109 research outputs found

    Bio-Inspired Resource Allocation for Relay-Aided Device-to-Device Communications

    Full text link
    The Device-to-Device (D2D) communication principle is a key enabler of direct localized communication between mobile nodes and is expected to propel a plethora of novel multimedia services. However, even though it offers a wide set of capabilities mainly due to the proximity and resource reuse gains, interference must be carefully controlled to maximize the achievable rate for coexisting cellular and D2D users. The scope of this work is to provide an interference-aware real-time resource allocation (RA) framework for relay-aided D2D communications that underlay cellular networks. The main objective is to maximize the overall network throughput by guaranteeing a minimum rate threshold for cellular and D2D links. To this direction, genetic algorithms (GAs) are proven to be powerful and versatile methodologies that account for not only enhanced performance but also reduced computational complexity in emerging wireless networks. Numerical investigations highlight the performance gains compared to baseline RA methods and especially in highly dense scenarios which will be the case in future 5G networks.Comment: 6 pages, 6 figure

    Interference-Aware Decoupled Cell Association in Device-to-Device based 5G Networks

    Get PDF
    Cell association in cellular networks is an important aspect that impacts network capacity and eventually quality of experience. The scope of this work is to investigate the different and generalized cell association (CAS) strategies for Device-to-Device (D2D) communications in a cellular network infrastructure. To realize this, we optimize D2D-based cell association by using the notion of uplink and downlink decoupling that was proven to offer significant performance gains. We propose an integer linear programming (ILP) optimization framework to achieve efficient D2D cell association that minimizes the interference caused by D2D devices onto cellular communications in the uplink as well as improve the D2D resource utilization efficiency. Simulation results based on Vodafone's LTE field trial network in a dense urban scenario highlight the performance gains and render this proposal a candidate design approach for future 5G networks.Comment: 5 pages, 5 figures. Accepted in IEEE VTC spring 201

    Optimizing The Spatial Content Caching Distribution for Device-to-Device Communications

    Full text link
    We study the optimal geographic content placement problem for device-to-device (D2D) networks in which the content popularity follows the Zipf law. We consider a D2D caching model where the locations of the D2D users (caches) are modeled by a Poisson point process (PPP) and have limited communication range and finite storage. Unlike most related work which assumes independent placement of content, and does not capture the locations of the users, we model the spatial properties of the network including spatial correlation in terms of the cached content. We propose two novel spatial correlation models, the exchangeable content model and a Mat\'{e}rn (MHC) content placement model, and analyze and optimize the \emph{hit probability}, which is the probability of a given D2D node finding a desired file at another node within its communication range. We contrast these results to the independent placement model, and show that exchangeable placement performs worse. On the other hand, MHC placement yields a higher cache hit probability than independent placement for small cache sizes.Comment: appeared in Proc. IEEE Intl. Symposium on Info. Theory, Barcelona, Spain, July 201

    Network-Assisted Device-to-Device (D2D) Direct Proximity Discovery with Underlay Communication

    Get PDF
    Device-to-Device communications are expected to play an important role in current and future cellular generations, by increasing the spatial reuse of spectrum resources and enabling lower latency communication links. This paradigm has two fundamental building blocks: (i) proximity discovery and (ii) direct communication between proximate devices. While (ii) is treated extensively in the recent literature, (i) has received relatively little attention. In this paper we analyze a network-assisted underlay proximity discovery protocol, where a cellular device can take the role of: announcer (which announces its interest in establishing a D2D connection) or monitor (which listens for the transmissions from the announcers). Traditionally, the announcers transmit their messages over dedicated channel resources. In contrast, inspired by recent advances on receivers with multiuser decoding capabilities, we consider the case where the announcers underlay their messages in the downlink transmissions that are directed towards the monitoring devices. We propose a power control scheme applied to the downlink transmission, which copes with the underlay transmission via additional power expenditure, while guaranteeing both reliable downlink transmissions and underlay proximity discovery.Comment: Accepted for presentation at Globecom 201

    Power Control for D2D Underlay in Multi-cell Massive MIMO Networks

    Full text link
    This paper proposes a new power control and pilot allocation scheme for device-to-device (D2D) communication underlaying a multi-cell massive MIMO system. In this scheme, the cellular users in each cell get orthogonal pilots which are reused with reuse factor one across cells, while the D2D pairs share another set of orthogonal pilots. We derive a closed-form capacity lower bound for the cellular users with different receive processing schemes. In addition, we derive a capacity lower bound for the D2D receivers and a closed-form approximation of it. Then we provide a power control algorithm that maximizes the minimum spectral efficiency (SE) of the users in the network. Finally, we provide a numerical evaluation where we compare our proposed power control algorithm with the maximum transmit power case and the case of conventional multi-cell massive MIMO without D2D communication. Based on the provided results, we conclude that our proposed scheme increases the sum spectral efficiency of multi-cell massive MIMO networks.Comment: 6 Pages, 3 Figures, WSA 201

    A Survey on Device-to-Device Communication in 5G Wireless Networks

    Get PDF
    The Device-to-Device (D2D) communication model in 5G networks provides a useful infrastructure to enable different applications. D2D communication, with use of cellular or ad-hoc links, improve the spectrum utilization, system throughput, and energy efficiency of the network thereby preparing the ability for the user equipment to start communications with each other in proximity. The purpose of this paper is preparing a survey based on the D2D communication and review the available literature that in a widespread way research about the D2D paradigm, different application scenarios, and use cases. Moreover, new suspicion in this area that leads to identifying open research problems of D2D communications in cellular networks.info:eu-repo/semantics/publishedVersio
    corecore