: Springer-Verlag, 1982.

[3] C. Cortes, V. Vapnik, Support vector networks, Machine Learning 20

(1995) 273 – 297.

[4] J. Zhou, L.Zhu, Principal minimax support vector machine for sufficient

dimension reduction with contaminated data, Computational Statistics

& Data Analysis 94 (2016) 33–48.

[5] S. R. Gunn, M. Brown, K. M. Bossley, Network performance assess-

ment for neuro-fuzzy data modelling, in: X. Liu, P. Cohen, M. Berthold

54

(Eds.), Intelligent Data Analysis, vol. 1208 of Lecture Notes in Com-

puter Science, 1997, pp. 313–323.

[6] A. Savio, M. Grana, Local activity features for computer aided diagnosis

of schizophrenia on resting-state fmri, Neurocomputing 164 (2015) 154–

161.

[7] D. Chyzhyk, M. Grana, Classification of schizophrenia patients on lattice

computing resting-state fmri features, Neurocomputing 151 (1) (2015)

151–160.

[8] M.Z.Parvez, M.Paul, Epileptic seizure detection by analyzing eeg signals

using different transformation techniques, Neurocomputing 145 (2014)

190–200.

[9] X.Chen, J.Yang, Q.Mao, F.Han, Regularized least squares fisher linear

discriminant with applications to image recognition, Neurocomputing

122 (2013) 521–534.

[10] C. J. C. Burges, A tutorial on support vector machines for pattern recog-

nition, Data Mining and Knowledge Discovery 2 (2) (1998) 121–167.

[11] V. N. Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.

[12] B. Schölkopf, A. J. Smola, Learning with kernels, MIT Press, Cam-

bridge, MA, 2002.

[13] M. Ferris, T. Munson, Interior-point methods for massive support vector

machines, SIAM Journal on Optimization 13 (2002) 783–804.

55

[14] J. C. Platt, Fast training of support vector machines using sequential

minimal optimization, in: B. Schölkopf, C. J. C. Burges, A. J. Smola

(Eds.), Advances in Kernel Methods - Support Vector Learning, MIT

Press, Cambridge, MA, 1998.

[15] K. Huanga, D. Zhengb, J. Sunb, Y. Hottac, K. Fujimotoc, S. Naoic,

Sparse learning for support vector classification, Pattern Recognition

Letters 31 (2010) 1944–1951.

[16] Q. Li, X. Li, W. Ba, Sparse least squares support vector machine with

l0-norm in primal space, 2015, pp. 2778–2783.

[17] B. G. Fung, O. Mangasarian, Proximal support vector machine classi-

fiers, Proceedings of the Seventh ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining (2001) 77–86.

[18] J. A. K. Suykens, J. Vandewalle, Least squares support vector machine

classifiers, Neural Processing Letters 9 (3) (1999) 293–300.

[19] B. P. Komarek, Logistic regression for data mining and high-dimensional

classification (Ph.d. thesis), Carnegie Mellon University, Pittsburgh,

Pennsylvania, USA, 2004.

[20] B. Zhang, R. Jin, Y. Yang, A. Hauptmann, Modified logistic regression:

An approximation to svmand its applications in large-scale text cat-

egorization, Twentieth International Conference on Machine Learning

(2003) 472–479.

56

[21] J. A. K. Suykens, L. Lukas, J. Vandewalle, Sparse least squares sup-

port vector machine classifiers, ESANN’2000 European Symposium on

Artificial Neural Networks (2000) 37–42.

[22] O. L. Mangasarian, A finite newton method for classification, Optimiza-

tion Methods and Software 17 (2002) 913–929.

[23] S. S. Keerthi, D. M. DeCoste, A modified finite newton method for fast

solution of large scale linear svms, Journal of Machine Learning Research

6 (2005) 341–361.

[24] S. Sonnenburg, V. Franc, Coffin : A computational framework for lin-

ear svms, Proceedings of the 27th International Conference on Machine

Learning (2010) 999–1006.

[25] R. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, C. J. Lin, Liblinear:

A library for large linear classification, Journal of Machine Learning

Research 9 (2008) 1871–1874.

[26] A. J. Smola, B. Schölkopf, From regularization operators to support

vector kernels, Advances in Neural information processings systems 10

(1998) 343–349.

[27] M. A. Aizerman, E. M. Braverman, L. I. Rozonoer, Theoretical founda-

tions of the potential function method in pattern recognition learning,

Automation and Remote Control 25 (1964) 821–837.

[28] O. Chapelle, Training a support vector machine in the primal, Neural

Computation 19 (5) (2007) 1155–1178.

57

[29] G. S. Kimeldorf, G. Wahba, A correspondence between bayesian es-

timation on stochastic processes and smoothing by splines, Annals of

Mathematical Statistics 41 (1970) 495–502.

