1,580 research outputs found

    Determining the quality of mathematical software using reference data sets

    Get PDF
    This paper describes a methodology for evaluating the numerical accuracy of software that performs mathematical calculations. The authors explain how this methodology extends the concept of metrological traceability, which is fundamental to measurement, to include software quality. Overviews of two European Union-funded projects are also presented. The first project developed an infrastructure to allow software to be verified by testing, via the internet, using reference data sets. The primary focus of the project was software used within systems that make physical measurements. The second project, currently underway, explores using this infrastructure to verify mathematical software used within general scientific and engineering disciplines. Publications on using reference data sets for the verification of mathematical software are usually intended for a readership specialising in measurement science or mathematics. This paper is aimed at a more general readership, in particular software quality specialists and computer scientists. Further engagement with experts in these disciplines will be helpful to the continued development of this application of software quality

    Metrology, agriculture and food: literature quantitative analysis

    Get PDF
    Great attention has been given in recent years to the relationships between metrology, agriculture, and food. This study aims at providing an analysis of the literature regarding the relationships between metrology, agriculture, and food. The Scopus online database has been used to extract bibliometric data throughout the search string: TITLE-ABS-KEY (Metrology* AND Agriculture* OR Food*), and the VOSviewer bibliometric software was used to visualize results as bubble maps. The novelty character of this perspective paper is to indicate and point out the main research themes/lines addressing the relationships between metrology, agriculture, and food by analyzing: (i) the authors of the published papers; (ii) the type of paper; (iii) the countries and institutions where the research is developed. Bibliometrics allows one to holistically examine entire scientific areas or sub-fields to get new qualitative and quantitative insights. These results represent a useful tool for identifying emerging research directions, collaboration networks, and suggestions for more in-depth literature searches.This research received no external funding.info:eu-repo/semantics/publishedVersio

    Co-Nanomet: Co-ordination of Nanometrology in Europe

    Get PDF
    Nanometrology is a subfield of metrology, concerned with the science of measurement at the nanoscale level. Today’s global economy depends on reliable measurements and tests, which are trusted and accepted internationally. It must provide the ability to measure in three dimensions with atomic resolution over large areas. For industrial application this must also be achieved at a suitable speed/throughput. Measurements in the nanometre range should be traceable back to internationally accepted units of measurement (e.g. of length, angle, quantity of matter, and force). This requires common, validated measurement methods, calibrated scientific instrumentation as well as qualified reference samples. In some areas, even a common vocabulary needs to be defined. A traceability chain for the required measurements in the nm range has been established in only a few special cases. A common strategy for European nanometrology has been defined, as captured herein, such that future nanometrology development in Europe may build out from our many current strengths. In this way, European nanotechnology will be supported to reach its full and most exciting potential. As a strategic guidance, this document contains a vision for European nanometrology 2020; future goals and research needs, building out from an evaluation of the status of science and technology in 2010. It incorporates concepts for the acceleration of European nanometrology, in support of the effective commercial exploitation of emerging nanotechnologies. The field of nanotechnology covers a breadth of disciplines, each of which has specific and varying metrological needs. To this end, a set of four core technology fields or priority themes (Engineered Nanoparticles, Nanobiotechnology, Thin Films and Structured Surfaces and Modelling & Simulation) are the focus of this review. Each represents an area within which rapid scientific development during the last decade has seen corresponding growth in or towards commercial exploitation routes. This document was compiled under the European Commission Framework Programme 7 project, Co-Nanomet. It has drawn together input from industry, research institutes, (national) metrology institutes, regulatory and standardisation bodies across Europe. Through the common work of the partners and all those interested parties who have contributed, it represents a significant collaborative European effort in this important field. In the next decade, nanotechnology can be expected to approach maturity, as a major enabling technological discipline with widespread application. This document provides a guide to the many bodies across Europe in their activities or responsibilities in the field of nanotechnology and related measurement requirements. It will support the commercial exploitation of nanotechnology, as it transitions through this next exciting decade

    Preliminary study of Augmented Reality based manufacturing for further integration of Quality Control 4.0 supported by metrology

