123 research outputs found

    Measurement Based Reconfigurations in Optical Ring Metro Networks

    Get PDF
    Single-hop wavelength division multiplexing (WDM) optical ring networks operating in packet mode are one of themost promising architectures for the design of innovative metropolitan network (metro) architectures. They permit a cost-effective design, with a good combination of optical and electronic technologies, while supporting features like restoration and reconfiguration that are essential in any metro scenario. In this article, we address the tunability requirements that lead to an effective resource usage and permit reconfiguration in optical WDM metros.We introduce reconfiguration algorithms that, on the basis of traffic measurements, adapt the network configuration to traffic demands to optimize performance. Using a specific network architecture as a reference case, the paper aims at the broader goal of showing which are the advantages fostered by innovative network designs exploiting the features of optical technologies

    An Improved Upper Bound for the Ring Loading Problem

    Full text link
    The Ring Loading Problem emerged in the 1990s to model an important special case of telecommunication networks (SONET rings) which gained attention from practitioners and theorists alike. Given an undirected cycle on nn nodes together with non-negative demands between any pair of nodes, the Ring Loading Problem asks for an unsplittable routing of the demands such that the maximum cumulated demand on any edge is minimized. Let LL be the value of such a solution. In the relaxed version of the problem, each demand can be split into two parts where the first part is routed clockwise while the second part is routed counter-clockwise. Denote with LL^* the maximum load of a minimum split routing solution. In a landmark paper, Schrijver, Seymour and Winkler [SSW98] showed that LL+1.5DL \leq L^* + 1.5D, where DD is the maximum demand value. They also found (implicitly) an instance of the Ring Loading Problem with L=L+1.01DL = L^* + 1.01D. Recently, Skutella [Sku16] improved these bounds by showing that LL+1914DL \leq L^* + \frac{19}{14}D, and there exists an instance with L=L+1.1DL = L^* + 1.1D. We contribute to this line of research by showing that LL+1.3DL \leq L^* + 1.3D. We also take a first step towards lower and upper bounds for small instances

    TOPOLOGICAL PLANNING OF COMMUNICATION NETWORKS

    Get PDF
    In this paper, we concentrate on topological planning process of large-scale communication networks such as those used by telecom operators. Such networks are usually spread over large geographical area, and finding an optimal topology is very important part of the planning process. Network equipment used in such network is very expensive, and two connection points can be hundreds of kilometers apart. These networks, in most cases, form a backbone network of telecom operator, meaning that majority of traffic is carried through high-speed communication links of such network. Any cable cuts or equipment malfunctions could result in huge data losses. Therefore, such networks require high degree of availability and fault resistance, which must be considered during the planning process. Network topology providing fault resistance should offer at least two separate communication paths between any pair of network nodes. Most important issue in network topology planning is finding topology with lowest possible overall network price, while keeping all requirements (such as fault tolerance, availability, maximal number of hops, maximal blocking probability etc.) satisfied. Network design process can be divided into three stages. First step is making decisions about which network elements (nodes, existing edges) should be included in a backbone network (for instance, one of sub-problems appearing in this phase is facility location problem). Second step includes selection of network topology, so that all elements selected in first step will be interconnected satisfying given requirements. Last phase is used to determine node and link capacities needed for successful traffic transport as well as routings of traffic demands, including protection. Depending on technologies used in network, different routing and protection mechanisms, as well as specific topology models, can be used (e.g. SDH/WDM SHR, mesh, dual-homing etc.)

    Optimization in Telecommunication Networks

    Get PDF
    Network design and network synthesis have been the classical optimization problems intelecommunication for a long time. In the recent past, there have been many technologicaldevelopments such as digitization of information, optical networks, internet, and wirelessnetworks. These developments have led to a series of new optimization problems. Thismanuscript gives an overview of the developments in solving both classical and moderntelecom optimization problems.We start with a short historical overview of the technological developments. Then,the classical (still actual) network design and synthesis problems are described with anemphasis on the latest developments on modelling and solving them. Classical results suchas Menger’s disjoint paths theorem, and Ford-Fulkerson’s max-flow-min-cut theorem, butalso Gomory-Hu trees and the Okamura-Seymour cut-condition, will be related to themodels described. Finally, we describe recent optimization problems such as routing andwavelength assignment, and grooming in optical networks.operations research and management science;

    TOPOLOGICAL PLANNING OF COMMUNICATION NETWORKS

    Get PDF
    In this paper, we concentrate on topological planning process of large-scale communication networks such as those used by telecom operators. Such networks are usually spread over large geographical area, and finding an optimal topology is very important part of the planning process. Network equipment used in such network is very expensive, and two connection points can be hundreds of kilometers apart. These networks, in most cases, form a backbone network of telecom operator, meaning that majority of traffic is carried through high-speed communication links of such network. Any cable cuts or equipment malfunctions could result in huge data losses. Therefore, such networks require high degree of availability and fault resistance, which must be considered during the planning process. Network topology providing fault resistance should offer at least two separate communication paths between any pair of network nodes. Most important issue in network topology planning is finding topology with lowest possible overall network price, while keeping all requirements (such as fault tolerance, availability, maximal number of hops, maximal blocking probability etc.) satisfied. Network design process can be divided into three stages. First step is making decisions about which network elements (nodes, existing edges) should be included in a backbone network (for instance, one of sub-problems appearing in this phase is facility location problem). Second step includes selection of network topology, so that all elements selected in first step will be interconnected satisfying given requirements. Last phase is used to determine node and link capacities needed for successful traffic transport as well as routings of traffic demands, including protection. Depending on technologies used in network, different routing and protection mechanisms, as well as specific topology models, can be used (e.g. SDH/WDM SHR, mesh, dual-homing etc.)

    Overlay networks for smart grids

    Get PDF

    Design of switch architecture for the geographical cell transport protocol

    Get PDF
    The Internet is divided into multiple layers to reduce and manage complexity. The International Organization for Standardization (ISO) developed a 7 layer network model and had been revised to a 5 layer TCP/IP based Internet Model. The layers of the Internet can also be divided into top layer TCP/IP protocol suite layers and the underlying transport network layers. SONET/SDH, a dominant transport network, was designed initially for circuit based telephony services. Advancement in the internet world with voice and video services had pushed SONET/SDH to operate with reduced efficiencies and increased costs. Hence, redesign and redeployment of the transport network has been and continues to be a subject of research and development. Several projects are underway to explore new transport network ideas such as G.709 and GMPLS. This dissertation presents the Geographical Cell Transport (GCT) protocol as a candidate for a next generation transport network. The GCT transport protocol and its cell format are described. The benefits provided by the proposed GCT transport protocol as compared to the existing transport networks are investigated. Existing switch architectures are explored and a best architecture to be implemented in VLSI for the proposed transport network input queued virtual output queuing is obtained. The objectives of this switch are high performance, guaranteed fairness among all inputs and outputs, robust behavior under different traffic patterns, and support for Quality of Service (QoS) provisioning. An implementation of this switch architecture is carried out using HDL. A novel pseudo random number generation unit is designed to nullify the bias present in an arbitration unit. The validity of the designed is checked by developing a traffic load model. The speedup factor required in the switch to maintain desired throughput is explored and is presented in detail. Various simulation results are shown to study the behavior of the designed switch under uniform and hotspot traffic. The simulation results show that QoS behavior and the crossing traffic through the switch has not been affected by hotspots
    corecore