[30] F. Perez-Cruz, A. Navia-Vazquez, P. L. Alarcon-Diana, A. A. Rodrguez,

A new training algorithm for support vector machines, in: Proceedings

of the Fifth Bayona Workshop on Emerging Technologies in Telecom-

munications, Baiona, Spain, 1999, pp. 116–120.

[31] F. Perez-Cruz, A. Navia-Vazquez, P. L. Alarcon-Diana, A. A. Rodrguez,

Svc-based equalizer for burst tdma transmissions, Signal Processing 81

(2001) 1681–1693.

[32] F. Perez-Cruz, C. Bousono-Calzon, A. Artes-Rodriguez, Convergence

of the irwls procedure to the support vector machine solution, Neural

Computing 17 (2005) 7–18.

[33] K. D. Brabanter, J. D. Brabanter, J. A. K. Suykens, B. D. Moor, Opti-

mized fixed-size kernel models for large data sets, Computational Statis-

tics and Data Analysis 54 (2010) 1481–1504.

[34] R. Mall, J. A. K. Suykens, Very sparse lssvm reductions for large scale

data, IEEE Transactions on Neural Networks and Learning Systems 26

(2015) 1086–1097.

[35] J. M. Leski, Iteratively reweighted least squares classifier and its l1-and

l1-regularized kernel versions, Bulletin of the Polish Academy of Sciences

58 (2010) 171–182.

58

[36] S. Dinga, X. Hua, J. Yu, An overview on nonparallel hyperplane sup-

port vector machine algorithms, Neural Computing and Applications 25

(2014) 975–982.

[37] S. Ding, X. Hua, Recursive least squares projection twin support vector

machines for nonlinear classification, Neurocomputing 130 (2015) 3–9.

[38] X. Hua, S. Ding, Weighted least squares projection twin support vector

machines with local information, Neurocomputing 160 (2015) 228–237.

[39] C.Chen, C.Yan, Y. Li, A robust weighted least squares support vector

regression based on least trimmed squares, Neurocomputing 168 (2015)

941–946.

[40] S. Zhou, Sparse lssvm in primal using cholesky factorization for large-

scale problems, IEEE Transactions on Neural Networks and Learning

Systems 10.1109/TNNLS.2015.2424684.

[41] Z. Liu, S. Lin, M. T. Tan, Sparse support vector machines with lp

penalty for biomarker identification, IEEE/ACM Transactions on Com-

putational Biology And Bioinformatics 7 (1) (2010) 100–107.

[42] K.-W. C. Cho-Jui Hsieh, S. S. K. Chih-Jen Lin, S. Sun-dararajan, A dual

coordinate descent method for large-scale linear svm, Proceedings of the

Twenty Fifth International Conference on Machine Learning (ICML).

[43] C.-J. Lin, R. C. Weng, S. S. Keerthi, Trust region newton method for

large-scale logistic regression, Journal of Machine Learning Research 9

(2008) 627–650.

59

[44] S. R. Searle, Matrix Algebra Useful for Statistics, John Wiley and Sons,

1982.

[45] G. H. Golub, C. F. van Loan, Matrix Computations, The Johns Hopkins

University Press, 3rd edition, Baltimore, 1996.

[46] T. van Gestel, J. A. K. Suykens, B. Baesens, G. D. S. Viaene, J. Van-

thienen, B. D. Moor, J. Vandewalle, Benchmarking least squares support

vector machine classifiers, Machine Learning (2004) 5–32.

[47] D. S. Watkins, Fundamentals of Matrix Computations, 2nd Edition,

Wiley-Interscience, 2002.

[48] C.-C. Chang, C.-J. Lin, Libsvm: a library for support vector machines.

[49] T. Joachims, Making large-scale svm learning practical, in: B. Schölkopf,

C. Burges, A. Smola (Eds.), Advances in Kernel Methods - Support

Vector Learning, MIT Press, Cambridge, MA, 1999.

[50] R.-E. Fan, P.-H. Chen, C.-J. Lin, Working set selection using second or-

der information for training svm, Journal of Machine Learning Research

6 (2005) 1889–1918.

[51] J. X. Peng, S. Ferguson, K. Rafferty, V. Stewart, A sequential algorithm

for sparse support vector classifiers, Pattern Recognition 46 (2013) 1195–

1280.

[52] C. L. Blake, C. J. Merz, UCI Repository of Machine Learning Databases,

Univ. California, Dept. Inform. Comput. Sci., Irvine, CA, 1998.

60

[53] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack,

A. J. Levine, Broad patterns of gene expression revealed by clustering

analysis of tumor and normal colon tissues probed by oligonucleotide

arrays, Cell Biology 96 (1999) 6745–6750.

[54] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek,

J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri,

C. D. Bloomfield, E. S. Lander, Molecular classification of cancer: class

discovery and class prediction by gene expression monitoring, Science

286 (5439) (1999) 531–537.

[55] S. S. Keerthi, O. Chapelle, D. DeCoste, Building support vector ma-

chines with reduced classifier complexity, Journal of Machine Learning

Research 7 (2006) 1493–1515.

61

