121 research outputs found

    Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

    Get PDF
    In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including B\'ezier extraction and subdivision are performed on each boundary curve in order to generate a high-quality planar parameterization; then a robust planar domain partition framework is proposed to construct high-quality patch-meshing results with few singularities from the discrete boundary formed by connecting the end points of the resulting boundary segments. After the topology information generation of quadrilateral decomposition, the optimal placement of interior B\'ezier curves corresponding to the interior edges of the quadrangulation is constructed by a global optimization method to achieve a patch-partition with high quality. Finally, after the imposition of C1=G1-continuity constraints on the interface of neighboring B\'ezier patches with respect to each quad in the quadrangulation, the high-quality B\'ezier patch parameterization is obtained by a C1-constrained local optimization method to achieve uniform and orthogonal iso-parametric structures while keeping the continuity conditions between patches. The efficiency and robustness of the proposed method are demonstrated by several examples which are compared to results obtained by the skeleton-based parameterization approach

    Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications

    Get PDF
    International audienceParameterization of computational domain is a key step in isogeometric analysis just as mesh generation is in finite element analysis. In this paper, we study the volume parameterization problem of multi-block computational domain in isogeometric version, i.e, how to generate analysis-suitable parameterization of the multi-block computational domain bounded by B-spline surfaces. Firstly, we show how to find good volume parameterization of single-block computational domain by solving a constraint optimization problem, in which the constraint condition is the injectivity sufficient conditions of B-spline volume parametrization, and the optimization term is the minimization of quadratic energy functions related to the first and second derivatives of B-spline volume parameterization. By using this method, the resulted volume parameterization has no self-intersections, and the isoparametric structure has good uniformity and orthogonality. Then we extend this method to the multi-block case, in which the continuity condition between the neighbor B-spline volume should be added to the constraint term. The effectiveness of the proposed method is illustrated by several examples based on three-dimensional heat conduction problem

    An interactive geometry modeling and parametric design platform for isogeometric analysis

    Get PDF
    In this paper an interactive parametric design-through-analysis platform is proposed to help design engineers and analysts make more effective use of Isogeometric Analysis (IGA) to improve their product design and performance. We develop several Rhinoceros (Rhino) plug-ins to take input design parameters through a user-friendly interface, generate appropriate surface and/or volumetric models, perform mechanical analysis, and visualize the solution fields, all within the same Computer-Aided Design (CAD) program. As part of this effort we propose and implement graphical generative algorithms for IGA model creation and visualization based on Grasshopper, a visual programming interface to Rhino. The developed platform is demonstrated on two structural mechanics examples—an actual wind turbine blade and a model of an integrally bladed rotor (IBR). In the latter example we demonstrate how the Rhino functionality may be utilized to create conforming volumetric models for IGA

    The Construction of Conforming-to-shape Truss Lattice Structures via 3D Sphere Packing

    Get PDF
    Truss lattices are common in a wide variety of engineering applications, due to their high ratio of strength versus relative density. They are used both as the interior support for other structures, and as structures on their own. Using 3D sphere packing, we propose a set of methods for generating truss lattices that fill the interior of B-rep models, polygonal or (trimmed) NURBS based, of arbitrary shape. Once the packing of the spheres has been established, beams between the centers of adjacent spheres are constructed, as spline based B-rep geometry. We also demonstrate additional capabilities of our methods, including connecting the truss lattice to (a shell of) the B-rep model, as well as constructing a tensor-product trivariate volumetric representation of the truss lattice - an important step towards direct compatibility for analysis.RYC-2017-2264

    Exact conversion from BĂ©zier tetrahedra to BĂ©zier hexahedra

    Get PDF
    International audienceModeling and computing of trivariate parametric volumes is an important research topic in the field of three-dimensional isogeo-metric analysis. In this paper, we propose two kinds of exact conversion approaches from BĂ©zier tetrahedra to BĂ©zier hexahedra with the same degree by reparametrization technique. In the first method, a BĂ©zier tetrahedron is converted into a degenerate BĂ©zier hexahedron, and in the second approach, a non-degenerate BĂ©zier tetrahedron is converted into four non-degenerate BĂ©zier hexahedra. For the proposed methods, explicit formulas are given to compute the control points of the resulting tensor-product BĂ©zier hexahedra. Furthermore, in the second method, we prove that tetrahedral spline solids with C k-continuity can be converted into a set of tensor-product BĂ©zier volumes with G k-continuity. The proposed methods can be used for the volumetric data exchange problems between different trivariate spline representations in CAD/CAE. Several experimental results are presented to show the effectiveness of the proposed methods

    Geometric Modeling of Cellular Materials for Additive Manufacturing in Biomedical Field: A Review

    Get PDF
    Advances in additive manufacturing technologies facilitate the fabrication of cellular materials that have tailored functional characteristics. The application of solid freeform fabrication techniques is especially exploited in designing scaffolds for tissue engineering. In this review, firstly, a classification of cellular materials from a geometric point of view is proposed; then, the main approaches on geometric modeling of cellular materials are discussed. Finally, an investigation on porous scaffolds fabricated by additive manufacturing technologies is pointed out. Perspectives in geometric modeling of scaffolds for tissue engineering are also proposed
    • …
    corecore