    Get PDF
    Augmented Reality (AR) is a key technology enabling Industry 4.0, which enriches human perspectives by overlaying digital information onto the real world. The maturity of AR technology has grown recently. As processes in the automotive and aeronautic sectors require high quality and near-zero error rates to ensure the safety of end-users, AR can be implemented to facilitate workers with immersive interfaces to enhance productivity, accuracy and autonomy in the quality sector. In order to analyse whether there is a real and growing interest in the use of AR as assisting technology for manufacturing sector in general and quality control in particular, two specific research questions are defined. In addition, two well-known research databases (Scopus, Web of Science) are used for the paper selection phase in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to conduct a preliminary study and evaluate the current development of AR applications in manufacturing sector in order to answer the defined questions. It is found that while the development of AR technology has widely implemented to assign real-time information to several systems and processes in assembly and maintenance sectors, this tendency has only emerged in the quality sector over the last few years. However, AR-based quality control has proved its advantages in improving productivity, accuracy and precision of operators as well as benefits to manufacturing in terms of product and process quality control across different manufacturing phases

    Quality assurance of CT scanning for industrial applications

    Get PDF

    Time dissemination and synchronization methods to support Galileo timing interfaces

    Get PDF
    Precise timing is an important factor in the modern information-oriented society and culture. Timing is one of the key technologies for such basic and everyday things, like cellular communications, Internet, satellite navigation and many others. Satellite navigation systems offer cost-efficient and high-performance timing services, and GPS is presently the unchallenged market leader. However, GPS is under military control and does not offer availability and performance guarantees. From a user perspective, this situation will change with the advent of the European satellite navigation system Galileo which shall be operated on a commercial basis by civil entities and shall accept certain liabilities for its services providing also guaranteed service performances. This work is motivated by the new opportunities and challenges related to Galileo timekeeping and applications, and in particular by the necessity to (a) produce and maintain a stable, accurate and robust system timescale which can serve for both accurate prediction of satellite clocks and for the metrological purposes, (b) establish accurate and reliable timing interface to GPS to facilitate Galileo interoperability, (c) maximize user benefits from the new system features like service guarantees and support application development by enabling their certification. The thesis starts with overview of atomic clocks, timekeeping and timing applications. Further Galileo project and system architecture are described and details on Galileo timekeeping concept are given. In addition, the state-of-the-art timekeeping and time dissemination methods and algorithms are presented. Main findings of the thesis focus on (a) Galileo timekeeping. Various options for generation of Galileo system time are proposed and compared with respect to the key performance parameters (stability and reliability). Galileo System Time (GST) stability requirements driven by its navigation and metrological functions are derived. In addition, achievable level of GST stability (considering hardware components) is analyzed. Further, optimization of the present baseline with respect to the design of Galileo Precise Timing Facility (PTF), and its redundancy and switching concepts is undertaken. Finally, performance analysis of different options for generation of the ensemble time is performed and considerations with respect to the role of the ensemble time in Galileo are provided, (b) GPS Galileo timing interface. The magnitude and statistical properties of the time offset are investigated and the impact of the time offset onto the user positioning and timing accuracy is studied with the help of simulated GPS and Galileo observations. Here a novel simulation concept which is based on utilization of GPS data and their scaling for Galileo is proposed. Both GPS and Galileo baseline foresees that the GPS/Galileo time offset shall be determined and broadcast to users in the navigation messages. For this purposes, the offset shall be predicted using available measurement data. Simulations of GPS Galileo time offset determination and prediction are presented. The prediction is made relying on both traditional method and on the advanced techniques like Box-Jenkins prediction (based on the autoregressive moving average approach) and Kalman filter. The end-to-end budgets for different options of GPS Galileo time offset determination are also presented. (c) Galileo interface to timing users (Galileo timing service). The relevance of GST restitution from the metrological point of view is discussed and recognition of GST as a legal time reference is proposed. Assessment of the accuracy of the Galileo timing service is presented. Finally, recommendations for Galileo are provided based on the findings of the thesis
    corecore