595 research outputs found

    Simulating water-entry/exit problems using Eulerian-Lagrangian and fully-Eulerian fictitious domain methods within the open-source IBAMR library

    Full text link
    In this paper we employ two implementations of the fictitious domain (FD) method to simulate water-entry and water-exit problems and demonstrate their ability to simulate practical marine engineering problems. In FD methods, the fluid momentum equation is extended within the solid domain using an additional body force that constrains the structure velocity to be that of a rigid body. Using this formulation, a single set of equations is solved over the entire computational domain. The constraint force is calculated in two distinct ways: one using an Eulerian-Lagrangian framework of the immersed boundary (IB) method and another using a fully-Eulerian approach of the Brinkman penalization (BP) method. Both FSI strategies use the same multiphase flow algorithm that solves the discrete incompressible Navier-Stokes system in conservative form. A consistent transport scheme is employed to advect mass and momentum in the domain, which ensures numerical stability of high density ratio multiphase flows involved in practical marine engineering applications. Example cases of a free falling wedge (straight and inclined) and cylinder are simulated, and the numerical results are compared against benchmark cases in literature.Comment: The current paper builds on arXiv:1901.07892 and re-explains some parts of it for the reader's convenienc

    Comparison of multiphase SPH and LBM approaches for the simulation of intermittent flows

    Full text link
    Smoothed Particle Hydrodynamics (SPH) and Lattice Boltzmann Method (LBM) are increasingly popular and attractive methods that propose efficient multiphase formulations, each one with its own strengths and weaknesses. In this context, when it comes to study a given multi-fluid problem, it is helpful to rely on a quantitative comparison to decide which approach should be used and in which context. In particular, the simulation of intermittent two-phase flows in pipes such as slug flows is a complex problem involving moving and intersecting interfaces for which both SPH and LBM could be considered. It is a problem of interest in petroleum applications since the formation of slug flows that can occur in submarine pipelines connecting the wells to the production facility can cause undesired behaviors with hazardous consequences. In this work, we compare SPH and LBM multiphase formulations where surface tension effects are modeled respectively using the continuum surface force and the color gradient approaches on a collection of standard test cases, and on the simulation of intermittent flows in 2D. This paper aims to highlight the contributions and limitations of SPH and LBM when applied to these problems. First, we compare our implementations on static bubble problems with different density and viscosity ratios. Then, we focus on gravity driven simulations of slug flows in pipes for several Reynolds numbers. Finally, we conclude with simulations of slug flows with inlet/outlet boundary conditions. According to the results presented in this study, we confirm that the SPH approach is more robust and versatile whereas the LBM formulation is more accurate and faster

    Implicit iterative particle shifting for meshless numerical schemes using kernel basis functions

    Get PDF
    A novel particle shifting technique (PST) for meshless numerical methods is presented. The proposed methodology uses an implicit iterative particle shifting (IIPS) technique aiming to reduce the spatial particle’ anisotropy, which is associated with the discretization error in meshless numerical schemes based on kernel basis functions. The algorithm controls the particle spatial distribution through an implicit minimization problem, related to the particle concentration gradient and therefore, to the particles’ anisotropy. This results in accurate particle distributions, to demonstrate the effectiveness of the proposed method, the IIPS algorithm is tested within a smoothed particle hydrodynamics (SPH) framework, with static and kinematic cases, by examining the particle distributions and the corresponding spatial accuracy. Further, the computational cost of the proposed methodology is reported and it is shown that it introduces minimal overhead. Moreover, the simulations of the Taylor–Green vortex (TGV), employing a weakly-compressible SPH Navier–Stokes solver, confirmed the superior accuracy of the IIPS in comparison to existing explicit shifting approaches, in simulating internal flows

    Lagrangian Neural Style Transfer for Fluids

    Full text link
    Artistically controlling the shape, motion and appearance of fluid simulations pose major challenges in visual effects production. In this paper, we present a neural style transfer approach from images to 3D fluids formulated in a Lagrangian viewpoint. Using particles for style transfer has unique benefits compared to grid-based techniques. Attributes are stored on the particles and hence are trivially transported by the particle motion. This intrinsically ensures temporal consistency of the optimized stylized structure and notably improves the resulting quality. Simultaneously, the expensive, recursive alignment of stylization velocity fields of grid approaches is unnecessary, reducing the computation time to less than an hour and rendering neural flow stylization practical in production settings. Moreover, the Lagrangian representation improves artistic control as it allows for multi-fluid stylization and consistent color transfer from images, and the generality of the method enables stylization of smoke and liquids likewise.Comment: ACM Transaction on Graphics (SIGGRAPH 2020), additional materials: http://www.byungsoo.me/project/lnst/index.htm
    • …
    corecore